加热炉的基本结构
- 格式:ppt
- 大小:2.92 MB
- 文档页数:14
一、管式加热炉的结构及工作原理1.1 管式加热炉在炼油和石油化工中的重要性管式加热炉是一种火力加热设备,它利用燃料在炉膛内燃烧时产生的高温火焰与烟气作为热源,加热在炉管中高速流动的介质,使其达到工艺规定的温度,以供给介质在进行分馏、裂解或反应等加工过程中所需的热量,保证生产正常进行。
与其他加热方式相比,管式加热炉的主要优点是加热温度高(可达1273K),传热能力高和便于操作管理。
近60多年所来,管式炉的发展很快,已成为近代石化工业中必不可少的工艺设备之一,在生产和建设中具有十分重要的地位。
例如:一个年处理量为2.5Mt原油的常减压蒸馏装置,虽所用的加热炉的座数不多,但其提供的总热量却达70MW,如果炉子加热能力不够,就会限制整个装置处理能力的提高,甚至无法完成预定的任务。
管式加热炉消耗的燃料量相当可观,一般加工深度较浅的炼厂,约占其原油能力的3%~6%,中等深度的占4%~8%,较深的为8%~15%,其费用约占操作费用的60%~70%,因此,炉子热效率的高低与节约燃料降低成本有密切的关系。
此外,管式炉炉管结焦、炉管烧穿、炉衬烧塌等事故也常常是迫使装置停工检修的重要原因。
在生产中,希望生产装置能达到高处理量、高质量和低消耗以及长周期、安全运转,大量实践表明,管式炉的操作往往是关键之一。
管式炉的基建投资费用,一般约占炼油装置总投资的10%~20%,总设备费用的30%左右,在重整制氢和裂解等石油化工装置中,则占建设费用的25%左右,因此,加热炉设计选型的好坏,还直接影响装置经济的合理性。
1.2 管式加热炉的分类和主要工艺指标1.2.1管式加热炉的分类管式炉的类型很多,如按用途分有纯加热和加热-反应炉,前者如:常压炉、减压炉,原料在炉内只起到加热(包括汽化的作用);后者如:裂解炉、焦化炉,原料在炉内不仅被加热,同时还应保证有一定的停留时间进行裂解或焦化反应。
按炉内进行传热的主要方式分类,管式炉有:纯对流式、辐射-对流式和辐射式。
管式炉的一般结构和零部件管式加热炉如图2.5.17所示,一般由辐射室、对流室、余热回收系统、燃烧器及通风系统五部分组成。
图2.5.17 管式加热炉l. 辐射室辐射室是通过火焰或高温烟气进行辐射传热的部分。
这个部分直接受到火焰冲刷,温度最高,必须充分考虑所用材料的强度、耐热性等。
这个部分是热交换的主要场所,全炉热负荷的70—80%是由辐射室承担的,它是全炉最重要的部位。
可以说,一个炉的优劣主要是看它的辐射室性能如何。
1.1. 辐射室尺寸辐射室的尺寸主要是从以下三个方面来考虑的:①辐射室热负荷及辐射管外表面平均热强度;②管心距和管墙距;③燃烧器的能量(发热量)型式和布置以及炉管至火焰的距离。
1.2. 辐射室零配件的设置为了便于操作和保证安全运行,管式炉辐射室应设置下列配件:看火门、人孔门、防爆门、热电偶套管、测压管、灭火蒸汽管等。
✧看火门看火门主要是用来观察炉内火焰状况和辐射管运行情况,因此看火门的数量和位置应能看到所有燃烧器燃烧状况,并能观察到所有的辐射管。
✧人孔门及检修孔门为了能进入辐射室进行检修,需要设置人孔门和检修门。
当辐射室内有隔墙分开并且不能通行时,每间内必须设置一个人孔门。
对于炉底无法安装人孔门的小圆筒炉,检修时可拆下燃烧器,其开孔兼作人孔。
✧防爆门当炉内积存可燃气体和空气的混合物时,就有发生爆炸的危险,因此辐射室应设置防爆门,以便在发生爆炸事故时,能及时卸压。
防爆门的位置应能保证卸压时喷出的热气流不致危及人员和临近设备的安全.为了能及时卸压,防爆门的数量应与辐射室的空间成比例,多室炉膛每室至少应有一个防爆门。
✧热电偶套管和测压表烟气出辐射室的温度是必须测量的特性温度。
对于圆筒炉和立式炉,烟气出辐射室的温度测点设在辐射室至对流定的过渡处。
斜顶炉和方箱炉,该测温点设在火墙上方,因此该点温度通常又称为火墙温度。
管式炉都是在负压下操作的,为了保证炉内各点均处于负压下,以避免烟气外溢而损坏钢结构,通常要求炉顶(辐射室顶)负压保持在2mmH2O柱左右,因此,在辐射室顶部设置测压管。
水套加热炉的工作原理
水套加热炉是一种常用的加热设备,它的工作原理如下:
1. 水套:水套是位于加热炉外壳内部的一层空间,通常是一个密闭的容器。
水套中装有水或其他导热介质。
2. 加热元件:加热元件通常位于水套的外部,通过传导热量给水套。
加热元件可以是电加热管、燃气烧炉或蒸汽管道等形式。
3. 温控系统:水套加热炉通常配备有一个温控系统,用于控制加热元件的工作温度。
温控系统可以根据设定的温度来调节加热元件的加热功率,以保持水套内的温度稳定。
4. 工作过程:在工作时,加热元件通过传热给水套,使水套内的水或导热介质温度升高。
随着水套内温度的上升,加热炉将产生热量,并将其传递给需要加热的物体或介质。
总之,水套加热炉通过在外部设置水套,加热元件将热量传导给水套,然后传递给需要加热的物体或介质,从而实现加热的目的。
蓄热式步进加热炉1、技术来源蓄热式步进加热炉的确定是本公司经过技改淘汰两台耗能高的斜底加热炉。
顺应国家“十二五”节能减排规划中提出的推广应用蓄热式加热炉的政策落实的。
其技术来源采用济钢设计院和首钢设计院及北京蓄之杰公司在轧钢坯加热炉的基础进行现代化改造应用在热轧无缝钢管管坯加热系统而设计制作的。
2、基本结构主要由以下部分组成(1)炉底传动系统:由液压系统来完成的,使炉的活动梁进行升降及直线运动来完成矩形运动,完成管坯向前平行运动的全过程。
(2)钢结构炉体:主要是加热炉寿命的延长,斜底加热炉采用砖混结构最多用2-3年要进行大修,改造后加热炉可以使用3-5年,只需要进行维护保养即可。
(3)炉膛:这是决定加热管坯所使用加热介质比较关键的一个重要部位,其截面积的大小决定着用能的多少。
(4)蓄热式烧嘴:是炉子的核心所在,既要把炉膛内多余温度蓄存起来,又要把排烟温度从480℃-560℃降到100℃以下,而且还要把吹入的冷风加热到1100℃,减少氮氧化物进入炉膛减少管坯的氧化,增加产量。
(5)蓄热式烧嘴是在炉体两侧对称安装和使用的,是由蓄热箱、蓄热体及管道和换向阀组成的一个关键装置。
蓄热箱的大小和蓄热体的多少直接影响加热效果和用能量及排烟温度的高低。
换向阀每三分钟换向一次,即蓄热式烧嘴每三分钟正向切换进行燃烧对管坯加热,后三分钟反向切换,将炉膛内多余热量吸入蓄热箱由蓄热体将热量蓄集待下一个三分钟与天然气和热风一齐吹入炉膛完成一个加热循环,达到节能的目的。
(6)燃烧系统的控制:该炉子是由三段加热组成的。
分别是预热段(700℃上下)、加热段(1200℃-1300℃上下)、均热段(1250℃-1280℃).该炉子可根据钢种及直径设定最高加温极限值,到设定温度就不再燃烧不送风送气而且照常生产。
排烟温度在线测定、随时检测、自动控制,风机、引风机燃气均采用工业自动化PLC控制。
3、高效节能特点(1)热效率得到充分利用.一是传统炉子均用耐火砖保温砖砌筑而成,在使用过程中各加温区的温度不一样而造成砖的膨胀不一,容易造成炉顶掉砖、炉墙裂,平均3-6个月要进行修理,而该炉子1-2年只对炉底砖的磨损大小少量更换,炉顶2-3年只对外顶进行保温处理,炉墙基本不用处理,不用停产。
油田常用火筒式加热炉简介一、火筒式加热炉的概念1. 火筒式加热炉在金属圆筒壳体内设置火筒传递热量的一种加热炉,称为火筒式加热炉。
火筒式加热炉分为火筒式直接加热炉和火筒式间接加热炉。
2. 火筒式直接加热炉被加热介质在壳体内由火筒直接加热的火筒式加热炉,称为火筒式直接加热炉,简称火筒炉(包括具有加热和其他功能的合一装置)。
可抽式微正压加热炉(含第一代产品微正压加热炉),实际从大的概念上说都是属于火筒式直接加热炉。
他与传统火筒炉相比,一个是负压燃烧,一个是微压燃烧。
传统火筒炉所需的动力是靠烟囱的抽力来实现的,而且烟囱提供的抽力又有限,所以烟囱一方面要做得很高,且烟气通道还要截面大,以最大限度地降低烟气阻力,这样炉子才好烧,这就是为什么火筒炉烟火管很粗,炉子负荷大时不得不做成双火筒结构的原因,这种烟型在满足烟气的露点腐蚀时,热效率低(85%),耗钢量大,不易实现燃烧的自动控制,因为两个火筒的燃烧互相影响。
微正压加热炉所需的动力是靠鼓风机提供的,烟囱不需要很高,烟气流速快,可以采用组烟管束,在同样满足烟气露点腐蚀的情况下,热效率高(90%),耗钢量小,且一般为单火筒结构,容易实现燃烧的自动控制。
3. 火筒式间接加热炉被加热介质在壳体内的盘管(由钢管和管件组焊制成的传热元件)中,由中间载热体加热,而中间载热体由火筒直接加热的火筒式加热炉,称为火筒式间接加热炉。
壳体中间载热介质为水(水不发生相变)的火筒式间接加热炉,简称水套炉。
壳体内的压力小于1个大气压(具有一定的真空度)中间载热介质也为水,水受火筒加热后变为水蒸汽(水发生相变,水蒸汽温度小于100度)的火筒式间接加热炉,简称真空炉。
壳体中间载热介质为其它易发生相变的介质时的火筒式间接加热炉,简称热媒炉。
二、火筒式加热炉的结构1.火筒式加热炉(含二合一装置)1—烟气取样口;2—烟囱;3—烟囱附件;4—介质出口;5—壳体;6—安全阀;7—压力表;8—火筒;9—检查孔;10—介质进口分配管;11—排污口;12—燃烧器;13—阻火器;14—防爆门图1 火筒炉结构示意图2. 水套炉1—烟气取样口;2—烟囱;3—烟囱附件;4-—壳体;5—花板;6—盘管;7—安全阀;8—压力表;9—测温口;10—检查孔;11—排污口;12—火筒;13—液位计;14—燃烧器;15—阻火器;16—防爆门图2 水套炉结构示意图3. 真空炉真空炉在结构上与水套炉很相似,热媒一个是水一个是水蒸汽,一个热效率高一个热效率低,一个结构大一个结构小。
化工界的加热炉工作原理,分类,具体结构,超详细!关注☞化工707加热炉是我们在工厂里经常能见到的设备,它的工作原理你知道吗?结构是怎样的?有哪些种类呢?工作原理:利用燃料在炉膛内燃烧时产生的高温火焰与烟气作为热源,来加热炉管中流动的介质,使其达到规定的工艺温度。
燃料从燃烧器喷出燃烧,产生高温火焰和高温烟气,高温火焰通过辐射将热量传给辐射室内的炉管,进而传给炉管内的介质。
高温烟气由于烟囱的抽力或引风机的作用向上进入加热炉的对流室,通过对流的方式将热量传给对流室内的炉管,进而传给炉管内的介质。
加热炉一般由辐射室、对流室、余热回收系统、燃烧器和通风系统等五部分组成。
其结构通常包括:钢结构、炉管、炉墙(炉衬)、燃烧器、孔类配件等。
加热炉的组成01辐射室辐射室是加热炉进行热交换的主要场所,其热负荷约占全炉的70%-80%。
烃类蒸汽转化炉、乙烯裂解炉的反应和裂解过程全部由辐射室来完成。
辐射室内的炉管,通过火焰或高温烟气进行传热,以辐射热为主,故称之为辐射管。
它直接受火焰辐射冲刷,温度高,其材料要具有足够的高温强度和高温化学稳定性。
02对流室对流室是靠辐射室排出的高温烟气进行对流传热来加热物料。
烟气以较高的速度冲刷炉管管壁,进行有效的对流传热,其热负荷约占全炉的20%-30%。
对流室一般布置在辐射室之上,有的单独放在地面。
为了提高传热效果,炉管多采用钉头管或翅片管。
03余热回收系统图为空气预热器模块余热回收系统是用以回收加热炉的排烟余热的。
回收方法有两类:一类是靠预热燃烧空气来回收,使回收的热量再次返回炉中;另一类是采用另外的回收系统回收热量。
前者称为空气预热方式,后者通常用水回收称为废热锅炉方式。
空气预热方式有直接安装在对流室上面的固定管式空气预热器,还有单独放在地面上的管式空气预热器等型式。
目前,炉子的余热回收系统多采用空气预热方式,只有高温管式炉(烃类蒸汽转化炉、乙烯裂解炉)和纯辐射炉才使用余热锅炉,这类高温管式炉的排烟温度较高,安装余热回收系统后,炉子的总效率可达到88%-90%。
化工加热炉工作原理、结构组成与分类一、加热炉的工作原理利用燃料在炉膛内燃烧时产生的高温火焰与烟气作为热源,来加热炉管中流动的介质,使其达到规定的工艺温度。
燃料从燃烧器喷出燃烧,产生高温火焰和高温烟气,高温火焰通过辐射将热量传给辐射室内的炉管,进而传给炉管内的介质。
高温烟气由于烟囱的抽力或引风机的作用向上进入加热炉的对流室,通过对流的方式将热量传给对流室内的炉管,进而传给炉管内的介质。
加热炉一般由辐射室、对流室、余热回收系统、燃烧器和通风系统等五部分组成。
其结构通常包括:钢结构、炉管、炉墙(炉衬)、燃烧器、孔类配件等。
二、加热炉的组成1、辐射室辐射室是加热炉进行热交换的主要场所,其热负荷约占全炉的70%-80%。
烃类蒸汽转化炉、乙烯裂解炉的反应和裂解过程全部由辐射室来完成。
辐射室内的炉管,通过火焰或高温烟气进行传热,以辐射热为主,故称之为辐射管。
它直接受火焰辐射冲刷,温度高,其材料要具有足够的高温强度和高温化学稳定性。
2、对流室对流室是靠辐射室排出的高温烟气进行对流传热来加热物料。
烟气以较高的速度冲刷炉管管壁,进行有效的对流传热,其热负荷约占全炉的20%-30%。
对流室一般布置在辐射室之上,有的单独放在地面。
为了提高传热效果,炉管多采用钉头管或翅片管。
3、余热回收系统图为空气预热器模块余热回收系统是用以回收加热炉的排烟余热的。
回收方法有两类:一类是靠预热燃烧空气来回收,使回收的热量再次返回炉中;另一类是采用另外的回收系统回收热量。
前者称为空气预热方式,后者通常用水回收称为废热锅炉方式。
空气预热方式有直接安装在对流室上面的固定管式空气预热器,还有单独放在地面上的管式空气预热器等型式。
目前,炉子的余热回收系统多采用空气预热方式,只有高温管式炉(烃类蒸汽转化炉、乙烯裂解炉)和纯辐射炉才使用余热锅炉,这类高温管式炉的排烟温度较高,安装余热回收系统后,炉子的总效率可达到88%-90%。
4、燃烧器燃烧器的作用是完成燃料的燃烧,为热交换提供热量。
管式加热炉的基本结构
管式加热炉由炉体、电加热器、控制器、温度传感器和通风系统等部分组成。
炉体采用金属材料制成,内部有导热管道。
电加热器通常选用电阻丝作为加热元件,将电能转化为热能,使管道内的热媒加速流动并传递热量。
控制器能够实现对加热电流、加热时间、温度等参数进行精确控制。
温度传感器用于测量炉内温度,通过传输信号控制控制器对加热器的电流进行调整。
通风系统则可将炉内产生的废气排出,以维持炉内空气的清新和稳定。