人工智能数学基础优秀课件
- 格式:ppt
- 大小:806.00 KB
- 文档页数:2
人工智能基础-PPT课件Artificial intelligence人工智能基础21 世纪技能创新型人才培养系列教材·人工智能系列contents绪论人工智能(Artificial Intelligence),英文缩写为AI。
它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术学科。
20 世纪40 年代和50 年代,来自不同领域(数学、心理学、工程学、经济学和政治学)的一批科学家开始探讨制造人工大脑的可能性。
学习目标1. 了解人工智能的定义、发展简史。
2. 熟悉人工智能的研究与应用领域。
3. 认识人工智能未来的发展趋势。
1.1.1 像人类一样思考1.1.2 像人类一样行动“像人类一样思考”的核心是认知心理学科学中的发现,该发现测试了感知(感官感知,物体识别)、注意力、记忆(短期和永久性)、抽象思维、面向目标的行为(决策、发起和监视行为)、情绪、社会关系、意识和自由意志。
AI 系统建模以使其受大脑功能启发的方式构成了一种创建行为类似于人类的解决方案。
人工智能手臂概念图如图1-2 所示。
1.1.3 理性思考逻辑定律是理性思考的基础,并已被发现和发展了数千年。
1.1.4 理性行动理性主体是行为合理的主体。
特定时刻行为的合理性取决于以下几点:(1)定义成功标准的效率度量。
(2)代理对背景的了解。
(3)代理当前可能采取的行动。
(4)迄今为止代理已经获取的有关环境的信息序列。
1.2.1 孕育期一般认为 AI 的最早工作是伦·麦克卡洛克(Warren McC ulloch)跟沃特·皮特斯(Walter Pitts)完成的。
1.2.2 形成期人工智能诞生于 1956 年一次历史性的聚会。
1.2.3 知识应用期1977 年,费根鲍姆在第五届国际人工智能联合会议上正式提出了知工程的概念。
1.2.4 综合集成期在专家系统方面,从 20 世纪 80 年代末开始逐步向多技术、多方法的综合集成与多学科、多领域的综合应用型发展。
人工智能的数学基础人工智能(Artificial Intelligence,简称AI)是近年来备受关注的领域之一,它涉及到许多重要的概念和技术,其中数学是人工智能的基础。
本文将介绍人工智能中数学的重要性以及它在不同方面的应用。
一、概率论与统计学在人工智能中,概率论与统计学是至关重要的数学工具。
通过概率论,我们可以计算事件发生的可能性,并为不确定性问题提供量化的解决方案。
统计学则涉及到对数据的分析和模式的发现。
通过分析大量数据,我们可以了解到事件之间的关联性,并从中提取有效的信息。
概率论和统计学的应用使得机器能够更好地处理不确定性和决策问题,为人工智能的发展提供了坚实的数学基础。
二、线性代数线性代数是人工智能中另一重要的数学分支。
它涉及到向量、矩阵、线性方程组等概念。
在机器学习和深度学习中,线性代数被广泛应用于数据的表示和变换。
通过线性代数的技术,我们可以将复杂的数据结构转化为更简洁的形式,同时可以进行高效的计算和求解。
线性代数的应用使得机器能够更好地理解和处理大规模的数据,为人工智能的算法和模型设计提供了重要的数学基础。
三、微积分微积分是人工智能中不可或缺的数学工具之一。
它涉及到函数、极限、导数和积分等概念。
在机器学习和优化领域,微积分被广泛应用于模型的建立和优化过程。
通过微积分的技术,我们可以求解函数的最优解、优化模型的性能,并进行系统的分析和评估。
微积分的应用使得机器能够更好地学习和适应环境,为人工智能的算法和模型优化提供了数学基础。
四、图论与优化图论与优化是人工智能中常用的数学理论。
在人工智能的搜索和规划中,图论被广泛应用于路径规划、图像处理和自然语言处理等领域。
图论的技术可以帮助机器理解和处理复杂的关系网络,从而为解决实际问题提供了数学支持。
此外,在人工智能的模型选择和参数调整中,优化算法扮演重要角色。
通过优化算法,我们可以找到模型的最佳参数配置,提高算法的性能和准确性。
图论与优化的应用为人工智能的问题求解提供了重要的数学工具。
人工智能数学基础知识数学是打开科学大门的钥匙。
——培根数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。
今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识,具体来说包括:线性代数:如何将研究对象形式化?概率论:如何描述统计规律?数理统计:如何以小见大?最优化理论:如何找到最优解?信息论:如何定量度量不确定性?形式逻辑:如何实现抽象推理?01 线性代数:如何将研究对象形式化事实上,线性代数不仅仅是人工智能的基础,更是现代数学和以现代数学作为主要分析方法的众多学科的基础。
从量子力学到图像处理都离不开向量和矩阵的使用。
而在向量和矩阵背后,线性代数的核心意义在于提供了⼀种看待世界的抽象视角:万事万物都可以被抽象成某些特征的组合,并在由预置规则定义的框架之下以静态和动态的方式加以观察。
着重于抽象概念的解释而非具体的数学公式来看,线性代数要点如下:线性代数的本质在于将具体事物抽象为数学对象,并描述其静态和动态的特性;向量的实质是n 维线性空间中的静止点;线性变换描述了向量或者作为参考系的坐标系的变化,可以用矩阵表示;矩阵的特征值和特征向量描述了变化的速度与方向。
总之,线性代数之于人工智能如同加法之于高等数学,是一个基础的工具集。
02 概率论:如何描述统计规律?除了线性代数之外,概率论也是人工智能研究中必备的数学基础。
随着连接主义学派的兴起,概率统计已经取代了数理逻辑,成为人工智能研究的主流工具。
在数据爆炸式增长和计算力指数化增强的今天,概率论已经在机器学习中扮演了核心角色。
同线性代数一样,概率论也代表了一种看待世界的方式,其关注的焦点是无处不在的可能性。
频率学派认为先验分布是固定的,模型参数要靠最大似然估计计算;贝叶斯学派认为先验分布是随机的,模型参数要靠后验概率最大化计算;正态分布是最重要的一种随机变量的分布。
03 数理统计:如何以小见大?在人工智能的研究中,数理统计同样不可或缺。