热式质量流量计原理及概述
- 格式:doc
- 大小:48.11 KB
- 文档页数:11
热式气体质量流量计-360百科热式气体质量流量计是利用热扩散和热分布的原理,利用气体带走热量的多少来计算流量。
其测量结果受温度、压力变化影响较小,量程比可达到30∶1,安装方式为插入式,基本没有压力损失,适用于测量介质组分比较稳定的干燥气体的流量。
1、工作原理:大流量:热扩散原理,利用气体带走多少热量决定流量;小流量:热分布原理;2、系统组成:简单无活动部件、常温一体化、高温分体式;3、适用测量介质:干燥气体,介质组分稳定;4、系统误差:±1% 质量流量精度;5、系统智能化:多项参数修改,智能化;6、检定:工厂标定数据储存在仪表里,可以现场检定仪表性能,结果可溯源;7、量程比:大量程比,保证精度的前提下30∶1;8、流量结果:质量流量,温度、压力变化影响小;9、温压补偿:不需要;10、安装:小口径:管道式;大口径:插入式;安装简单快捷:不需要保温\导压管路,前后;直管段:3D/5D;安装成本低:在管道360范围内任何角度都可以安装;11、维护:属于免维护型,如需维护,可以实现在线不停产插拔维护;12、工厂标定:密闭环路模拟实际工况标定每一台都要实际标定;13、响应时间:1s;14、压力损失:插入式基本没有压力损失;15、系统重复性:重复性较好;16、温度对测量系统精度的影响:在±25℃范围内,±0.04 %FS;在±25~50℃范围内,±0.06 %FS;17、压力对测量系统精度的影响:压力变化0.006895MPa,精度影响0.02% FS;18、系统造价:性价比非常高,小口径相对价格高,大口径比孔板产品还便宜。
热式气体质量流量计-百度百科一、概述嘉可仪表JK系列热式气体质量流量计是利用热传导原理测流量的仪表。
热式气体质量流量计采用恒温差法对气体质量流量进行准确测量。
具有体积小、数字化程度高、安装方便,测量准确等优点。
二、工作原理热式质量流量计由传感器和信号分析、处理与控制单元两部分构成。
传感器一部分测量温度,而另一部分用于加热。
前者监控实际过程温度值;后者维持一恒定温度值,使其总是高于实际过程温度且与该过程温度保持恒定的温度差。
气体的质量流量越大,冷却效应就越大,维持差分温度所需的能量也就越大。
因此,通过测量加热器的能量便可得出被测气体的质量流量。
三、热式气体质量流量计产品特点:1、真正的质量流量计,对气体流量测量无需温度和压力补偿,测量方便、准确。
可得到气体的质量流量或者标准体积流量。
2、宽量程比,可测量流速高至100Nm/s底至0.5Nm/s的气体,可以用于气体检漏。
3、抗震性能好使用寿命长。
传感器无活动部件和压力传感部件,不受震动对测量精度的影响。
4、安装维修简便。
在现场条件允许的情况下,可以实现不停产安装和维护。
(请参见安全注意事项)5、数字化设计。
整体数字化电路测量,测量准确、维修方便。
6、采用RS-485通讯,或HART通讯,可以实现工厂自动化、集成化。
四、适用范围1、压缩空气2、锅炉房或干燥机中的天然气3、酿酒厂中的二氧化碳气体4、污水处理厂中的沼气和曝气5、生成气体(如氩气、氮气、二氧化碳、氦气、氧气)6、气体泄露检测嘉可仪表生产的热式气体质量流量计可以测量氧气、氮气、二氧化碳、天然气、压缩空气、煤气、沼气等各种气体(乙炔除外),嘉可仪表JK系列热式气体质量流量计种类齐全,有管道式热式气体质量流量计、插入式热式气体质量流量计、高温型热式气体质量流量计、高压型热式气体质量流量计、一体式热式气体质量流量计、分体式热式气体质量流量计等。
MEMS热式质量流量计是一种常用于测量气体流量的仪器,其工作原理基于MEMS(Micro-Electro-Mechanical Systems,微电子机械系统)技术和热物理学原理。
这种流量计具有精度高、响应速度快、体积小等特点,广泛应用于工业和科研领域。
下面将从结构特点、工作原理和应用领域等方面介绍MEMS热式质量流量计的工作原理。
一、结构特点1.微型化结构MEMS热式质量流量计主要由微加工技术制作而成,整体结构非常微小。
其尺寸通常在毫米级别,因此具有体积小、重量轻的特点。
2.热敏传感器流量计的核心部件是热敏传感器,它通常采用热敏电阻、热电偶或热敏薄膜等器件。
当气体流经热敏传感器时,热敏传感器的温度会随流体流速的变化而发生相应变化。
3.微型加热器为了维持热敏传感器的恒定温度,MEMS热式质量流量计通常还配备有微型加热器。
微型加热器可以根据流体流速的变化调节热敏传感器的温度,从而实现流量的测量。
二、工作原理1.传感器供电当MEMS热式质量流量计接通电源后,热敏传感器和微型加热器会被供电,开始工作。
2.热传导机制当气体流经热敏传感器时,气体与热敏传感器的热量交换会引起热传导效应。
气体的流速越大,热量的带走越快,热敏传感器的温度就会相应下降。
3.温度补偿为了准确测量气体流速,需要对热敏传感器的温度进行补偿。
而微型加热器就起到了这一作用。
通过微型加热器对热敏传感器的加热,可以保持热敏传感器的温度始终处于一个稳定的状态,从而实现对气体流速的精确测量。
三、应用领域MEMS热式质量流量计由于其体积小、功耗低、响应速度快等特点,被广泛应用于各种气体流量测量领域。
1.工业自动化在工业自动化控制系统中,常常需要对气体流量进行准确测量。
MEMS热式质量流量计可以满足工业自动化设备对于流量测量的需求,广泛应用于气体流量的监测和控制。
2.能源领域在能源行业,对气体流量的准确测量是非常重要的。
MEMS热式质量流量计可以用于天然气、煤气等能源的流量测量和监测,为能源行业的生产和管理提供重要支持。
热式气体质量流量计工作原理
热式气体质量流量计(或称热式流量计)是利用传感器受流体冷却效应变化来测量气体质量流量的仪器。
热式流量计通常由两个传感器组成,一个作为“加热器”,另一个作为“测温器”。
传感器通常采用可供直流通电的纯电阻丝或薄膜材料制成。
工作原理如下:
1. 加热器传感器:加热器被通电,使得传感器加热到设定温度,保持一个稳定的热平衡。
当气体流过加热器传感器时,气体带走了一部分热量,导致传感器温度降低。
2. 测温器传感器:测温器传感器位于加热器传感器的下游。
该传感器被设计为只测量气体的温度,而不受气体质量流量的影响。
3. 温差测量:通过测量加热器和测温器之间的温差来确定气体质量流量。
当气体流量增加时,气体带走的热量也增加,导致加热器温度下降更多,从而增加了加热器与测温器之间的温差。
4. 测量和计算:根据加热器与测温器之间的温差以及已知的加热器特性和气体性质,可以计算出气体的质量流量。
值得注意的是,热式流量计对气体的物性参数要求较高,如气
体密度、比热容等。
因此,在使用热式流量计时需要提供准确的气体物性参数,以获得更准确的流量测量结果。
热式气体质量流量计原理热式气体质量流量计主要包括传感器和电子控制单元两部分。
传感器通常由两个热电阻组成,一个作为加热元件,另一个作为测量元件。
电子控制单元控制加热电源的输出功率和测量元件的温度,同时采集和处理热电阻的温度信号。
在工作时,热式气体质量流量计首先通过加热元件将待测气体加热到一定温度,使其与测量元件温度保持一定差值。
然后通过测量元件和加热元件之间的热传导,传递一定的热量。
由于待测气体的流动会带走部分热量,所以测量元件的温度会降低。
电子控制单元通过检测测量元件的温度变化,计算得到待测气体的质量流量。
1.加热:电子控制单元向加热元件提供一定的加热功率,使其达到一定的温度。
加热元件通常采用薄膜结构,具有较高的热导率。
2.温度差测量:测量元件与加热元件之间形成一定的温差。
这个温差可以通过测量元件和加热元件中的热电阻的温度差来确定。
热电阻的阻值随温度的变化而变化,通过测量热电阻的阻值变化,可以得到温差信号。
3.热量传导:加热元件和测量元件之间的温差会导致热量的传导。
当气体流过测量元件时,它会带走一部分热量,使得测量元件的温度降低。
4.信号检测:电子控制单元通过检测测量元件的温度变化来确定气体的流量。
测量元件的温度变化与气体的流动量成正比。
5.数值计算:电子控制单元将测量元件的温度变化转化为气体的质量流量。
通过校正系数和相关参数,可以得到准确的质量流量数值。
总而言之,热式气体质量流量计通过测量加热元件和测量元件之间的热传导来确定气体的质量流量。
它是一种常用的流量测量仪器,具有较高的测量精度和稳定性,在工业和科学研究中发挥着重要作用。
热式质量流量计的工作原理
热式质量流量计是一种基于热传导定律的流量计,其工作原理是
利用电加热装置将流体加热,同时使用温度传感器测量加热后的流体
温度,根据加热器的输能和流体温升计算与质量流量成正比的热功率。
具体地,热式质量流量计将加热器套在管道上,利用电加热将流
体加热,当流体通过加热器时,流体的温度会升高。
温度传感器测量
流体加热后的温度,将温度变化值转换为电信号,送入差分测量放大器,计算出流体的热功率。
根据热传导定律和流体的热容量,可以推
导出流体的质量流量。
热式质量流量计的优点是可以测量多种流体,不受流体压力、密
度和粘度的影响,并且测量精度高。
但需要注意的是,其测量原理要
求流体必须是单相流(即液体或气体),并且温度传感器和加热器的
材料要与流体相容,否则可能会出现误差或故障。
热式质量流量计【热式质量流量计性能特点】:热式气体质量流量计是利用热传导原理测量气体质量流量的仪表。
热式质量流量计的传感器由两个基准级热电阻(铂RTD)组成。
一个是质量速度传感器T1,一个是测量气体温度变化的温度传感器T2。
当这两个RTD置于被测气体中时,其中传感器T1被加热到气体温度以上的一个恒定的温差,另一个传感器T2用于感应被测气体温度。
随着气体质量流速的增加,气流带走更多热量,传感器T1的温度下降,要维持T1、T2恒定的温度差,T1的加热功率就要增大。
根据热效应的金氏定律,加热功率P、温度差△T(T1-T2)与质量流量Q有确定的数学关系式。
P/△T=K1+K2 f(Q)K3K1、K2、K3是与气体物理性质有关的常数。
【热式质量流量计的应用】:●氧气、氮气、氢气、氯气及多组分气体测量。
●高炉煤气、焦炉煤气测量。
●烟道气测量。
●沼气、水处理中的曝气和氯气测量。
●压缩空气测量。
●天然气,液化气,火炬气,等气体流量测量●电厂高炉的一次风、二次风流量测量●矿井下通风或排风系统流量测量【热式质量流量计特点】:●测量气体质量流量,无需温度、压力补偿。
●量程比大,测量流速范围:0.1Nm/s~100Nm/s。
●无压力损失,适用已知截面积的任意形状管道。
●耐腐蚀型传感器,适合测量腐蚀性气体。
●插入式传感器可以在线安装和维护。
●全量程段的专家算法,保证了测量的准确度。
适于贸易结算或气体检漏。
●液晶显示器:8位字段式+24位提示符。
●测量显示:质量流量、标况体积流量、累计流量、北京时间、累计运行时间。
●瞬时流量最大显示值:999999.9●累计流量最大显示值:99999999×103●信号输出:4~20mA、RS-485●内置MENU(菜单)、CUS(光标移动)、UP(数值增加)、ENT(确认)四个按键,用于参数的设定。
热式气体质量流量计由一体式流量转换器、流量传感器组成。
按流量传感器的型式分为:插入式和管段式热式气体质量流量计。
热式质量流量计原理热式质量流量计(简称热式流量计)是一种重要的传感器,它由温度传感器、流量传感器和相关电子部件组成,用于检测空气、水和其他流体的流量。
它可以引发实际流量,直接、准确地把实际流量转换成可读信号。
它可以用来检测空气中的流量,测量混合物中的各种成分的含量,控制化学反应的速度等。
热式流量计的工作原理是通过测量游程轴管内介质的温度来测量流量,原理如下:流体介质流经一个物理包围领域时,其质量流量伴随着一定的温差,当介质流量增大时,其温差也会增大,当流量减少时,温差也会减小。
因此,测量介质在包围领域中传输温度梯度可以推断出流量大小,从而计算出介质的质量流量。
热式流量计一般分为温度传感器和流量传感器两部分,通过温度传感器检测介质的温度变化,并将其转换成可读的信号;通过流量传感器根据流量大小调节热量传输,从而计算出介质的质量流量。
热式流量计具有多种优点,它可以准确、实时地检测介质的流量,并便于控制物质的流量。
此外,热式流量计具有精度高、准确性好、可靠性强的特点,并可实现多种流量范围的测量,因而在许多应用中得到了广泛的应用。
热式流量计的结构也相对比较简单,它的电气部分不需要考虑温度和压力的影响,这种结构的优点是可以节省空间和成本。
此外,由于它采用温度测量方式,所以只要保证温度均匀,就可以保持测量精度。
热式流量计在空调、水处理、石油化工、冶金等行业具有重要的应用价值。
例如,在空调行业,热式流量计可以用来检测空调系统里空气的流量,从而准确地测量和控制空气的流量,从而实现空调系统的节能效果;在水处理行业,它可以用来测量水的流量,确保净水设备的正常运行。
综上,热式流量计具有准确、实时、可靠的特点,可以实现多种流量的测量,具有重要的应用价值,并且可以节省空间和成本,在实际工程中得到广泛应用。
热式气体质量流量计一、简介1、热式气体质量流量计是利用热扩散原理测量气体流量的仪表。
传感器由两个基准级热电阻(RTD)组成。
一个是速度传感器RH,一个是测量气体温度变化的温度传感器RMG。
当这两个RTD置于被测气体中时,其中传感器RH被加热,另一个传感器RMG用于感应被测气体温度。
随着气体流速的增加,气流带走更多热量,传感器RH的温度下降。
2、热式气体质量流量计独特的温度差测量方式克服了采用恒温差原理的热式气体质量流量计测量煤气流量时因煤气中含水、油和杂质而造成的很大的零点漂移,导致无法测量的弊端。
它也可以用于测量湿气体的质量流量,如矿井下瓦斯抽放、送风,排风系统中的风量(速)的实时检测。
二、特点1、安装方便,维修简单双向检测,防振动2、多至24点流量测量3、输出模拟量的校正多点非线性曲线修正4、宽量程比100:15、流量与温度同时检测,切换显示6、大口径小流量测量,可做泄露检测7、采用专有技术“双平衡结构”封装传感器8、专有高湿、高温算法,介质温度可达500℃9、直接质量流量检测,无需温度压力补偿三、工作原理热式流量计是基于热扩散原理而设计的流量仪表.即利用流体流过发热物体时,发热物体的热量散失多少与流体的流量呈一定的比例关系.该系列流量计的传感器有两只标准级的RTD,一只用来做热源,一只用来测量流体温度,当流体流动时,两者之间的温度差与流量的大小成线性关系,再通过微电子控制技术,将这种关系转换为测量流量信号的线性输出。
四、分类1、插入式插入式传感器可在线安装、在线维护。
安装过程是首先在管道外壁上焊接带有外螺纹的底座,在底座上安装1 寸不锈钢球阀,而后用专用工具将管道打直径为22mm的孔,打孔完毕后卸下专用工具,最后将传感器安装在阀门上并将传感器插入到管内中心(传感器的插入位置出厂时已确定)。
插入式传感器适用管道直径:DN80~6000mm。
2、管段式管段式热式气体质量流量计出厂时已配备和现场管道内径相同的工艺管道。
热式质量流量计原理与概述2010-5-31 瑞特仪表编辑:东升热式质量流量计(以下简称TME)是利用传热原理,即流动中的流体与热源(流体中加热的物体或测量管外加热体)之间热量交换关系来测量流量的仪表,过去我国习称量热式流量计。
当前主要用于测量气体。
20世纪90年代初期,世界围TMF销售金额约占流量仪表的8%,约4.5万台。
国90年代中期销售量估计每年1000台左右。
过去流程工业用仪表主要是热分布式,近几年才开发热散(或冷却)效应式。
1. 原理和结构热式流量仪表用得最多有两类,即1)利用流动流体传递热量改变测量管壁温度分布的热传导分布效应的热分布式流量计(thenmaI prohIe fIowmeter)曾称量热式TMF;2)利用热消散(冷却)效应的金氏定律(King s Iaw)TMF。
又由于结构上检测元件伸入测量管,也称浸入型(immersion type )或侵入型(intrusion type)。
有些在使用时从管外插入工艺管的仪表称作插入式(insertion type)。
1.1热分布式TMF热分布式TMF的工作原理如图1所示,薄壁测量管3外壁绕着两组兼作加热器和检测元件的绕组2,组成惠斯登电桥,由恒流电源5供给恒定热量,通过线圈绝缘层、管壁、流体边界层传导热量给管流体。
边界层热的传递可以看作热传导方式实现的。
在流量为零时,测量管上的温度分布如图下部虚线所示,相对于测量管中心的上下游是对称的,由线圈和电阻组成的电桥处于平衡状态;当流体流动时,流体将上游的部分热量带给下游,导致温度分布变化如实线所示,由电桥测出两组线圈电阻值的变化,求得两组线圈平均温度差ΔT。
便可按下式导出质量流量qm,即(1)式中cp -------被测气体的定压比热容;A -------测量管绕组(即加热系统)与周围环境热交换系统之间的热传导系数;K -------仪表常数。
在总的热传导系数A中,因测量管壁很薄且具有相对较高热导率,仪表制成后其值不变,因此A的变化可简化认为主要是流体边界层热导率的变化。
热式气体质量流量计
原理:
热式气体质量流量计是基于热扩散原理而设计的,该仪表采用恒温差法对气体进行准确测量。
具有体积小、数字化程度高、安装方便,测量准确等优点。
传感器部分由两个基准级铂电阻温度传感器组成,仪表工作时,一个传感器不间断地测量介质温度T1;另一个传感器自加热到高于介质温度T2,它用于感测流体流速,称为速度传感器。
该温度ΔT=T2-T1,T2>T1,当有流体流过时,由于气体分子碰撞传感器并将T2的热量带走,使T2的温度下降,若要使ΔT 保持不变,就要提高T2的供电电流,气体流动速度热快,带走的热量也就越多,气体流速和增加的热量存在固定的函数关系,这就是恒温差原理。
其中— 流体比重(和密度相关)
V — 流速
K — 平衡系数
Q — 加热量(和比热及结构相关)
ΔT — 温度差
由于传感器温度比介质(环境)温度总是自动恒定高出30℃左右,所以热式气体流量计从原理上不需要温度补偿。
热式气体质量流量计适用介质温度范围为-40-220℃。
(1) 式中流体比重和密度相关
其中 — 工况体积下的介质密度(kg/m 3)
ρn — 标准条件下介质密度(101.325 Kpa 、20℃) (kg/m 3)
P — 工况压力 (kPa )
T — 工况温度(℃)
从(1)(2)式可以看出,流速和工况压力,气体密度,工况温度函数关系已确定。
恒温差热式气体质量流量计不但不受温度影响,而且不受压力的影响,热式气体质量流量计是真正的直接式质量流量计,用户不必对压力和温度进行修正。
(1)
(2)。
热式气体质量流量计的原理解析
热式气体质量流量计是基于热扩散原理而设计的,总体来所是指流体流过时产品的传感器流
失的热量与流体的流量成正比关系。
具体实现有二种方法:
1)恒温差法是加热元件的温度高于气体的温度,气体流过时带走一部分热量,保持加热元
件和被测气体温度差恒定在一定的温差,控制和测量热源提供的功率,功率
消耗随流量的增加而增加,由功率的消耗反映气体流量。
2)恒功率法是以恒定功率为铂热电阻提供热量,使其加热到高于气体的温度,流体流动带
走铂热电阻表面一部分热量,流量越大,温度降越大,测量随流体流量变化的温度,可以反
映气体流量。
恒功率法流量计不容易受到脏湿介质的影响。
恒温差流量计为了使其对温度快速响应和保持
恒定的温差,一般铂电阻均做得比较细,而恒功率流量计却可以做得粗(各生产厂不一样尺
寸也不一样)。
这样对于脏湿介质测量时,脏湿物质对铂电阻可能产生短暂的附着物(任何
生产厂都对铂电阻采用了抛光处理,长期附着物的产生是不大容易的)。
对于较细的铂电阻,其附着物对加热铂电阻的散热会产生较大的影响,严重时使其测量精度大大降低。
恒功率对
脏湿介质的测量会好很多。
恒功率法除了以上在抗脏性优越性
恒功率与恒温差在耐高温、高湿方面有着显著的差异。
目前而言,恒功率的最高耐温可以做到860℃,湿度达100%,而恒温差的流量计一般都在260℃以内,湿度不超过 50%。
SUNTEY 公司是生产恒功率法的热式气体质量流量计可以测高温、
高湿的气体.。
热式质量流量计热式质量流量计:利用流动中的流体与热源(流体中加热的物体或测量管外加热体)之间热量交换关系来测量流量的仪表。
基本原理:利用外热源对被测流体加热,测量因流体流动造成的温度场变化来反映质显流量。
热式质量流量计根据热源及测温方式的不同可分为接触式和非接触式两种。
1.接触式热式质量流量计这种质量流量计的加热元件和测温元件都置于被测流体的管道内,与流体直接接触,常被称为托马斯流量计,适于测量气体的较大质量流量. 由于加热及测量元件与被测流体直接接触,因此元件易受流体腐蚀和磨损,影响仪表的测量灵敏度和使用寿命。
测量高流速、有腐蚀性的流体时不宜选用,这是接触式的缺点。
2.非接触式热式质量流量计这种流量计的加热及测温元件都置于流体管道外,与被测流体不直接接触,克服了接触式的缺点。
美国SIERRA (斯亚乐) 公司简介美国SIERRA公司创建于1971年,是美国知名企业。
公司集热式质量流量计与控制器、涡街式质量流量计及超声波流量计的研发、生产、服务于一体。
拥有多项专利制造技术,以先进的设备、严格的管理、优质的服务,打造了世界一流品牌,产品销售遍及全世界。
美国SIERRA产品获美国国家多项奖,并在流量计量领域具有多项发明与创新:世界上第一个自动化的成套基准流量标定系统世界上第一个涡街质量流量计世界上第一个多参数涡街质量流量计世界上第一个涡街式BTU质量流量计世界上第一个带可清洁传感器的热式质量流量计、控制器世界上第一个低成本的微管热式质量流量计世界上第一个可分体安装的现场数显的热式质量流量计世界上第一个以数字化的电子元件驱动传感器的热式质量流量计世界上第一个带现场数字显示的低成本热式质量流量计世界上第一个带先进电子元件的快速响应工业热式质量流量计世界上第一个带先进电子元件的高纯度工业热式质量流量计世界上第一个低价格、高性能的数字式质量流量计、控制器Dial-A-Gas和现场、远程引导模块控制界面世界上第一个带有DRY SENSOR技术传感器的工业热式质量流量计美国SIERRA产品除了在国际上已广泛应用于美国钢铁集团、陶氏化学公司、韩国浦项制铁等国际知名大型企业,并被纳入美国航空航天局的应用设备清单,在国内也广泛应用于镇海石化、扬子石化、抚顺石化、吉林化工、广州石化、茂名石化、鞍山钢铁厂、韶关钢铁厂、武汉钢铁厂、宝山钢厂、安阳钢厂、柳州钢厂、酒泉钢厂、益阳电厂、华能武汉发电厂、大连发电厂、绍兴远东热电厂、锦州热电厂、福州华电可门发电厂、上海中芯国际、武汉长飞光纤等等大型企业。
TGF热式气体质量流量计TGF 系列热式气体质量流量计是利用热扩散原理测量气体流量的仪表。
传感器由两个基准级热电阻(RTD)组成。
一个是速度传感器R H,一个是测量气体温度变化的温度传感器R MG。
当这两个RTD置于被测气体中时,其中传感器R H被加热,另一个传感器R MG用于感应被测气体温度。
随着气体流速的增加,气流带走更多热量,传感器R H的温度下降。
依照热效应的金氏定律,加热功率P、温度差△T(T RH-T RMG)与质量流量Q有确定的数学关系式。
P/△T=K1+K2 f(Q)K3K1、K2、K3是与气体物理性质有关的常数。
TGF 系列热式气体质量流量计独特的温度差测量方式克服了采纳恒温差原理的热式气体质量流量计测量煤气流量时因煤气中含水、油和杂质而造成的专门大的零点漂移,导致无法测量的弊端。
它也能够用于测量湿气体的质量流量,如矿井下瓦斯抽放、送风,排风系统中的风量(速)的实时检测。
应用领域:●压缩空气测量。
●氧气、氮气、氢气、氯气及多组分气体测量。
●天然气,液化气,火炬气,等气体流量测量●电厂高炉的一次风、二次风流量测量●矿井下通风或排风系统流量测量、瓦斯抽放监控和计量●高炉煤气测量。
●烟道气测量。
●沼气、水处理中的曝气和氯气测量。
产品特点:●量程比大,测量流速范围宽:0.4m/s~60m/s。
●无压力损失,适用已知截面积的任意形状管道。
●插入式传感器能够在线安装和维护。
●耐腐蚀型传感器,适合测量腐蚀性气体。
●测量气体质量流量,无需温度、压力补偿。
●专利爱护的先进的水雾处理数学模型,适应瓦斯抽放专门工况。
●高精度数据采集电路,保障系统重复性和精度。
●全隔离的电气结构完全滤除外部干扰。
●高效电源设计整机功耗仅60mA。
● 13.5V~42V宽电源电压输入范围适应各种复杂电源环境。
●本安设计内部自带齐纳安全隔离栅。
●大屏幕液晶双行显示,读数清晰易辨。
● RamTron铁电存储数据永久保存。
产品型式热式气体质量流量计按安装方式分为:插入式和管段式。
精品整理热式质量流量计原理及概述编辑:潘东升江苏瑞特仪表有限公司2010-5-31)是利用传热原理,即流动中的流体与热源(流体中加热的物体或测量管外TME 热式质量流量计(以下简称加热体)之间热量交换关系来测量流量的仪表,过去我国习称量热式流量计。
当前主要用于测量气体。
年代中期销售量估万台。
国内90销售金额约占流量仪表的8%,约4.590 20世纪年代初期,世界范围TMF 台左右。
过去流程工业用仪表主要是热分布式,近几年才开发热散(或冷却)效应式。
计每年1000 1. 原理和结构利用流动流体传递热量改变测量管壁温度分布的热传导分布效应的热分布式1)热式流量仪表用得最多有两类,即。
TMF(效应的金氏定律King s Iaw)thenmaI prohIe fIowmeter)曾称量热式TMF;2)利用热消散(冷却)(流量计)。
有些在使用intrusion type又由于结构上检测元件伸入测量管内,也称浸入型(immersion type )或侵入型()。
时从管外插入工艺管内的仪表称作插入式(insertion typeTMF 热分布式1.1)(1cp -------被测气体的定压比热容;式中A -------测量管绕组(即加热系统)与周围环境热交换系统之间的热传导系数;K -------仪表常数。
页脚内容.精品整理TMF 1.2基于金氏定律的浸入型金氏定律的热丝热散失率表述各参量间关系,如式所示。
2)2(单位长度热散失率,H/L -------J/m?h; 式中--------ΔT热丝高于自由流束的平均升高温度,K;--------λ流体的热导率,J/h?m?K; cV---------定容比热容,J/kg?k;3kg/m密度,---------ρ;m/h; U---------流体的流速,m.页脚内容.精品整理;另一细管经功T如图5所示,两温度传感器(热电阻)分别置于气流中两金属细管内,一热电阻测得气流温度增加,气流带走更多热量,ρU高于气流温度,气体静止时Tv最高,随着质量流速率恒定的电热加热,其温度Tv 。
温度测量法”“这种方法称作“温度差测量法”或温度下降,测得温度差ΔT=Tv-T.便可算出质量流速,2?~?之间。
从式所示比列关系,式中B, C, K均为常数,K在消耗功率P和温度差ΔT如式3 4。
qm,再将式3变换成式乘上点流速于管道平均流速间系数和流通面积的质量流量)(34)(则是与所测气体物性如热导率、比热容、粘度等有关的系数,如果气体成分和物性恒定则视为常数。
D式4中E 是与实际流动有关的常数。
”。
恒定,控制加热功率随着流量增加而增加功率,这种方法称作“功率消耗测量法若保持ΔT点优2、,2~60m/s)中偏高流速(气体可测量低流速(气体0.02~2m/s)微小流量;浸入式TMF可测量低~热分布式TMF 更适合于大管径。
插入式TMF无活动部件,无分流管的热分布式仪表无阻流件,压力损失很小;带分流管的热分布式仪表和浸入性仪表,TMF 虽在测量管道中置有阻流件,但压力损失也不大。
使用性能相对可靠。
与推导式质量流量仪表相比,不需温度传感器,压力传感器和计算单元等,仅有流量传TMF 感器,组成简单,出现故障概率小。
等接近理想气体的双原子气体,不必用这些气体专门标定,直接就、NO、O2、CO N2 热分布式仪表用于H2 、即可;用于其他气体可用等单原子气体则乘系数1.4Ar、He用空气标定的仪表,实验证明差别仅2%左右;用于比热容换算,但偏差可能稍大些。
气体的比热容会随着压力温度而变,但在所使用的温度压力附近不大的变化可视为常数。
热式质量流量计响应慢。
cp值和热导率变化,测量值会有较大变化而产生误差。
被测量气体组分变化较大的场所,因对小流量而言,仪表会给被测气体带来相当热量。
,被测气体若在管壁沉积垢层影响测量值,必须定期清洗;对细管型仪表更有易堵塞的缺点,TMF对于热分布式一般情况下不能使用。
对脉动流在使用上将受到限制。
液体用TMF对于粘性液体在使用上亦受到限制。
页脚内容.精品整理按流体对检测元件热源的热量作用可分为热量传递转移效应和热量消散效应或冷却效应。
应用概况5.1TMF目前绝大部分用于测量气体,只有少量用于测量微小液体流量。
石油化工微型反较多应用于半导工业外延扩散、热分布式仪表使用口径和流量均较小,应装置、镀膜工艺、光导纤维制造、热处理淬火炉等各种场所的氢、氧、氨、燃气等气页脚内容.精品整理在气体流量控制,以及固体致冷中固体氩蒸发等累积量和阀门制造中泄漏量的测量等。
分流型热分布式仪表应用体色谱仪和气体分析仪等分析仪器上,用于监控取样气体量。
以上管径时,通常在主流管道上装孔板等节流装置或均速管,分流部分气于30~50mm 体到流量传感器进行测量。
年在环境保护和流程工业中应用发展迅速,例如;国外近10冷却效应的插入式TMF气配比控制,污水处理发生水泥工业竖式磨粉机排放热气流量控制,煤粉燃烧过程粉/大管道用还有径向分段排列多的气体流量测量,燃料电池工厂各种气体流量测量等等。
和组检测元件组成的插入检测杆,应用于锅炉进风量控制以及烟囱烟道排气监测SO2 排放总量。
NOX应用于化学、石油化工、食品等流程工业实验性装置,如液化气流TMF液体微小流量药液配比系统定流量配比控量测量,注入过程中控制流量;高压泵流量控制的反馈量;还有在色谱分析等仪器上供给工业流程或商业销售。
制;直接液化气液态计量后气化,TMF用作定量液取样控制以及用于动物实验麻醉液流量测量。
还未见到液体微小流量国内定型产品。
流体种类和物性5.2气体或液体,用气体的型号不能用于液体,反之------TMF只能用于测量清洁单相流体亦然。
对于热分布式气体还必须是干燥气体,不能含有湿气。
流体可能产生的沉积、结制造厂还应给出接受的不清洁程TMF 垢以及凝结物均将影响仪表性能。
对于热分布式TMF用户可按此决定是在仪表前装过滤器。
浸入式例如大部分给出允许微粒粒度,度,能再不停流条件对清洁度要求低些,则可用于测量烟道气,但必须装有阀等插入机构,下去取出检测头。
流体的比热容和热导率(1)工作时流体的比热容和热导率保持恒定才能测量准确。
被测TMF和式2可知,从式1介质工况温度、压力变化范围不大,仅在工作点附近波动,比热容变化不大,可视作常2数。
若工作点压力温度远离校准时压力温度,则必须在该工作点压力温度下调整。
表列出几种气体在不同压力温度下的定压比热容,可看到其变化程度。
表2 几种气体定压比热容cal/(g?K)页脚内容.精品整理1cal/ (g?k)=4186.8J/ (kg?K) 注:流量值的换算2()。
热分布式(校准)TMF制造厂通常用空气或氮气在略高于常压的室温工况条件下标定如实际使用工况有异或不用于同一气体,均可通过各自条件下比热容或换算系数换算。
的数值可以看出空气、氩气、一氧化碳、氮同一气体不同工况的流量换算从表2 1)之气、氧气压力在1MPa以下变化,定压比热容变化仅在400K1%~2%以下、温度在因为同一气压力温度变换较大时也可利用式间,大部分使用场所可不作换算;6计算,体两种工况条件下定压比热容的比值与摩尔定压比热容的比值是相等的。
,2)F 不同气体间流量换算有些制造厂的使用说明书给出以空气为基数的转换系数66换算;也可直接以标定(校准)气体和实际使用气体的摩尔定压比热按式可按式给出若干气体按摩尔定换算,但因还有热导率等其他因素,换算后精度要降低些。
表3两者差别较压比热容直接计算和若干制造厂提供的两种转换系数数据,其中Freon12 大。
3 表几种气体的转换系数页脚内容.精品整理各厂提供的转换系数单双原子气体差别较小,仅百分之几;烃类气体则差别较大,达。
20% ~30%(5)(6)(标准状态);式中qm-----仪表标定的质量流量,但通常以标准状态体积流量表征,L/h (标准状态);qm -------特使用气体的质量流量。
L/hk); J/ (moI·cP-------标定气体的摩尔定压比热容,通常为空气,。
cP-------待使用气体的摩尔定压比热容,J/ (moI·k)中各系数由各个检测元件几何形状和所测气体而定,和式(4)TMF浸入式由于式(3)所以目前通常只能在实际使用条件下个别校准。
Fmix6进行,惟其转换系数3)混合气体的换算的转换系数混合气体的换算亦按式合成按式7(7)为各成分气体的转换系F1,F2,-----FnV1,V2,----Vn为各成分气体体积的占有率;式中数。
3()流体中含有异相和低沸点液体气体用仪表,热分布式必须是清洁气体,不能有固相,浸入式则可允有微粒,但均不得含有水气。
测量液体时如混入气泡会产生测量误差。
要带给流体一定热量,流体温度会升高,如所测液体是低沸点液体,由于大部分TMF 。
应考虑液体汽化气化问题,必要是时选用致冷元件的TMF 5.3 仪表性能考虑页脚内容.精品整理流量范围、流速和范围度1)(的流量应以单位时间流过的质量来表示,但测量气体时习惯上亦常以计算到标准TMF状态下单位时间流过的体积表示。
流速亦以标准状态下单位时间流过距离的长度表示。
适用于低流速范围,特别是小口径热分布式;带测量短管浸TMF与其他流量计相比,最小上限流/入检测杆式可选上限(满度)流速范围较宽,上限范围度(最大上限流量之间。
型)TH1200量)在10~ 30(型)和60 ~80 (TH1300视之间,但较多用于3~60m/s插入式TMF的上限流速选择范围较宽,可在0.5~100m/s, TMF 适用于低流速烟道气测量。
仪表结构设计而异。
插入式数量级1~102g/min10-液体用TMF的上限流量很小,国外现有产品上限流量范围在之间。
之间;流量范围度在10:1~50:12)精确度和重复性(之间。
国外设)%FS具有中等测量精确度。
热分布式的基本误差通常在±(2~2.5TMF之间。
,重复性则在0.2%~0.5%FS计优良的产品则有较高精确度,基本误差为±1%FS。
±2%R%之间,设计优良的产品可达带测量短管浸入式的基本误差相仿,亦在±(2~2.5)单点测量影响较大,还应加上流速分布系数变化影响等,插入式除仪表本身基本误差外,之间。
2.5~5)%FS多点或多检测杆则影响较小,合计约在±(有制造厂在正常流速分布流动状况插入式仪表检测的点数视流通面积和流动状况而定,为双点,200~300mm 下,推荐检测点数为:;圆管直径在200mm以下为单位单点,0.05m2点。
矩形管面积以上为6为5点,1250mm750~1200350~700mm为3~4点,12~20为点。
点,2.5m2以上为4~12以下为单点,0.1~0.2m2为2~4点,0.2~2.5mm2为响应性3)(,0.5s,响应较快者为TMF在流量仪表中的响应时间是比较长的,时间常数一般为2~5s若应用于控制系统不能选用响应时间长的仪有些型号长达数秒、十几秒甚至几十秒者。