线性代数历年考研题库
- 格式:docx
- 大小:3.23 KB
- 文档页数:2
线性代数考研训练试题一、单项选择题1.[] 若s a a a ,,,21 均为n 维列向量, A 是n m ⨯矩阵,下列选项正确的是 (A) 若s a a a ,,,21 线性相关,则s Aa Aa Aa ,,,21 线性相关. (B) 若s a a a ,,,21 线性相关,则s Aa Aa Aa ,,,21 线性无关. (C) 若s a a a ,,,21 线性无关,则s Aa Aa Aa ,,,21 线性相关.(D) 若s a a a ,,,21 线性无关,则s Aa Aa Aa ,,,21 线性无关. [ A ] 2.[、4] 设A 为3的阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记⎪⎪⎪⎭⎫ ⎝⎛=100010011P ,则(A) C =AP P 1-. (B)C =1-PAP . (C)C =AP P T . (D) C =T PAP . [ B ]3.[、4] 设向量组123,,ααα线性无关,则下列向量组线性相关的是 (A) 122331,,αααααα--- (B) 122331,,αααααα+++(C) 1223312,2,2αααααα--- (D) 1223312,2,2αααααα+++ [ A ]4[、4]设矩阵211121112A --⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭,100010000B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A 与B(A)合同,且相似 (B)合同,但不相似(C)不合同,但相似 (D)不合同,也不相似 [ B ] 5. [] 设A 为n 阶非零矩阵,E 为n 阶单位矩阵,若03=A ,则 (A) E A -不可逆,E A +不可逆. (B) E A -不可逆,E A +可逆.(C) E A -可逆,E A +可逆. (D) E A -可逆,E A +不可逆 [ C ]6. []设1221A ⎛⎫= ⎪⎝⎭,则在实数域上与A 合同的矩阵为 (A) ⎪⎪⎭⎫ ⎝⎛--2112(B) ⎪⎪⎭⎫ ⎝⎛--2112 (C) ⎪⎪⎭⎫ ⎝⎛2112 (D) ⎪⎪⎭⎫⎝⎛--1221 [ D ]7. [] 设,A B 均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2A =,3B =,则分块矩阵A ⎛⎫⎪⎝⎭O B O 的伴随矩阵为(A) **32⎛⎫ ⎪⎝⎭O B A O (B) **23⎛⎫⎪⎝⎭O B AO (C) **32⎛⎫⎪⎝⎭O A B O (D) **23⎛⎫ ⎪⎝⎭O A B O [ B ] 8. [] 设,A P 均为3阶矩阵,T P 为P 的转置矩阵,且100010002T ⎛⎫ ⎪=⎪ ⎪⎝⎭P AP . 若123(,,)ααα=P ,1223(,,)αααα=+Q ,则T Q AQ 为(A) 210110002⎛⎫⎪ ⎪ ⎪⎝⎭(B)110120002⎛⎫⎪ ⎪ ⎪⎝⎭(C) 200010002⎛⎫⎪ ⎪ ⎪⎝⎭(D) 100020002⎛⎫⎪ ⎪ ⎪⎝⎭[ A ] 9. []设向量组I:12,,,r ααα可由向量组II:12,,,s βββ线性表出.下列命题正确的是(A) 若向量组I 线性无关,则r s ≤ (B) 若向量组I 线性相关,则r s > (C) 若向量组II 线性无关,则r s ≤(D) 若向量组II 线性相关,则r s > [ A ]10. [] 设A 为4阶实对称矩阵,且2+=A A O .若A 的秩为3,则A 相似于(A)1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ (B)1110⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭ (C)1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭ (D)1110-⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭ [ D ]11.[]设A 为3阶方阵,将A 的第2列加到第一列得到矩阵B ,再交换B 的第二行与第三行得单位矩阵,记12100100110,001001010P P ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则A= (A)12P P (B) 112P P - (C) 21P P (D) 112P P - [ D ] 12. []设A 为4×3矩阵,123,,ηηη是非齐次线性方程组Ax β=的3个线性无关的解,12,k k 为任意常数,则Ax β=的通解为(A)23121()2k ηηηη++- (B) 23121()2k ηηηη-+-(C) 23121231()()2k k ηηηηηη++-+- (D) 23121231()()2k k ηηηηηη-+-+- [C]二、填空题1.[、4] 已知21,a a 为2维列向量,矩阵()2121,2a a a a A -+=,),(21a a B =.若行列式==B A ,则6|| -2 .2.[204] 设矩阵⎪⎪⎭⎫⎝⎛-=2112A ,E 为2阶单位矩阵,矩阵B 满足矩阵E B BA 2+=,则B =⎪⎪⎭⎫ ⎝⎛-1111 3.[、4] 设矩阵0100001000010000A ⎛⎫⎪⎪= ⎪⎪⎝⎭,则3A 的秩为14. [] 设3阶矩阵A 的特征值是1, 2, 2,E 为3阶单位矩阵,则E A --14= _3___5. [] 设(1,1,1)T α=,(1,0,)T k β=。
05年一、选择题(11)设12,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别是12,αα,则112,()A ααα+线性无关的充分必要条件是( )。
(A )10λ≠(B )20λ≠ (C )10λ=(D )20λ=(12)设A 为n(2)n ≥阶可逆矩阵,交换A的第一行与第二行得到矩阵B ,**,A B 分别是矩阵A ,B 的伴随矩阵,则( )。
(A )交换*A 的第一列与第二列得*B (B )交换*A 的第一行与第二行得*B (C )交换*A 的第一列与第二列得-*B (D )交换*A 的第一行与第二行得-*B 二、填空题(5)设123,,ααα是三维列向量,记矩阵123(,,)A ααα=,123123123(,24,39)B ααααααααα=++++++,如果1A =,则B = 。
三、解答题(20)已知二次型22221231312(,,)(1)(1)22(1)f x x x a x a x x a x x =-+-+++的秩为2.①求a 的值;②求正交变换X QY =,把二次型123(,,)f x x x 化成标准形;③求方程123(,,)0f x x x =的解.(21)已知3阶矩阵A 的第一行是(,,)a b c ,,,a b c 不全为零,矩阵12324636B k ⎛⎫ ⎪= ⎪ ⎪⎝⎭(k 为常数),且0AB =,求线性方程组0AX =的通解.06年一、选择题(11)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A )1C P AP -= (B )1C PAP -= (C )TC P AP = (D )TC PAP = 【 】 二、填空题(4)点(2,1,0)到平面3450x y z ++=的距离z = . (数一)(4)已知12,a a 为2维列向量,矩阵1212(2,)A a a a a =+-,12(,)B a a =。
考研数学一(线性代数)历年真题试卷汇编6(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.行列式等于( )A.(ad-bc)2B.-(ad-bc)2C.a2d2-b2c2D.-a2d2+b2c2正确答案:B解析:由行列式的展开定理展开第一列=-ad(ad-bc)+bc(ad-bc)=-( ad-bc) 22.设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为( )A.B.C.D.正确答案:B解析:根据CC*=|C|E,则C*=|C|C-1,C-1=的行列式=(-1) 2×2|A||B|=2×3=6,即分块矩阵可逆。
故故答案为B。
3.设A为三阶矩阵,将A的第二行加到第一行得B,再将B的第一列的-1倍加到第二列得C,记则( )A.C=P-1APB.C=PAP-1C.C=PTAPD.C=PAPT正确答案:B解析:由题设可得则有C=PAP-1。
故应选B。
4.设A是m×n矩阵,B是n×m矩阵,则( )A.当m>n时,必有行列式|AB|≠0B.当m>n时,必有行列式|AB|=0C.当n>m时,必有行列式|AB|≠0D.当n>m时,必有行列式|AB|=0正确答案:B解析:B是n×m矩阵,当m>n时,则r(B)=n(系数矩阵的秩小于未知数的个数),方程组Bx=0必有非零解,即存在x0≠0,使得Bx0=0,两边左乘A,得ABx0=0,即ABx=0有非零解,从而|AB|=0,故选B。
5.设A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )A.矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的列向量组与矩阵B的列向量组等价正确答案:B解析:把矩阵A,C列分块如下:A=(α1,α2,…,αn),C=(γ1,γ2,…,γn),由于AB=C,则可知得到矩阵C的列向量组可用矩阵A的列向量组线性表示。
考研数学三(线性代数)历年真题试卷汇编20(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.[2015年]设A,B为n阶矩阵,记r(X)为矩阵X的秩,(X,Y)分别表示分块矩阵,则( ).A.r(A,AB)=r(A)B.r(A,BA)=r(A)C.r(A,B)=max{r(A),r(B)}D.r(A,B)=r(ATBT)正确答案:A解析:解一易知r(A,AB)≥r(A).又由分块矩阵的乘法,可知(A,AB)=A(E,B),因此r(A,AB)≤min{r(A),r(E,B)},从而r(A,AB)≤r(A) 所以r(A,AB)=r(A),故选项(A)正确.解二排除法对选项(B),取则r(A)=1,r(A,BA)=2.对选项(C),取则r(A)=r(B)=1,r(A,B)=2.对选项(D),取则r(A,B)=1,r(AT,BT)=2.知识模块:线性代数2.[2003年] 设三阶矩阵若A的伴随矩阵的秩等于1,则必有( ).A.a=b或a+2b=0B.a=b或a+2b≠0C.a≠b且a+2b=0D.a≠b且a+2b≠0正确答案:C解析:解一因秩(A*)=1,由A与其伴随矩阵A*的秩的关系知,秩(A)=n -1=3-1=2.因为使秩(A)=2,必有|A|=0,且即a≠b,故a≠b且a+2b=0.仅(C)入选.解二由|A|=(a+2b)(a-b)2=0,得到a+2b=0或a=b.但当a=b时,秩(A)=1≠2,故a+2b=0且a≠b.仅(C)入选.知识模块:线性代数3.[2005年] 设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C为( ).A.EB.-EC.AD.-A正确答案:A解析:解一仅(A)入选.由B=E+AB得到(E-A)B=E,两边左乘(E-A)-1得到B=(E-A)-1.由C=A+CA得到C(E-A)=A,两边右乘(E-A)-1,得到C=A(E—A)-1,则B-C=(E-A)-1-A(E-A)-1=(E-A)(E-A)-1=E.解二由B=E+AB,C=A+CA,有B-AB=E,C-CA=A.于是(E-A)B=E,C(E-A)=A,①则E—A与B可逆,且互为逆矩阵.于是有B(E -A)=E,②则由式②一式①,得到B(E-A)-C(E-A)=(B-C)(E-A)=E —A,即B-C=E.仅(A)入选.知识模块:线性代数4.[2006年] 设A为三阶矩阵,将A的第2行加到第1行得B,再将B 的第1列的-1倍加到第2列得C,记则( ).A.C=P-1APB.C=PAP-1C.C=PTAPD.C=PAPT正确答案:B解析:将单位矩阵E的第2行加到第1行即得初等矩阵P,由初等矩阵与初等变换的关系有B=PA.令矩阵则E的第1列的-1倍加到第2列即得矩阵Q.于是有C=BQ,从而有C=PAQ,由于则C=PAQ=PAP-1.仅(B)入选.知识模块:线性代数5.[2011年] 设A为三阶矩阵,将A的第2列加到第1列得到矩阵B,再交换B的第2行与第3行得到单位矩阵,记则A=( ).A.P1P2B.P1-1P2C.P2P1D.P2P1-1正确答案:D解析:解一由题设有B=AP1,P2B=E,即P2B=P2AP1=E.又因P2,P1可逆,且P2-1=P2,故A=P2-1EP1-1=P2EP1-1=P2P1-1.仅(D)入选.解二由命题2.2.5.1知,对A所进行的初等变换可表示为P2AP1而P2AP1=P2(AP1)=P2B=E,故A=P2-1P1-1=P2P1-1.仅(D)入选.注:命题2.2.5.1(初等变换与初等矩阵左、右乘的关系) 每一次初等变换都对应一个初等矩阵,且对矩阵A施行一次初等行(列)变换相当于左(右)乘相应的初等矩阵.知识模块:线性代数6.[2009年] 设A,P为三阶矩阵,PT为P的转置矩阵,且若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则QTAQ为( ).A. B. C. D. 正确答案:A解析:解一因Q=[α1+α2,α2,α3]=[α1,α2,α3]=PE21(1),利用命题2.2.5.2(1)及题设,得到解二仅(A)入选.故注:命题2.2.5.2 (1)初等矩阵的转置矩阵的性质:EiT(k)=Ei(k),EijT=Eij,EijT(k)=Eij(k).知识模块:线性代数7.[2012年] 设A为三阶矩阵,P为三阶可逆矩阵,且若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=( ).A. B. C. D. 正确答案:B解析:解一因故于是解二用初等矩阵表示Q得到Q=PE12(1).由E12-1(1)=E12(-1)得到知识模块:线性代数8.[2005年] 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( ).A.λ1≠0B.λ2≠0C.λ1=0D.λ2=0正确答案:B解析:解一首先注意α1,α2线性无关.在推导α1,A(α1+α2)线性无关的条件时要用到它.设k1α1+k2A(α1+α2)=0,则k1α1+k2λ1α1+k2λ2α2=0,(k1+k2λ1)α1+k2λ2α2=0.因α1,α2线性无关,故k1+k2λ1=0,k2λ2=0.当λ2≠0时,有k2=0,从而k1=0.于是当λ2≠0时,α1,A(α1+α2)线性无关.反之,若α1,A(α1+α2)=λ1α1+λ2α2线性无关,则必有λ2≠0.因为如果λ2=0,则α1与A(α1+α2)=λ1α1线性相关与题设矛盾.综上所述,仅(B)入选.解二因向量组α1,A(α1+α2)=λ1α1+λ2α2可看成线性无关向量α1,α2的线性组合,且[α1,A(α1+α2)]=[α1,λ1α1+λ2α2]=[α1,α2] 由命题2.3.2.2知,向量组α1,A(α1+α2)线性无关的充分必要条件是的秩等于2,而秩故仅(B)入选.(注:命题2.3.2.2 设向量组α1,α2,…,αs线性无关,β1,β2,…,βs为该向量组的线性组合:即其中A=[aij]s×t称为线性表示的系数矩阵.或则向量组β1,β2,…,βt线性无关线性表示的系数矩阵A=[aij]s×t或矩阵K=AT 的秩为t.) 知识模块:线性代数9.[2010年] 设向量组(I):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示.下列命题中正确的是( ).A.若向量组(I)线性无关,则r≤sB.若向量组(I)线性相关,则r>sC.若向量组(Ⅱ)线性无关,则r≤sD.若向量组(Ⅱ)线性相关,则r>s正确答案:A解析:仅(A)入选.因向量组(I)可由向量组(Ⅱ)线性表示,故秩(I)≤秩(Ⅱ)=秩([β1,β2,…,βs)≤s.若向量组I线性无关,则秩(I)=秩([α1,α2,…,αr])=r,故r=秩([α1,α2,…,αr])≤秩([β1,β2,…,βs])≤s.知识模块:线性代数填空题10.[2013年] 设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij 的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=___________.正确答案:-1解析:因aij=-Aij,则(aij)=(-Aij),(aij)T=(-Aij)T=-(Aij),故AT=-A*,从而|A|=|AT|=|-A*|=(-1)3|A|3-1=-|A|2,即|A|2+|A|=|A|(|A|+1)=0,故|A|=0或|A|=-1.若|A|=0,则由|A|=ai1Ai1+ai2Ai2+ai3Ai3=(ai12+ai22+ai32)=0(i=1,2,3)得到aij=0(i,j=1,2,3),即矩阵A为零矩阵,这与题设矛盾.故|A|=-1.知识模块:线性代数11.[2007年] 设矩阵则A3的秩为__________.正确答案:1解析:解一由矩阵乘法直接计算得到由于A3中非零子式的最高阶数为1,由矩阵的秩的定义知,秩(A3)=1.解二A3的秩等于1.设其中αi(i=1,2,3,4)为A的行向量,则知识模块:线性代数12.[2017年] 矩阵α1,α2,α3为线性无关的三维列向量组,则向量组Aα1,Aα2,Aα3的秩为___________.正确答案:2解析:解(Aα1,Aα2,Aα3)=A(α1,α2,α3),因为α1,α2,α3线性无关,所以(α1,α2,α3)可逆,从而秩[Aα1,Aα2,Aα3]=秩(A).由得,秩(A)=2,故向量组Aα1,Aα2,Aα3的秩为2.知识模块:线性代数13.[2002年] 设三阶矩阵三维列向量α=[a,1,1]T,已知Aα与α线性相关,则a=_______.正确答案:-1解析:解一因α=[a,1,1]T,Aα=[a,2a+3,3a+4]T,故[*]得a=-1.解二两个向量Aα与α线性相关[*]这两个向量中至少有一个向量可由另一个向量线性表出.即存在数k≠0,使Aα=kα(或α=μAα),亦即k为特征值,α为A的属于特征值k的特征向量.由Aα=kα得到[*]得a=-1,k=1.知识模块:线性代数14.[2005年] 设行向量组[2,1,1,1],[2,1,a,a],[3,2,1,a],[4,3,2,1]线性相关,且a≠1,则a=___________.正确答案:1/2解析:解一设所给的4个行向量依次为α1,α2,α3,α4,且令A=[α1T,α2T,α3T,α4T].因4个四维向量线性相关的充要条件是其行列式等于零,故由|A|=|α1T,α2T,α3T,α4T|=(1-a)(1-2a)=0,得到a=1或a=1/2.因a≠1,故a=1/2.解二用初等行变换求之.对AT作初等行变换,化为阶梯形矩阵,得到由于所给向量组线性相关,秩(AT)可经初等列变换化为矩阵15.求a;正确答案:由题设条件可知矩阵A与B等价,则r(A)=r(B).因为所以因此a=2. 涉及知识点:线性代数16.求满足AP=B的可逆矩阵P.正确答案:设矩阵对增广矩阵作初等变换可得解得所以又因P可逆,因此即k2≠k3.故其中k1,k2,k3为任意常数,且k2≠k3.涉及知识点:线性代数[2014年] 设E为三阶单位矩阵.17.求方程组AX=0的一个基础解系;正确答案:为求AX=0的一个基础解系,只需用初等行变换将A化为含最高阶单位矩阵的矩阵:由基础解系的简便求法即可得到AX=0的一个基础解系只含一个解向量α,且α=[-1,2,3,1]T.涉及知识点:线性代数18.求满足AB=E的所有矩阵B.正确答案:因A不可逆,需用元素法求出满足AB=E的所有矩阵.由AB=E,A为3×4矩阵,E为3×3矩阵,则B必为4×3矩阵,设其元素为xij则B=(xij)4×3,即因而得到下述三个线性方程组:对上述三方程组的增广矩阵用初等行变换化为含最高阶单位矩阵的矩阵:由基础解系和特解的简便求法即得方程组①的一个特解η1及对应的齐次线性方程组的一个基础解系α分别为:η1=[2,-1,-1,0]T,α=[-1,2,3,1]T 于是该方程组的通解为X1=[x11,x21,x31,x41]T=Y1+η1=k1α+η1=[-k1+2,2k1-1,3k1-1,k1]T.同样由可得方程组②的通解为X2=[x12,x22,x32,x42]T=Y2+η2=k2α+η2=k2[-1,2,3,1]T+[6,-3,-4,0]T=[-k2+6,2k2-3,3k2-4,k2]T.由可得方程组③的通解为X3=[x13,x23,x33,x43]T=Y3+η3+=k2=k3α+η3=k3[-1,2,3,1]T+[-1,1,1,0]T=[-k3-1,2k3+1,3k3+1,k3]T 综上得到,涉及知识点:线性代数19.[2013年] 设当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C.正确答案:设则由AC-CA=B得到四元非齐次线性方程组:存在矩阵C使AC-CA=B成立,上述方程组必有解.为此将上述方程组的增广矩阵用初等行变换化为阶梯形矩阵:当a≠-1或b≠0时,因秩()≠秩(G),方程组无解.当a=-1且b=0时,秩()=秩(G)=2<n=4,方程组有解,且有无穷多解.由基础解系和特解的简便求法得到,其基础解系为:α1=[1,a,1,0]T=[1,-1,1,0]T,α2=[1,0,1,0]T则对应齐次线性方程组的通解为c1α1+c2α2.而方程组①的特解为[1,0,0,0]T,故方程组①的通解为X=c1[1,-1,1,0]T+c2[1,0,0,1]T+[1,0,0,0]T即X=[x1,x2,x3,x4]T=[c1+c2+1,-c1,c1,c2]T,亦即x1=c1+c2+1,x2=-c1,x3=c1,x4=c2(c1,c2为任意常数),故所求的所有矩阵为其中c1,c2任意常数.涉及知识点:线性代数[2004年] 设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时,20.β不能由α1,α2,α3线性表示;正确答案:设有数k1,k2,k3,使得k1α1+k2α2+k3α3=β.①记A=[α1,α2,α3].对矩阵[A|β]施以初等行变换,有由于系数矩阵A 的秩取决于a及a-b是否为零,下面采用如下的二分法,分三种情况讨论.当a=0,b为任意常数时,有可知秩(A)≠秩([A|β]),故方程组①无解,β不能由α1,α2,α3线性表示.涉及知识点:线性代数21.β可由α1,α2,α3唯一地线性表示,并求出表示式;正确答案:当a≠0,且a≠b时,秩(A)=秩([A|β])=3,故方程组①有唯一解.由得到唯一解为k1=1-1/a,k2=1/a,k3=0,且β可由α1,α2,α3唯一地线性表示,其表示式为β=(1-1/a)α1+α2/a.涉及知识点:线性代数22.β可由α1,α2,α3线性表示,但表示式不唯一,并求出表示式.正确答案:当a≠0且a-b=0,即a=b≠0时,对[A|β]施以初等行变换,有可知秩(A)=秩([A|β])=2,故方程组①有无穷多解.其一基础解系只含一个解向量α=[0,1,1]T,其一个特解为η=[1-1/a,1/a,0],故以k1,k2,k3为未知数的方程组①的通解为[k1,k2,k3=η+cα=[1-1/a,1/a,0]T+c[0,1,1]T=[1-1/a,1/a+c,c]T(c为任意常数).于是β可由α1,α2,α3线性表示,其一般表示式为β=k1α1+k2α2+k3α3=(1-1/a)α1+(1/a+c)α2+cα3 (c 为任意常数).由上式易知,由于c为任意常数,β由α1,α2,α3线性表出的一般表达式,常归结为求关于未知数k1,k2,k3的方程组β=k1α1+k2α2+k3β3的通解.涉及知识点:线性代数[2008年] 设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3.23.证明α1,α2,α3线性无关;正确答案:证一用向量组线性无关的定义证明.为利用题设条件Aα3=α2+α3易想到需用A同时左乘定义等式两边.设k1α1+k2α2+k3α3=0.①由题设,有Aα1=一α1,Aα2=α2,Aα3=α2+α3.用A左乘式①两边,得到k1Aα1+k2Aα2+k3Aα3=一k1α1+k2α2+k3α2+k3α3=0.②本题中隐含了α1与α2线性无关,因为它们是属于不同特征值的特征向量.下面利用这一点证明k1=k2=k3=0.由式①一式②得到2k1α1一k2α2=0.因α1,α2为A的属于不同特征值的特征向量,故α1,α2线性无关.因而k1=k3=0,将其代入式①得到k2α2=0,又因α≠0,故k2=0.于是α1,α2,α3线性无关.证二用反证法证之.假设α1,α2,α3线性相关,由证一知,α1与α2线性无关,故α3可由α1,α2线性表出,不妨设α3=l1α1+l2α2,其中l1,l2不全为零(若l1,l2同时为零,则α3=0,由Aα3=α2+α3得到α2=0,这与α2为特征向量矛盾).因Aα1=一α1,Aα2=α2,故Aα3=α2+α3=α2+l1α1+l2α2.又一l1α1+l2α2=α2+l1α1+l2α2,即α2+2l1α1=0,则α1与α2线性相关.这与α1,α2线性无关矛盾.故α1,α2,α3线性无关.涉及知识点:线性代数24.令P=[α1,α2,α3],求P-1AP.正确答案:因α1,α2,α3线性无关,故P可逆.所以涉及知识点:线性代数[2011年] 设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,1,1]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示.25.求a的值;正确答案:解一因α1,α2,α3不能用β1,β2,β3线性表示,故秩([α1,α2,α3])>秩([β1,β2,β3]),而|α1,α2,α3|==1≠0,故秩([α1,α2,α3])=3,秩([β1,β2,β3])<3,所以解二4个三维向量β1,β2,β3,αi(i=1,2,3)必线性相关.若β1,β2,β3线性无关,则αi 必可表示成β1,β2,β3的线性组合.这与题设矛盾,故β1,β2,β3线性相关.于是|β1,β2,β3|=a-5=0,即a=5.解三将下列向量组用初等行变换化为行阶梯形矩阵:易知秩([α1,α2,α3])=3.因α1,α2,α3不能由β1,β2,β3线性表出,故秩([β1,β2,β3])<3.因而所以a=5.涉及知识点:线性代数26.将β1,β2,β3用α1,α2,α3线性表示.正确答案:解一由上题的解三知,当a=5时,经初等行变换得到故β1=2α1+4α2-α3,β2=α1+2α2,β3=5α1+10α2-2α3.解二设[β1,β2,β3]=[α1,α2,α3]G.则因而即β1=2α1+4α2-α3,β2=α1+2α2,β3=5α1+10α2-2α3.涉及知识点:线性代数27.[2006年] 四维向量组α1=[1+a,1,1,1]T,α2=[2,2+a,2,2]T,α3=[3,3,3+a,3]T,α4=[4,4,4,4+a]T.问a为什么数时,α1,α2,α3,α4线性相关?在α1,α2,α3,α4线性相关时求其一个极大线性无关组,并且把其余向量用该极大线性无关组线性表出.正确答案:解一若α1,α2,α3,α4线性相关,即|α1,α2,α3,α4|=0,而|α1,α2,α3,α4|=a3(a+10),于是当a=0或-10时,α1,α2,α3,α4线性相关.当a=0时,α1是α1,α2,α3,α4的极大无关组,且α2=2α1,α3=3α1,α4=4α1.当a=-10时,用初等行变换求其极大无关组.显然β1,β2,β3为β1,β2,β3,β4的一个极大线性无关组,且β4=-β1-β2-β3.由于矩阵的初等行变换不改变矩阵列向量组之间的线性关系,故α1,α2,α3是α1,α2,α3,α4的一个极大无关组,且α4=-α1-α2-α3.解二设A=[α1,α2,α3,α4],对A进行初等行变换,得到当a=0时,A的秩等于1,因而α1,α2,α3,α4线性相关.此时α1为α1,α2,α3,α4的一个极大线性无关组,且α2=2α1,α3=3α1,α4=4α1.当a≠0时,再对B施以初等行变换,得到如果a≠-10,C的秩为4,从而A的秩也为4,故α1,α2,α3,α4线性无关.如果a=-10,C的秩为3,从而A的秩也为3,故α1,α2,α3,α4线性相关.由于v2,v3,v4为v1,v2,v3,v4的一个极大线性无关组,且v1=-v2-v3-v4,因矩阵的初等行变换不改变矩阵列向量组之间的关系,故α2,α3,α4为α1,α2,α3,α1的一个极大线性无关组,且α1=-α2-α3-α4.涉及知识点:线性代数。
20XX年10月高等教育自学考试全国统一命题考试线性代数(经管类)试卷(课程代码 04184)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设3阶方阵A的行列式为2,则= 【】A.-1 B.-C. D.12.设,则方程的根的个数为【】A.0 B.1C.2 D.33.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,若|A|≠|B|,则必有A.|A|=0 B.|A+B|≠0C.|A|≠0 D.|A-B|≠04. 设A、B是任意的n阶方阵,下列命题中正确的是【】A. B.C. D.5.设A= ,其中,则矩阵A的秩为【】A.0 B.1C.2 D.36.设6的阶方阵A的秩为4,则A的伴随矩阵的秩为【】A.0 B.2C.3 D.47.设向量a=(1,-2,3),与=(2,k,6)A.-10 B.-4C.4 D.108.已知线性方程组无解,则数a= 【】A.- B.0C. D.19.设3阶方阵A的特征多项式为,则|A|= 【】10.若3阶实对称矩阵A=( )是正定矩阵,则4的3个特征值可能为【】二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.设行列式D=,其第三行各元素的代数余子式之和为.12设A=,B=,则AB:.13设A是4x3矩阵且r(A)=2,B=,则r(AB).14.向量组(1,2),(2,3),(3,4)的秩为15设线性无关的向量组可由向量组线性表示,则r与s的关系为16.设方程组有非零解,且数,则= .17.设4元线性方程组Ax=b的三个解,已知,.则方程组的通解是.19.设矩阵有一个特征值=2,对应的特征向量为,则数20.设实二次型,已知A的特征值为-1,1,2,则该二次型的规范形为三、计算题(本大题共6小题,每小题9分,共54分)21.设矩阵,,其中口,均为3维列向量,且 |A|=18,|B|=2.求|A-B|.22.解矩阵方程23.设向量组,,问P为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.24.设3元线性方程组(1)确定当取何值时,方程组有惟一解、无解、有无穷多解?(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示)25.已知2阶方阵A的特征值为,方阵.(1)求B的特征值;(2)求B的行列式.。
考研数学一(线性代数)历年真题试卷汇编16(题后含答案及解析) 题型有:1. 选择题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0,必有A.(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解.B.(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解.C.(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解.D.(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.正确答案:A解析:若x满足Ax=0,两端左乘AT,得ATAx=0,故Ax=0的解都是ATAx=0的解;若x满足ATAx=0,两端左乘xT,得(xTAT)(Ax)=0,即(Ax)T(Ax)=0,或‖Ax‖2=0,得Ax=0,所以ATAx=0的解也都是Ax=0的解.因此(Ⅰ)与(Ⅱ)同解,只有选项A正确.知识模块:线性方程组2.4个平面aix+biy+ciz=di(i=1,2,3,4)交于一条直线的充要条件是对应的联立线性方程组的系数矩阵A与增广矩阵=A.1B.2C.3D.4正确答案:B解析:记4个平面方程联立所得方程组为Ax=b,则4个平面交于一条直线→Ax=b的通解为x=(x0,y0,z0)…+c(l,m,n)’→r(A)=r(A┆b)且Ax=0的基础解系所含解向量个数为3一r(A)=1→r(A)=r(A)=2,只有选项B正确.知识模块:线性方程组3.设A是n阶矩阵,α是n维列向量,且则线性方程组A.Ax=α必有无穷多解.B.Ax=α必有唯一解.C.=0仅有零解.D.=0必有非零解.正确答案:D解析:因为方程组=0是n+1元齐次线性方程组,而它的系数矩阵的秩为:秩=秩(A)≤n<n+1,故该齐次线性方程组必有非零解,即(D)正确.注意,在题设条件下,有秩(A)=秩[A┊α].故方程组AX=α必有解,但不能肯定它是有无穷多解还是有唯一解,故(A)、(B)都不对.知识模块:线性方程组4.设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.B.仅含一个非零解向量.C.含有两个线性无关的解向量.D.含有3个线性无关的解向量.正确答案:B解析:由A*≠0知A*至少有一个元素Aij=(一1)i+jMij≠0,故A的余子式Mij≠0,而Mij为A的n一1阶子式,故r(A)≥n一1,又由Ax=b有解且不唯一知r(A)<n,故r(A)=n一1.因此Ax=0的基础解系所含向量个数为n—r(A)=n 一(n一1)=1,只有B正确.知识模块:线性方程组5.设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为A.+k1(η2—η1).B.+k1(η2—η1).C.+k1(η2—η1)+k2(η3—η1).D.+k1(η2—η1)+k2(η3—η1).正确答案:C解析:首先,由A[(η2+η3)]=β,知(η2+η3)是Ax=β的一个特解;其次,由解的性质或直接验证,知η2—η1及η3—η1均为方程组Ax=0的解;再次,由η1,η2,η3线性无关,利用线性无关的定义,或由[η2—η1,η3—η1]=[η1,η2,η3]及矩阵的秩为2,知向量组η2—η1,η3—η1线性无关,因此,方程组Ax=0至少有2个线性无关的解,但它不可能有3个线性无关的解(否则,3一r(A)=3,→r(A)=0,→A=O,这与Aη1=β≠0矛盾),于是η2—η1,η3—η1可作为Ax=0的基础解系,Ax=0的通解为k1(η2—η1)+k2(η3—η1),再由非齐次线性方程组解的结构定理即知只有选项C正确.知识模块:线性方程组解答题解答应写出文字说明、证明过程或演算步骤。
考研数学二(线性代数)历年真题试卷汇编7(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A为n阶非零矩阵,E为n阶单位矩阵。
若A3=O,则( )A.E—A不可逆,E+A不可逆。
B.E—A不可逆,E+A可逆。
C.E—A可逆,E+A可逆。
D.E—A可逆,E+A不可逆。
正确答案:C解析:利用单位矩阵E,将A3=O变形为E—A3=E和A3+E=E,进一步分解为(E—A)(E+A+A2)=E一A3=E,(E+A)(E—A+A2)=E+A3=E,则E—A,E+A均可逆。
2.设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则( )A.交换A*的第1列与第2列得B*。
B.交换A*的第1行与第2行得B*。
C.交换A*的第1列与第2列得一B*。
D.交换A*的第1行与第2行得一B*。
正确答案:C解析:由题设,存在初等矩阵E12(交换n阶单位矩阵的第1行与第2行所得),使得E12A=B,由于A可逆,可知B也可逆,故B*=(E12A)*一|E12A|(E12A)-1=一|A|A-1E12-1=一A*E12-1,即A*E12=-B*,故选C。
3.设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=。
若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=( )A.B.C.D.正确答案:B解析:4.设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则( )A.当r<s时,向量组Ⅱ必线性相关。
B.当r>s时,向量组Ⅱ必线性相关C.当r<s时,向量组Ⅰ必线性相关。
D.当r>s时,向量组Ⅰ必线性相关。
正确答案:D5.设向量组,α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有( ) A.α1,α2,α3,kβ1+β2线性无关。
考研数学三(线性代数)历年真题汇编1(总分:50.00,做题时间:90分钟)一、选择题(总题数:14,分数:28.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
(分数:2.00)__________________________________________________________________________________________2.设n阶方阵A的秩r(A)=r<n,那么在A的n个行向量中【】(分数:2.00)A.必有,一个行向量线性无关.B.任意r个行向量都线性无关.C.任意r个行向量都构成极大线性无关向量组.D.任意一个行向量都可以由其它r个行向量线性表出.3.设A为n阶方阵且∣A∣=0,则【】(分数:2.00)A.A中必有两行(列)的元素对应成比例.B.A中任意一行(列)向量是其余各行(列)向量的线性组合.C.A中必有一行(列)向量是其余各行(列)向量的线性组合.D.A中至少有一行(列)的元素全为0.4.向量组α1,α2,…,αs线性无关的充分条件是【】(分数:2.00)A.α1,α2,…,αs均不为零向量.B.α1,α2,…,αs中任意两个向量的分量不成比例.C.α1,α2,…,αs中任意一个向量均不能由其余s一1个向量线性表示.D.α1,α2,…,αs中有一部分向量线性无关.5.设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为零的数λ1,…,λm和k 1,…,k m,使(λ1 +k 1 )α1 +…+(λm +k m )αm +(λ1一k 1 )β1 +…+(λm一k m )βm =0,则【】(分数:2.00)A.α1,…,αm和β1,…,βm都线性相关.B.α1,…,αm和β1,…,βm都线性无关.C.α1 +β1,…,αm +βm,α1一β1,…,αm一βm线性无关.D.α1 +β1,…,αm +βm,α1—β1,…,αm一βm线性相关.6.设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是【】(分数:2.00)A.α1 +α2,α2 +α3,α3一α1B.α1 +α2,α2 +α3,α1 +2α2 +α3C.α1 +2α2,2α2 +3α3,3α3 +α1D.α1 +α2 +α3,2α1一3α2 +22α3,3α1 +5α2一5α37.设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1。
线性代数真题考研一、选择题1.以下线性变换中,使得空间中向量的夹角保持不变的是:A.尺度变换B.平移变换C.旋转变换D.反射变换2.给定一个矩阵A,若其秩为3,阶梯形式为:1 0 00 1 20 0 0则矩阵A的列空间的维数是:A.1B.2C.3D.03.设矩阵A为4行3列的实矩阵,且秩rank(A)=2,则矩阵A的基础解系个数是:A.2B.1C.3D.0二、填空题1.写出矩阵的逆的定义。
解:若矩阵A乘以其逆矩阵为单位矩阵,则称A的逆矩阵为A的逆,记作A^-1。
2.设A是一个n×n的矩阵,若A的秩为n,则A的行向量组__________。
解:线性无关3.设A是一个3×3的矩阵,若det(A)≠0,则矩阵A是一个______________。
解:可逆矩阵三、解答题1.解释线性代数的基本概念:向量、线性变换、矩阵、秩、行空间和列空间。
解:线性代数是研究向量、线性变换、矩阵、秩、行空间和列空间等概念的一门学科。
向量:向量是在向量空间中的一组有序数,常用列矢量的形式表示。
向量可以用于表示空间中的位移、力、速度、加速度等物理量。
线性变换:线性变换是指将一个向量空间中的向量映射到另一个向量空间中的变换。
满足线性变换的条件包括保持加法运算和数乘运算两个性质。
矩阵:矩阵是按照行列排列的数的矩形阵列,常用于表示线性方程组。
矩阵的加法和数乘运算满足相应的运算法则。
秩:矩阵的秩是指矩阵行向量(或列向量)组成的最大线性无关组的向量个数。
秩可以用于判断矩阵的行空间和列空间的维数。
行空间和列空间:矩阵的行空间是由矩阵的各行向量张成的向量空间;矩阵的列空间是由矩阵的各列向量张成的向量空间。
行空间和列空间的维数等于矩阵的秩。
2.求矩阵 A =1 2 32 2 21 0 1的秩、行最简形和列空间的维数。
解:将矩阵A进行行变换,化为行最简形:1 2 30 -2 -40 -2 -2得到行最简形矩阵:1 2 30 -2 -4矩阵A的秩为2,行最简形为上述结果。
2006——线性代数考研题高数一1(5)设矩阵21,12A E ⎛⎫= ⎪-⎝⎭为二阶单位矩阵,矩阵B 满足2,BA B E =+则______.B =1(11) 设12,,,s αααL 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 ( )。
()A 若 12,,,s αααL线性相关,则12,,,s A A A αααL 线性相关。
()B 若 12,,,s αααL 线性相关,则12,,,s A A A αααL 线性无关。
()C 若 12,,,s αααL 线性无关,则12,,,s A A A αααL 线性相关。
()D 若 12,,,s αααL线性无关,则12,,,s A A A αααL 线性无关。
2(12)设A 为三阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 ( )。
()A 1.C P AP -= ()B 1.C PAP -= ()C .T C P AP = ()D .T C PAP =3(20)已知非齐次线性方程组 1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=-⎩ 有三个线性无关的解。
(1)证明方程组系数矩阵A 的秩()2r A =; (2)求,a b 的值及方程组的通解。
3(21)设三阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1,T Tαα=--=-线性方程组0Ax =的两个解。
(1) 求A 的特征值与特征向量(2) 求正交矩阵Q 和对角矩阵B ,使得TQ AQ = B 。
高数二1(6) 设矩阵21,12A E ⎛⎫=⎪-⎝⎭为2阶单位矩阵,矩阵B 满足2BA B E =+,则______.B =2(13) 设12,,,s αααL 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 ( )。
线性代数考研题库及答案线性代数考研题库及答案线性代数作为数学的一个重要分支,是应用广泛且基础性强的学科。
对于考研学子来说,掌握线性代数的知识是非常重要的。
在备考过程中,做题是必不可少的一环。
本文将为大家介绍一些线性代数考研题库及答案,希望能够对大家的备考有所帮助。
一、基础知识题1. 下列哪个不是向量的性质?A. 加法交换律B. 乘法结合律C. 乘法分配律D. 加法结合律答案:D解析:向量的加法满足交换律、结合律,乘法满足结合律和分配律。
2. 设A为n阶方阵,下列哪个等式成立?A. A^T = -AB. A^T = AC. A^T = A^2D. A^T = A^{-1}答案:B解析:方阵的转置就是将矩阵的行变成列,列变成行,所以A的转置等于A本身。
二、定理证明题1. 证明:矩阵A与B相似的充要条件是存在可逆矩阵P,使得P^{-1}AP = B。
答案:略解析:这是线性代数中的一个重要定理——矩阵相似。
证明的思路是从定义出发,利用矩阵的运算性质和可逆矩阵的性质进行推导。
三、应用题1. 已知向量组v1 = (1, 2, 3)^T,v2 = (2, 3, 4)^T,v3 = (3, 4, 5)^T,求向量组的秩。
答案:2解析:将向量组写成矩阵形式,进行初等行变换,化为阶梯型矩阵,统计非零行的个数即为秩。
2. 设A为n阶方阵,若存在非零向量X,使得AX = X,则矩阵A的特征值为多少?答案:1解析:根据特征向量的定义,AX = λX,其中λ为特征值,X为特征向量。
根据题意可得AX = X,所以特征值λ为1。
四、综合题1. 设A为3阶方阵,已知A的特征值为1,2,3,求A的特征向量。
答案:略解析:根据特征值和特征向量的定义,解线性方程组(A-λI)X = 0,其中λ为特征值,X为特征向量,求解得到特征向量。
总结:线性代数考研题库及答案主要涵盖了基础知识题、定理证明题、应用题和综合题等不同类型的题目。
通过做题可以帮助考生巩固知识、理解概念,并提高解题能力。
线性代数考试题库及答案(一)1.下面是线性代数考试题库及答案的第一部分专项同步练第一章行列式的格式正确版本:一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
3.n阶行列式的展开式中含a11a12的项共有(D) (n-1)。
项。
4.1/1 = (D) 2.5.1/(-1) = (B) -1.6.在函数f(x) = (2x-1)/(2-x^3)中x^3项的系数是(A) 0.7.若D = |a11 a12 a13| |a21 a22 a23| |1 a32 a33|,则D1 =2a11a33 - 4a13a31 - 2a12a32.8.若 |a11 a12| |a21 a22| = a,则 |a12 a11| |ka22 ka21| = (-k^2)a。
9.已知4阶行列式中第1行元依次是-4.0.1.3,第3行元的余子式依次为-2.5.1.x,则x = 3.10.若D = |4 3 1 5| |-1 3 4 1| |2 -1 6 3| |-2 1 3 4|,则D中第一行元的代数余子式的和为(B) -2.11.若D = |-1 5| |3 -2|,则D = (A) -1.12.k等于下列选项中哪个值时,齐次线性方程组x1 + kx2 + x3 = 0,kx1 + x2 + x3 = 0,x2 + x3 = 0有非零解。
(B) -2.二、填空题1.2n阶排列24…(2n)13…(2n-1)的逆序数是n(2n-1)。
2.在六阶行列式中项a32a41a25a13a56a64的符号为-。
改写后的文章:线性代数考试题库及答案第一部分专项同步练第一章行列式一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
考研数学一(线性代数)历年真题试卷汇编20(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设则A与BA.合同且相似.B.合同但不相似.C.不合同但相似.D.不合同且不相似.正确答案:A解析:因为A为实对称矩阵,且易求出A的特征值为λ1=4,λ2=λ3=λ4=0,所以必有正交矩阵P,使得P—1AP—PTAP==B即A既相似于B,也合同于B,所以(A)正确.知识模块:二次型2.设矩阵A=,则A与BA.合同,且相似.B.合同,但不相似.C.不合同,但相似.D.既不合同,也不相似.正确答案:B解析:由A的特征方程|λE一A|==(λ一3)2λ=0得A的全部特征值为λ1,λ2=3,λ3=0,由此知A不相似于对角矩阵B(因为A的相似对角矩阵的主对角线元素必是A的全部特征值3,3.0),但油A的特征值知3元二次型f(x1,x2,x3)=xTAx的秩及正惯性指数均为(二次型f=xTAx经适当的正交变换可化成标准形f=3y12+3y22,再经可逆线性变换可化成规范形f=z12+z22。
而f的矩阵A 与f的规范形的矩阵B=diag(1,1,0)是合同的).知识模块:二次型3.设A为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如图所示,则A的正特征值的个数为A.0B.1C.2D.3正确答案:B解析:由图形知该二次曲面为双叶双曲面,其标准方程为λ1x’2—λ2y’2—λ3z’2=1,其中λi>0(i=1,2,3),由于用正交变换化成的标准方程中各变量平方项的系数为A的特征值,故A的特征值为:λ1>0,一λ2<0,一λ3<0,因此A的正特征值的个数为1.知识模块:二次型4.设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22—y32,其中P=(e1,e2,e3).若Q=(e1,e2,e3),则f(x1,x2,x3)在正交变换x=Qy下的标准形为A.2y12—y22+y32.B.2y12+y22—y32.C.2y12—y22—y32.D.2y12+y22+y32.正确答案:A解析:设二次型的矩阵为A,则由题意知矩阵P的列向量e1,e2,e3是矩阵A的标准正交的特征向量,对应的特征值依次是2,1,一1.即有Ae1=2e1,Ae2=2e2,A3=23从而有AQ=A(e1,—e3,e2)=(Ae1,—Ae3,Ae2)一(2e1,—(—e3),e2)=(e1,—e3,e2) 矩阵Q的列向量e1,—e3,e2仍是A的标准正交的特征向量,对应的特征值依次是2,一1,1.矩阵Q是正交矩阵,有Q —1=QT,上式两端左乘Q—1,得Q—1AQ=QTAQ=从而知f在正交变换x=Py 下的标准形为f=2y12—y22+y32.于是选A.知识模块:二次型5.设二次型f(x1,x2,x3)=x12+x22+x32+4x1x2+4x1x3+4x2x3,则f(x1,x2,x3)=2在空间直角坐标下表示的二次曲面为A.单叶双曲面.B.双叶双曲面.C.椭球面.D.柱面.正确答案:B解析:二次型f(x1,x2,x3)的矩阵为A=,由得A的全部特征值为λ1=5,λ2=λ3=一1,因此,二次曲面方程f(x1,x2,x3)=2在适当的旋转变换下可化成方程5y12—y22—y32=2,由此可知该二次曲面是双叶双曲面.知识模块:二次型填空题6.已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=___________.正确答案:2解析:由题设条件知,f的矩阵为由于在正交变换下化f所成的标准形中,变量平方项的系数为A的全部特征值,故由f的标准形知A的特征值为6,0,0.再由特征值的性质:A全部特征值之和等于A的主对角线元素之和,即6+0+0=a+a+a便得a=2.知识模块:二次型7.若二次曲面的方程x2+3y2+z2+2axy+2xz+2yz=4经正交变换化为y12+4z12=4,则a=___________.正确答案:1解析:由题设条件知二次曲面方程左端的二次型的秩为2,即矩阵A=的秩为2.于是有0=det(A)==一(a一1)2所以,a=1.知识模块:二次型8.设二次型f(x1,x2,x3)=x12—x22+2ax1x3+4x2x3的负惯性指数为1,则a的取值范围是___________.正确答案:[一2.2].解析:对f配方,可得f=(x3+ax3)!一(x2一2x3)。
线性代数历年考研试题精解二、选择题1.(1987 —Ⅰ , Ⅱ ) 设 A 为 n 阶方阵 , 且 A 的队列式Aa 0 , 而 A * 是 A 的陪伴矩阵 , 则 A * 等于( C)(A) a .(B)1 . (C)an 1. (D)a n.a【考点】陪伴矩阵的性质 .A *n 1.解A2.(1987 —Ⅳ , Ⅴ ) 假定 A 是 n 阶方阵 , 其秩 r n , 那么在 A 的 n 个行向量中()(A) 必有 r 个行向量线性没关 .(B) 随意 r 个行向量线性没关 .(C) 随意 r 个行向量都构成最大线性没关向量组.(D) 任何一个行向量都能够由其余 r 个行向量线性表出 .【考点】 矩阵的秩 , 向量组的线性有关性及向量组的最大没关组.解R( A) r nA 的行秩 r nA 的行向量组的最大没关组含 r 个行向量 . 选(A).3.(1988 —Ⅰ , Ⅱ ) n 维向量组1,2,L ,s (3s n) 线性没关的充足必需条件是(D )(A) 存在一组不全为零的数k 1 , k 2 ,L ,k s , 使 k 1 1k 2 2 L k s s 0 .(B) 1, 2 ,L , s 中随意两个向量都线性没关 .(C)1, 2 ,L , s 中存在一个向量 ,它不可以用其余向量线性表出 .(D) 1,2,L, s 中随意一个向量都不可以用其余向量线性表出. 【考点】向量组线性有关的性质 .解“向量组线性有关的充足必需条件是起码有一个向量可由其余向量线性表示”的逆否命题是 (D).对 (A): “存在 ”改为“随意”就正确 .1 ,11, 2,3 线性有关 .对 (B):如10 2,3中随意两个向量都线性没关 ,但1110 0 1不可以由 2, 31, 2,对 (C):1, 2 , 3 2 中 线性表示 ,但 3 线性有关 .0 14.(1989 —Ⅰ , Ⅱ , Ⅳ, Ⅴ) 设 A 是 n 阶方阵 , 且 A 的队列式 A 0, 则 A 中()(A) 必有一列元素全为零 .(B) 必有两列元素对应成比率 .(C) 必有一列向量是其余列向量的线性组合 .(D) 任一列向量是其余列向量的线性组合 .【考点】向量组线性有关的鉴别定理 .解AR( A)n A 的列 (或行 )秩 n A 的列 (或行 ) 向量组线性有关 . 选(C).-19-5.(1989—Ⅳ ) 设 A 和 B 均为 n n 矩阵 ,则必有()(A)A B A B . (B) AB BA .(C) ABBA .(D) (AB) 1A 1B 1 .【考点】矩阵的性质 .解 AB A B BA .选(C).6.(1989—Ⅴ )设 n 元齐次线性方程组 Ax 0 的系数矩阵 A 的秩为 r ,则 Ax 0有非零解的充足必要条件是()(A) rn . (B) r n .(C) rn .(D) rn .【考点】齐次线性方程组解的理论 .解 齐次线性方程组A m n x n 1 0m 1 有非零解的充足必需条件是 R( A) n .选(B). 7.(1990—Ⅰ , Ⅱ ) 已知 1 ,2是非齐次线性方程组Axb 的两个不一样的解,1 ,2 是对应齐次线性方程组Ax的基础解系, k 1, k 2为随意常数 ,则方程组 Axb 的通解(一般解)必是()(A) k 11k 2 (12)12.(B) k 1 1k 2 (12)12.22(C) k 11k 2 (12)12.(D) k 11k 2 (12)12.22【考点】非齐次线性方程组解的构造 .解1,12 线性没关且为对应齐次线性方程组的解, 故1,12 是对应齐次线性方程组Ax 0 的基础解系 ; 又 A12A 1 A 2b ,故12为 Axb 的一个特解 ; 由非齐次线性方程组解的构造 ,知选 (B). 222对 (A):12为 Ax 0 的解 .2对 (C):12 为 Ax2b 的解 ,且12为 Ax 0 的解 .2对 (D):1,12 不必定线性没关 .8.(1990—Ⅳ , Ⅴ) 向量组 1 , 2 ,L, s 线性没关的充足条件是()(A)1, 2,L , s 均不为零向量 .(B)1, 2 ,L , s 随意两个向量的重量不行比率 .(C)1, 2 ,L , s 中随意一个向量均不可以由其余s1个向量线性表示 .(D)1,2,L, s 中有一部分向量线性没关 .-20-【考点】向量组线性没关的性质 .解 向量组1, 2,L,s 线性没关的充足必需条件是1, 2,L, s 中随意一个向量均不可以由其余s 1个向量线性表示 .选 (C).111, 2,对(A):如 1,2,3 均不为零向量 ,但 3 线性有关 .11对 (B):如对 (D): 如1 11,21 , 2,10 ,13 31111中随意两个向量的重量不行比率,但1, 2, 3 线性有关 .中1线性没关 .9.(1990—Ⅴ )设 A 是 n 阶可逆矩阵 , A*是 A 的陪伴矩阵 ,则()A *An 1(B) A * A . (C) A *An(D) A* A 1(A)...参照 1.(1987 —Ⅰ , Ⅱ).选 (A).10.(1991—Ⅰ ,Ⅱ) 设 n 阶方阵 A, B, C 知足关系式 ABC E ,此中 E 是 n 阶单位阵 , 则必有()(A) ACBE .(B) CBA E .(C) BACE .(D) BCAE .【考点】可逆矩阵的鉴别定理之推论 .解 由 EABCA(BC ) 知 BC 是 A 的逆矩阵 .选 (D).11.(1991 —Ⅳ ) 设 A 为 n 阶可逆矩阵 , 是 A 的一个特点值 , 则 A 的陪伴矩阵A *的特点值之一是()(A)1n(B)1A .(C)A .(D)nA .A .【考点】特点值的性质 .解 选 (B). Ax x A * ( Ax ) A *( x)A x ( A *x)A *xAx .12.(1991—Ⅴ )设 A, B 为 n 阶方阵 ,知足等式 AB O ,则必有()(A) AO 或 B O .(B) AB O .(C)A O 或B O .(D) AB O .【考点】矩阵的性质 .解 选 (C). AB OAB 0 A B 0 .13.(1991—Ⅴ )设 A 是 m n 矩阵 , Ax 0 是非齐次线性方程组 Ax b 所对应的齐次线性方程组,则以下结论正确的选项是()(A) 若 Ax0 仅有零解 ,则 Ax b 有独一解 .(B) 若 Ax 0 有非零解 ,则 Ax b 有无量多个解 .-21-(C)若 Axb 有无量多个解 ,则 Ax 0 仅有零解 .(D) 若 Ax b 有无量多个解 ,则 Ax 0 有非零解 .【考点】非齐次线性方程组解的理论 .解 选 (D). Axb 有无量多个解R( A) R( B) nR( A)nAx 0有非零解 .x 1 x 2x 1 x 2 0对 (A): 如x 1 2 x 20 仅有零解 , 但x 12x 2 0 无解.x 1 x 2 0x 1x 2 1对 (B):如x 1 x 2 0x 1 x 2 0无解 .2x 1 2x 2有非零解 ,但2 x 12x 22对 (C): Axb 有无量多个解 ,则 Ax 0 有非零解 .114.(1992 —Ⅰ , Ⅱ ) 要使 10 , 21 都是线性方程组 Ax 0 的解 ,只需系数矩阵 A为21()2 011 020 1 12 1 1 .(D) 4 2 2 .(A)(B)1 1.(C)0 1.10 11【考点】齐次线性方程组解向量的定义.解 选 (A).【注意】只需考证 A1, 2O .15.(1992 —Ⅳ ) 设 A 为 m n 矩阵 , 齐次线性方程组 Ax 0 仅有零解的充足条件是()(A)A 的列向量线性没关 . (B) A 的列向量线性有关 .(C)A 的行向量线性没关 . (D)A 的行向量线性有关 .【考点】齐次线性方程组解的理论 ,矩阵的秩及向量组的线性有关性 .解Ax 0 仅有零解R( A)nA 的列秩 nA 的列向量线性没关 . 选(A).16.(1992—Ⅴ )设 A, B, A B, A 1 B 1 均为 n 阶可逆矩阵 ,则 ( A 1 B 1) 1等于()(A) A 1B 1.(B) AB .(C) A(A B) 1B .(D) (AB) 1.【考点】逆矩阵的性质 .解 选(C).( A(A B) 1B) 1B 1(A B)A 1(AB 1 E) A1A 1B 1. 或(A 1 B 1)[ A(A B) 1B] ( E B 1A)( A B) 1B B 1(A B)( A B) 1BE .17.(1992 —Ⅴ ) 设1, 2 ,L , m 均为 n 维向量 , 那么 , 以下结论正确的选项是()-22-(A) 若k 1 1 k 2 2L k m m 0,则 1, 2,L ,m 线性有关 .(B) 若 对 任 意 一 组 不 全 为 零 的 数 k 1,k 2 ,L ,k m , 都 有 k 1 1k 2 2 L k m m 0 , 则1,2,L , m 线性没关 .(C) 若1, 2,L , m 线性有关 , 则对随意一组不全为零的数 k 1, k 2 ,L , k m , 都有k1 1k2 2Lkm m0 .(D)若0 10 2L0 m0,则 1, 2,L ,m 线性没关 .【考点】向量组线性相 ( 无 ) 关的定义 .解 选 (B).由线性有关定义的逆否命题可得.1 2 318.(1993—Ⅰ , Ⅱ ) 已知 Q24 t , P 为 3 阶非零矩阵 ,且知足 PQO ,则()3 6 9(A) t6 时 P 的秩必为 1.(B) t6 时 P 的秩必为 2.(C) t 6时 P 的秩必为 1.(D) t 6时 P 的秩必为 2.【考点】矩阵的秩及其性质 .解 PQ O R(P) R(Q) 3 1 R(P) 3 R(Q) .当 t6 时, R(Q)11 R(P)2R( P)1 或 2,则(A)和(B)都错 ;当 t 6时, R(Q) 2 1 R(P) 1 R( P) 1 .选(C).【注】 (1) A m s B s n O R( A) R(B)s .(2) A m s B s n O ,则 B 的列向量组为 A m s x s n O 的解向量 .19.(1993 —Ⅳ ) n 阶方阵 A 拥有 n 个不一样的特点值是A 与对角阵相像的()(A) 充足必需条件 . (B) 充足而非必需条件 .(C) 必需而非充足条件 . (D)既非充足也非必需条件 .【考点】矩阵能对角化的鉴别定理(充足条件 ).解 选 (B).20.(1993—Ⅴ )若 1 ,2, 3, 1,2 都是四维列向量 ,且 4 阶队列式1 ,2 ,3 , 1 m ,1, 2, 2,3n ,则 4 阶队列式3, 2, 1,(12) 等于( )(A)m n .(B)(m n) . (C) n m . (D) mn .【考点】矩阵的运算及队列式的性质.解 选(C).3, 2, 1,( 12)3, 2, 1, 13, 2, 1, 2-23-1,2,3,11,2,2,3n m .21.(1993 —Ⅴ ) 设2 是非奇怪矩阵 A 的一个特点值 , 则矩阵 ( 1 A2) 1有一特点值等于()4 .3 . 1 . 1 . 3(A)(B)(C) (D)34 2 4【考点】特点值的性质 .解1 A 2有一特点值 1 24 ,则( 1 A 2) 1有一特点值 3 .选(B).3 33 3422.(1994—Ⅰ , Ⅱ ) 已知向量组1, 2 , 3 , 4 线性没关 ,则向量组()(A)12,23,3 4,41 线性没关 .(B)12,23, 34,41 线性没关 .(C)12,23 ,34,41线性没关 .(D) 1 2 ,2 3 ,3 4 ,41 线性没关 .【考点】鉴别向量组线性相 ( 无)关的方法 .解 对 (A):( 12) ( 34)( 23)(41) ,则12,23,34,41 线性有关 .对(B):( 12) ( 23)(34)( 41 ) ,则12,23,34,41 线性有关 .对(D):( 12)(23)(34)( 41 ) ,则12,23,34,41 线性有关 .应选 (C). 或 对(A):1 0 0 11 1 0 0[12,23,34,41][1, 2,3,4],0 1 1 0 0 0 1 1-24-1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 10 1 1 0 0 0 1 ,1 00 1 10 0因此R( 12 ,23,34 ,41)34,则12 ,23 ,34 ,41线性有关 .同理可议论 (B),(C),(D).【注意】鉴别向量组线性相 ( 无)关的常有方法以下 .(1) 用定义 : 一般对抽象的向量组 . 理论依据 :n 维向量组1 ,2 ,L , m 线性相 (无 )关齐次线性方程组x 1 1 x 22L x mm0 有非零解 (只有零解 ).(2) 用向量组的秩 : 对详细的向量组直接求秩 ; 对抽象的向量组用矩阵的秩的性质推导出来. 理论依据 :向量组1 ,2 ,L , m 线性相 ( 无)关R( A) m( R( A) m) .(3) 用有关理论推导 .(4) 特别情况 :若向量组1 ,2 ,L ,m可由 1 , 2 ,L , m 线性表示 , 且 1, 2 ,L , m 线性没关时 , 设1 ,2 ,L , m1 ,2 ,L , m K ,则向量组 1, 2,L ,m 线性相 (无 )关R(K ) m( R(K ) m) .23.(1994 —Ⅳ ) 设 A 是 m n 矩阵 , C 是 n 阶可逆矩阵 , 矩阵 A 的秩为 r , 矩阵 B AC的秩为r 1 ,则( )(A)rr 1 . (B) r r 1 .(C)rr 1 . (D)r 与 r 1 的关系依 C 而定 .【考点】矩阵秩的性质 .解r 1 R(B) R(AC) R( A) r .选(C).【注】设 P,Q 为可逆矩阵 ,则 R( A) R( PA) R(AQ) R(PAQ) .24.(1994 —Ⅴ ) 设 A, B 都是 n 阶非零矩阵 , 且 ABO ,则 A 和B 的秩()(A) 必有一个等于零 . (B) 都小于 n . (C) 一个小于 n , 一个等于 n . (D) 都等于 n .【考点】矩阵秩的性质 .解AB O R( A) R(B) n ;又 R(A) 1,R( B) 1(A O,B O) ,则R( A) n, R(B)n .选(B).-25-25.(1994—Ⅴ ) 设有向量组 1(1, 1,2,4),2(0,3,1, 2),3(3,0,7,14),4 (1,2,2,0),5(2,1,5,10) , 则该向量组的最大线性没关组是()(A) 1, 2,3 .(B)1, 2,4 .(C) 1, 2,5.(D)1, 2, 4,5.【考点】详细向量组的最大线性没关组的求法.1 0 3 12 1 03 1 2 解A [ 1T , 2T , 3T , 4T , 5T ]1 3 02 1 01101,2 1 7 2 5 0 0 0 1 04 2 140 100 0 00 0则向量组的最大线性没关组是1,2, 4 . 选(B).【注意】(1)初等行变换保持矩阵的行向量组等价 ,保持矩阵的列向量组的线性有关性不变 ;(2)初等列变换保持矩阵的列向量组等价 ,保持矩阵的行向量组的线性有关性不变.26.(1995—Ⅰ , Ⅱ ) 设a 11 a 12 a13a 21 a 22 a 230 1 0 Aa 21a22a 23 , Ba11a12a13, P 1100,a 31 a 32 a 33a 31 a 11 a 32 a 12 a 33a 130 0 11 0 0P 20 1 01 0 1则必有()(A) APP 12 B . (B) AP 2 P 1 B .(C) PP 12 AB .(D) P 2 PA 1B .【考点】初等变换与初等矩阵的关系 .解B 可将 A 的第一行加到第三行,再将 A 的第一行与第二行互换获得 .应选 (C).【注】在矩阵的左 ( 右)边乘以一个初等矩阵 ,相当于对矩阵作相应的初等行 (列) 变换 .27.(1995—Ⅳ , Ⅴ ) 设矩阵 A m n 的秩为R( A)mn, I m 为 m 阶单位矩阵 , 下述结论中正确的选项是( )(A)A 的随意 m 个列向量必线性没关 .(B) A 的随意一个 m 阶子式不等于零 .(C) 若矩阵 B 知足 BA,则B0 .(D) A 经过初等行变换 , 必能够化为 I m O 的形式 .【考点】向量组线性没关的鉴别 , 矩阵秩的定义及矩阵的行阶梯形和标准形.解 选(C). BA 0A TB T O .由 R( A T ) m ,则齐次线性方程组 A T x O 只有零解 ,即 B T的列向量全为零 ,故B TOB O .-26-线性代数历年考研试题精解28.(1995—Ⅴ ) 设 n 维行向量1 1 ( ,0,L,0, ),矩阵 A In 阶单位矩阵 , 则 AB 等于 ( )22(A)0.(B) I .(C)I .(D) IT.【考点】矩阵的运算 . 解 选 (C).T,B I 2T,此中I 为a 1 0 0b 10 a 2 b 2 0 的值等于()29.(1996—Ⅰ , Ⅱ ) 四阶队列式b 3 a 3 0 0 b 4 0 0a 4(A) a 1a 2a 3a 4 b 1b 2b 3b 4 . (B) a 1 a 2 a 3 a 4 b 1b 2b 3 b 4 .(C)(a 1a 2 b 1b 2 )( a 3 a 4 b 3b 4 ) .(D)( a 2a 3 b 2b 3 )(a 1a 4 b 1b 4 ).【考点】队列式的计算 .解 选 (D). 将队列式按第一行睁开 .30.(1996—Ⅳ ,Ⅴ) 设 n 阶矩阵 A 非奇怪 ,A * 是 A 的陪伴矩阵 , 则( )(A) ( A * )*n 1(B) (A * )*n 1AA .A A .(C) (A * )*n 2(D) (A * )*n 2A A .A A .【考点】矩阵运算的性质 .解 选 (C).. A *A A 1( A *)*A * (A *) 1A A 1 (A A 1) 1n 1 1 AAn 2AA AA .31.(1996 —Ⅳ , Ⅴ ) 设有随意两个 n 维向量组1,L,m和1,L ,m , 若存在两组不全为的数1 ,L , m 和 k 1,L , k m , 使( 1k 1 ) 1 L( m k m ) m ( 1k 1) 1 L( m k m ) m 0 ,则()(A)1,L , m和1 ,L , m 都线性有关 .(B) 1,L,m和1,L,m 都线性没关 .(C)11 ,L , m m,11 ,L , mm 线性没关 .(D)11 ,L,mm,11,L,mm 线性有关 .-27-线性代数历年考研试题精解【考点】向量组线性相 ( 无)关的定义 .解由(1k 1 ) 1 L ( m k m ) m ( 1 k 1 ) 1 L ( m k m ) m 0 ,得1(11) Lm (mm)k 1(11 ) L k m ( mm ) O ,因此 11,L ,mm,11,L, mm 线性有关 .选 (D).a 1b 1c 132.(1997—Ⅰ )设1a 2 , 2b 2, 3c 2 ,则三条直线a 3b 3c 3a i xb i yc i0(i 1,2,3) (此中 a i 2 b i 2 0, i 1,2,3 )交于一点的充足必需条件()(A)1, 2,3 线性有关 .(B)1,2,3 线性没关 .(C)秩 R( 1 , 2, 3 ) 秩 R( 1 ,2 ) .(D) 1, 2 , 3 线性有关,1,2 线性没关 .【考点】齐次线性方程组解的理论 .解 三条直线交于一点的充足必需条件是线性方程组a 1xb 1 yc 1 0 a 2 x b 2 y c 2 0a 3 xb 3 yc 3有唯一解R(1, 2)R(1, 2 , 3)2R( 1, 2) 21,2线性没关;R( 1, 2,3)2R(1, 2,3)21, 2,3线性有关 .33.(1997—Ⅲ , Ⅳ ) 设向量组1,2,3 线性没关 , 则以下向量组中 , 线性没关的是 ()(A)12,2 3,31(B) 1 2,23,12 23 (C)12 2,223 3 ,3 31(D) 1 23 , 2 1 3 2 22 3,3 1525 3解 参照 22.(1994—Ⅰ , Ⅱ). 选(C).34.(1997—Ⅲ ) 设 A, B 为同阶可逆矩阵 , 则()(A)AB BA(B)存在可逆阵 P ,使 P 1APB-28-线性代数历年考研试题精解(C)存在可逆阵 C ,使C T AC B(D) 存在可逆阵P 和Q,使PAQ B【考点】矩阵等价 , 合同 ,相像的鉴别 .解A, B 为同阶可逆矩阵,则 A, B 都与同阶的单位矩阵等价, 进而A, B等价 . 应选 (D).【注意】两个同型矩阵等价的充足必需条件是它们的秩相等.假如不是同型矩阵,则必需性不建立.35.(1997—Ⅳ )非齐次线性方程组Ax b 中未知量个数为n ,方程个数为 m ,系数矩阵A的秩为 r , 则()(A)r m 时,方程组(B)r n 时,方程组(C)m n 时,方程组Ax b 有解. Ax b 有唯一解. Ax b 有唯一解.(D) r n 时,方程组Ax b有无量多解.【考点】线性方程组解的理论 .解选 (A). m R(A) R( B) m R( A) R( B) m .a1 b1 c1是满秩的,则直线xa3 y b3 zc3与直线36.(1998 —Ⅰ ) 设矩阵a2 b2 c2a3 b3 c3 a1 a2 b1 b2 c1 c2x a1 y b1 z c1()a2 a3 b2 b3 c2 c3(A)订交于一点 .(B) 重合 .(C)平行但不重合 .(D)异面 .【考点】空间两条直线地点的鉴别.解设 P (a1, b1 ,c1), Q(a3 ,b3 , c3 ),s1 (a1 a2 , b1 b2 ,c1 c2 ), s2 (a2 a3 ,b2 b3, c2 c3 ) .uuur a1 a2 b1 b2 c1 c2 uuur由 [ s1, s2 ,QP] a2 a3 b2 b3 c2 c3 0 s1, s2 ,QP共面,则两直线共面.又a3 a1 b3 b1 c3 c1a1 b1 c1 a1 a2 b1 b2 c1 c2a2 b2 c2 a2 a3 b2 b3 c2 c3 ,a3 b3 c3 a3 b3 c3则s1, s2不平行,即两直线不平行.选(A).37.(1998—Ⅱ ) 设A是任一n(n 3) 阶方阵,A*是其陪伴矩阵, 又k为常数 ,且k0, 1 ,则必有( kA)*()(A) kA* .(B) k n 1A* .(C) k n A* .(D) k1A* .线性代数历年考研试题精解【考点】陪伴矩阵的定义 .解(kA)* k n 1A* ( 由陪伴矩阵的定义获得 ).选 (B).或由(kA)(kA)* kA E k n A E k n AA* (kA)(k n 1 A* )看出 .x1 x2 2 x3 038.(1998—Ⅲ ) 齐次线性方程组x1 x2 x3 0 的系数矩阵记为 A .若存在三阶矩阵 B 0x1 x2 x3 0使得 AB 0,则( )(A) 2 且 B 0 . (B) 2 且 B 0 .(C) 1 且 B 0 . (D) 1 且 B 0 .【考点】矩阵的性质 ,齐次线性方程组解的理论 .解AB 0,B 0 Ax 0 有非零解 A 0 1.若 B 0,由 AB 0 得 A 0 , 矛盾 .应选 (C).1 a a L aa 1 a L a39.(1998—Ⅲ ) 设n(n 3) 阶矩阵A a a 1 L a ,假如矩阵A的秩为n 1 ,则a必为M M M Ma a a L 1()(A)1.1(C) 1 . (D)1.(B) .11 n n【考点】含参数的矩阵的秩的议论 .解R(A) n A 0 a 1 或11时,明显R( A) 1.应选(B)..当a1 n40.(1998—Ⅳ )若向量组, , 线性没关 ; , , 线性有关 , 则()(A) 必可由, , 线性表示 . (B) 必不行由, , 线性表示(C) 必可由, , 线性表示 . (D) 必不行由, , 线性表示 .【考点】向量组线性相 ( 无)关的性质 .解, ,线性没关,有,线性没关;又, ,线性有关,得必可由,线性表示,也必可由, ,线性表示.选(C).41.(1999—Ⅰ )设A是m n 矩阵,B是 n m 矩阵,则()(A) 当m n 时,必有队列式AB 0 .(B) 当m n 时,必有队列式AB0 .(C)当 n m 时, 必有队列式 AB 0 . (D) 当 n m 时,必有队列式 AB0 .【考点】矩阵秩的性质 .解R( AB) min{ R( A), R( B)} min{ m, n} .选 (B).42.(1999—Ⅱ )记队列式x 2 x 1 x 2 x 32x 2 2x 1 2x 2 2x 33x 3 3x 2 4x 5 3x 54x4 x 3 5x7 4x 3为f ( x) ,则方程f (x)0 的根的个数为()(A)1. (B)2.(C)3.(D)4.【考点】队列式的计算 .r 1 r 21 1 112 x 2 2x 1 2x 2 2x 3r 1 ( x )解f ( x)x3 3x 2 4x 5 3x 5 5x(x 1) . 选(B).3x4x4x 3 5x7 4x343.(1999— Ⅲ, Ⅳ)设向量可由向量组1,2 ,L , m线性表示,但不可以由向量组1,2, ,m 1线性表示 ,记向量组 (Ⅱ ):1,2,, m 1 ,, 则()(Ⅰ ):LL(A)m 不可以由 (Ⅰ)线性表示 ,也不可以由 ( Ⅱ)线性表示 .(B)m 不可以由 (Ⅰ)线性表示 ,但可由 (Ⅱ )线性表示 .(C) m 可由 (Ⅰ )线性表示 ,也可由 ( Ⅱ)线性表示 .(D)m 可由 (Ⅰ )线性表示 , 但不行由 (Ⅱ )线性表示 .【考点】向量组的线性表示的定义及其鉴别.解 方法一 : 若m 可由 (Ⅰ )线性表示 ,则R( 1 , 2 ,L , m 1 ) R( 1, 2 ,L , m 1, m )R( 1 , 2 ,L , m 1 , m , ) R( 1 , 2 ,L , m 1 , )与不可以由1,2 ,L, m 1 线性表示 ,矛盾 ,则m 不可以由 (Ⅰ )线性表示 .故(C),(D) 错.且R( 1 , 2 ,L , m 1 , m ) R( 1, 2 ,L , m 1) 1 ,由不可以由1,2 ,L , m 1 线性表示 , 则R( 1 , 2 ,L , m 1 , )R( 1 , 2 ,L , m 1 ) 1.因此R( 1 , 2 ,L , m 1 , ) R( 1 , 2 ,L , m 1 , m )R( 1 , 2 ,L , m 1 , m , ) R( 1 , 2 ,L , m 1 , , m ) ,m 可由1,L,m 1,则线性表示 .应选 (B).方法二 : 可由向量组1, 2 ,L , m 线性表示 .若 m 可由 1, 2,L ,m 1 线性表示 ,则可由向量组1,2 ,L , m 1 线性表示 ,矛盾 .故(C),(D) 错.可由向量组1, 2,L ,m 线性表示 ,则存在一组数 k 1,L , k m 1 , k m ,使得k 1 1 Lkm 1 m 1k m m ,此中 k m.k m 0 ,可由向量组 1, 2,L ,m 1线性表示 ,矛盾 .m可由 1,2 ,L, m 1,0 若则线性表示 .故(A) 错.选(B).44.(1999—Ⅲ )设 A, B 为 n 阶矩阵 , 且 A 与 B 相像 , E 为 n 阶单位矩阵 , 则()(A)E A E B .(B) A 与 B 有同样的特点值和特点向量 .(C) A 与 B 都相像于一个对角矩阵 .(D) 对随意常数 t , tEA 与 tEB 相像.【考点】矩阵相像的性质 .解 选(D). A 与 B 相像 , 存在可逆矩阵 P ,使得 P 1APB ,则tE BtE P 1AP P 1 (tE ) P P 1APP 1(tE A)P ,即 tEA 与 tEB 相像. 对 (A): E A E B A B .对 (B): A 与 B 相像 , 则 A 与 B 有同样的特点值 , 但特点向量不必定同样 . 对 (C): A 与 B 不必定能对角化 .45.(2000—Ⅰ ) n 维列向量组1,L, m (m n) 线性没关 ,则 n 维列向量组1 ,L , m 线性没关的充足必需条件为()(A) 向量组 1,L , m 可由向量组1,L , m 线性表示 .(B) 向量组 1,L , m 可由向量组1 ,L, m 线性表示 .(C)向量组 1,L,m 与向量组1,L ,m 等价 .(D) 矩阵 A(1,L , m ) 与矩阵 B( 1,L , m ) 等价 .【考点】向量组线性相 ( 无)关的鉴别 .解 选 (D).(A) 是充足非必需条件 .(1) (A) 是充足条件 : mR( 1,L ,m)R( 1,L , m)m R( 1 ,L , m ) m .110 (2) (A) 是非必需条件 :如10 , 21 线性没关 ,10 , 2线性没关 ,但1, 20 01不可以由1,2 线性表示 .(B) 是既非必需也非充足条件 .(1) (B) 是非必需条件 :如111 0 0 , 21 线性没关 , 10 , 2线性没关 ,但1, 21不可以由1,2 线性表示 .10 (2) (B) 是非充足条件 :如 10, 2 11线性没关, 1, 20 .1,2可由1,2线性表示,但1 ,2 线性有关 .(C)是充足非必需条件 .(1) (C)是充足条件 : R(1,L ,m)R( 1 ,L, m ) m .11(2) (C)是非必需条件 :如10 ,21线性没关, 10, 20 线性没关 ,但1, 21不可以由 1, 2 线性表示 ,则 1, 2 与1,2不等价 .(D) 是充足必需条件 .向量组 1,L ,m 线性没关R( 1,L , m ) m R( 1,L ,m) R( 1,L ,m ) mR( A) R(B)AB .46.(2000 — Ⅲ , Ⅳ ) 设 1, 2 ,3是 四 元 非 齐 次 线 性 方 程 组 Ax b 的 三 个 解 向 量 , 且 秩(A )=3, 1(1,2,3, 4)T ,2 3(0,1,2,3)T , C 表示随意常数,则线性方程组 Ax b 的通解x ( )1 11 012 13 (A)2 1 (B)2 1 . (C)2 3 . 2 43 C . 3 C3 C(D)C .1 2 4 3 541434546【考点】线性方程组解的性质及非齐次线性方程组解的构造.解 选 (C). R( A)3Ax 0 的基础解系含 4 R( A) 1 个解向量.可取2 1 (23) (2,3, 4,5) T.47.(2000 — Ⅲ ) 设 A 为 n 阶实矩 阵 , AT是 A 的转置 矩阵 , 则对 于线性 方程组 ( Ⅰ ): Ax和(Ⅱ ): A TAx 0 ,必有 ()(A)( Ⅱ )的解是 (Ⅰ )的解 , (Ⅰ )的解也是 (Ⅱ )的解 . (B)( Ⅱ) 的解是 ( Ⅰ)的解 ,但( Ⅰ)的解不是 (Ⅱ )的解 . (C)( Ⅰ) 的解不是 (Ⅱ )的解 , (Ⅱ )的解也不是 (Ⅰ )的解 . (D)(Ⅰ )的解是 (Ⅱ )的解 , 但(Ⅱ)的解不是 ( Ⅰ)的解 .【考点】 Ax 0 与 A T Ax 0 解的关系 .解 选 (A).【注意】 Ax 0 与 A T Ax 0 同解 .事实上(1) Ax 0( A T A) x A T ( Ax) 0 ,即 Ax 0 的解是 A T Ax 0的解;(2) A TAx 0 x T A T Ax 0 ( Ax)T AxAx 0 Ax 0 ,即 A T Ax 0 的解是 Ax0的解.1 1 1 1 4 0 0 01 1 1 1 0 0 0 048.(2001—Ⅰ )设 A1 1 1 , B0 0 ,则 A 与 B ()1 0 011 1 10 00 0(A) 合同且相像 .(B) 合同但不相像 .(C) 不合同但相像 .(D)不合同且不相像 . 【考点】实对称矩阵的对角化.解选 (A). A 为实对称矩阵且 A的特点值为4,0,0,0 .【注意】实对称矩阵既正交合同也正交相像于对角矩阵.a11a12a13a14a 14a13a12a11a21a22a23 a24a24a23a22 a2149.(2001—Ⅲ , Ⅳ )设 Aa 32a 33, Ba 34a 33a 32,a31a34a31aaaaaaaa0 0 0 1 1 0 0 0 0 1 0 00 0 1 0P 10 1 0 , P 21 0 ,0 0 0 1 0 0 00 0 0 1此中 A 可逆,则B 1()(A) A 1P 1P 2 . (B) P 1 A 1P 2 . (C) P 1P 2 A 1 .(D) P 2A 1P 1 .【考点】初等矩阵与初等变换的关系及乘积矩阵的求逆.解 选 (C). B 由 A 的第二列与第三列互换 , 再将第一列与第四列互换获得 ,则B AP 2 P 1B 1 PP 12A 1.50.(2001—Ⅲ )设 A 是 n 阶矩阵 ,是 n 维列向量 . 若秩A=秩 ( A ), 则线性方程组 ( )T(A) Ax 必有无量多解 .(B)Ax必有唯一解 .AxAx 0 必有非零解 .(C)T0 0 仅有零解 .(D)Tyy【考点】线性方程组解的理论 .解 秩A=秩( A )n n 1,则 Ax 0 必有非零解 .选(D).TT0 y51.(2002—Ⅰ ) 设有三张不一样平面的方程a i1 x a i 2 y a i 3zb i ,i 1,2,3 ,它们所构成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的地点关系为()【考点】线性方程组解的理论.a 11 x解 方程组a 21xa 31 xa 12 y a 13 zb 1a 22 y a 23zb 2 有无量多解 .选 (B).a 32 y a 33zb 3【注意】a 11x a 12 y a 13 zb 1(1)三张不一样平面 a i1 x a i 2 y a i3 z b i ,i1,2,3 订交于一点a 21x a 22 y a 23zb 2 有a 31x a 32 y a 33zb 3唯一解 ;a 11x a 12 y a 13 zb 1 (2)三张不一样平面 a i1 xa i 2 y a i3 zb i ,i 1,2,3 订交于直线a 21x a 22 y a 23zb 2 有a 31x a 32 y a 33zb 3无量多解 ;a 11x a 12 y a 13 zb 1(3)三张不一样平面 a i 1xa i 2 y a i 3 zb i , i 1,2,3 无交点a 21 x a 22 y a 23 zb 2无解.a 31x a 32 y a 33 zb 352.(2002—Ⅱ )设向量组1,2,3 线性没关,向量 1 可由1,2 ,3 线性表示,而向量2不可以由 1 , 2 , 3 线性表示,则关于随意常数 k ,必有()(A)1, 2,3 , k12 线性没关 .(B)1, 2,3, k12 线性有关 .(C) 1, 2 , 3 , 1k 2 线性没关 . (D) 1 , 2 , 3,1k2 线性有关 .【考点】向量组线性相 ( 无)关与线性表示之间的关系 .解 令 k 0 ,则1, 2, 3,2 线性没关 ,(B)错 ;1, 2,3, 1 线性有关 ,(C) 错.令 k1,若 1, 2, 3,1k2 线性有关 ,则 2 能由1, 2,3 线性表示 ,(D) 错 .选 (A).53.(2002—Ⅲ )设 A 是 m n 矩阵 , B 是 n m 矩阵 ,则线性方程组 (AB )x 0 ()(A) 当 n m 时仅有零解 . (B) 当 n m 时必有非零解 . (C)当 mn 时仅有零解 .(D) 当 mn 时必有非零解 .【考点】矩阵的秩的性质与齐次线性方程组解的理论.解R( AB)min{ R( A), R( B)} n ,又 AB 为 m 阶方阵 . 选(D).【注意】(1) R(A m n ) min{ m,n} ;(2) R(AB )min{ R( A), R( B)} .54.(2002—Ⅲ )设 A 是 n 阶实对称矩阵 , P 是 n 阶可逆矩阵 . 已知 n 维列向量 是 A 的属于特点值的特点向量 ,则矩阵(P 1AP)T属于特点值的特点向量是 ( )(A)P1.(B) PT.(C)P .(D) (P 1)T.【考点】矩阵的运算及矩阵的特点值与特点向量的定义.解A,( P 1AP )TP T A(P T ) 1 ,从后式看出要利用前式 ,一定消去 (P T ) 1,即在 的前面乘以PT.选 (B).或 (P 1AP )T (P T) P T A[( P T ) 1P T ] P T A (P T ) .【注意】在做选择题及填空题时 , 要存心识地培育“只求目的 ,不择手段” .55.(2002—Ⅳ ) 设 A, B 为 n 阶矩阵 , A * , B *分别为 A, B 对应的陪伴矩阵 ,分块矩阵 CA O ,O B则C的陪伴矩阵C*( )A A *O .B B *O(A)B B *(B)OA A *OA B *OB A * O(C)B A *(D)OA B *O【考点】陪伴矩阵的性质 .解 方法一 :依据 AA *A E 考证 .选 (D).( 此方法在解决这种问题时一般较麻烦 ).方法二 :若 A 1 易求得 ,由 A *A A 1 最简易 .明显C 1A 1 O , CA BO B 1*1ABA 1OB A *OCC COABB1OA B* .56.(2003—Ⅰ , Ⅱ )设向量组Ⅰ : 1,2 ,L , r 可由向量组Ⅱ : 1 , 2,L , s 线性表示 ,则()(A) 当 r s 时 ,向量组Ⅱ必线性有关 . (B) 当 r s 时,向量组Ⅱ必线性有关 . (C)当 rs 时,向量组Ⅰ必线性有关.(D) 当 rs 时,向量组Ⅰ必线性有关 .【考点】向量组线性表示与向量组秩的关系 .解 R(1,2 ,L , r ) R(1,2 ,L ,s)s .选 (D).57.(2003—Ⅰ )设有齐次线性方程组 Ax 0和 Bx 0 ,此中 A, B 均为 mn 矩阵 ,现有 4 个命题 :①若 Ax的解均是 Bx 0 的解, 则秩( A ) 秩 ( B ). ②若秩 ( A ) 秩( B ), 则 Ax 0 的解均是 Bx 0的解. ③若 Ax 0 与 Bx 0 同解 , 则秩 ( A ) 秩( B ). ④若秩 ( A ) 秩( B ), 则 Ax 0 与 Bx 0同解. 以上命题正确的选项是()(A) ①②(B) ①③ (C)②④(D) ③④【考点】线性方程组解的理论 .解 若 Ax0 的解均是 Bx 0 的解 , 则 Ax 0 的基础解系必是 Bx 0 的基础解系的一部分, 故Ax 0 的基础解系所含解向量个数必小于 Bx 0 的基础解系所含解向量个数 , 即则①对 , 进而③也对 . 选 (B).或直观地鉴别结论 .若 Ax0 的解均是 Bx 0 的解 , 则 Ax 0 所含限制条件许多于 Bx 0 所含限制条件 , 进而 Ax0 所含独立方程个数必许多于 Bx 0 所含独立方程个数 , 故 R(A)R(B) .①对 .【注意】(1) R( A) 线性方程组Ax 0 所含独立方程个数 ; (2) R(B)线性方程组Ax b 0 所含独立方程个数 .本题的后边解法又是“不择手段”, 读者在考试中做选择题和填空题时略加运用,能够提升考试的效率和得分率 .这里要说明的 ,所谓“不择手段”是在对数学理论的直观理解的基础上 ,而不是记忆上 .58.(2003—Ⅲ ) 设 1 , 2 ,L , s 均为 n 维向量 , 以下结论不正确的选项是 ( )(A) 若 对 于 任 意 一 组 不 全 为 零 的 数 k 1 , k 2,L, k s , 都 有 k 1 1 k 2 2 L k ss0 , 则1 ,2 ,L ,s 线性没关 .(B) 若1,2 ,L , s 线性有关 , 则关于随意一组不全为零的数k 1, k 2 ,L , k s ,有k 1 1 k 2 2 L k s s 0 .(C)1, 2 ,L,s 线性没关的充足必需条件是此向量组的秩为s .(D) 1,2,L , s 线性没关的必需条件是此中随意两个向量线性没关. 【考点】向量组的线性相 (无 )关 .解 选 (B).59.(2003—Ⅳ )设矩阵0 0 1 B0 1 0 .1 0 0已知矩阵A 相像于B ,则秩 (A 2E)与秩 (AE)之和等于 ()(A)2.(B)3.(C)4.(D)5.【考点】相像矩阵的性质 .解R( A 2E)R( A E)R( B 2E)R(B E)4 .选(C).【注】(1) 若 A 与 B 相像 ,则 k 1 A l 1E(k 1 0) 与 k 2 A l 2E( k 2 0) 相像;(2) 相像矩阵有同样的秩 .60.(2004—Ⅰ ,Ⅱ) 设 A 是三阶方阵 ,将 A 的第 1列与第 2 列互换得 B ,再把 B 的第 2 列加到第 3 列得 C ,(完整版)线性代数历年考研试题之选择题线性代数历年考研试题精解0 1 0 0 1 0 0 1 0 0 1 1(A) 1 0 0 . (B) 1 0 1 . (C) 1 0 0 . (D) 1 0 0 .1 0 1 0 0 1 0 1 1 0 0 1【考点】初等矩阵与初等变换的关系.0 1 0 1 0 0 0 1 1解 Q 1 0 0 0 1 1 1 0 0 .0 0 1 0 0 1 0 0 161.(2004—Ⅰ , Ⅱ ) 设A, B为知足AB O 的随意两个非零矩阵,则必有()(A)A 的列向量组线性有关, B 的行向量组线性有关.(B)A 的列向量组线性有关, B 的列向量组线性有关.(C)A 的行向量组线性有关, B 的行向量组线性有关.(D)A 的行向量组线性有关, B 的列向量组线性有关.【考点】向量组线性相 ( 无)关的鉴别 .解AB O Ax 0 有非零解,则 A 的列向量组线性有关;AB O B T A T O B T x 0 有非零解,则B T的列向量组(即B的行向量组线性有关).选(A).62.(2004—Ⅲ ,Ⅳ) 设n阶矩阵A与B等价 , 则必有 ( )(A)当A a(a 0) 时, B a .(B)当A a(a 0) 时, B a .(C)当A 0 时, B 0.(D)当A 0 时, B 0.【考点】矩阵等价的性质.解 A 与 B 等价,则R(A)R(B) .选(D).*63.(2004—Ⅲ ) 设n阶矩阵 A 的陪伴矩阵A O ,若1 , 2 , 3 , 4是非齐次线性方程组Ax b 的互不相等的解 , 则对应的齐次线性方程组Ax 0 的基础解系()(A) 不存在 .(B) 仅含一个非零解向量.(C)含有两个线性没关的解向量.(D) 含有三个线性没关的解向量.【考点】 A 的秩 A*的秩的关系,线性方程组解的理论.解A*O R( A* ) 1R( A) n 1 或 n .若 R( A) n ,则Ax b 有唯一解,因此R( A) n 1 .选(B).-39-21 / 21。
线性代数考试题及答案考研一、选择题1. 设矩阵A的秩为1,矩阵B与矩阵A相抵消,那么矩阵B的秩为:- A. 0- B. 1- C. 2- D. 不确定2. 若矩阵A可逆,且AB=0,则:- A. A可逆,B不可逆- B. B可逆,A不可逆- C. A和B都可逆- D. A和B都不可逆二、填空题1. 若向量组\[a_1, a_2, a_3\]线性相关,则至少存在不全为零的实数\[c_1, c_2, c_3\],使得\[c_1a_1 + c_2a_2 + c_3a_3 =\_\_\_\_\_\_。
2. 设矩阵\[A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\],矩阵\[A\]的特征值是\_\_\_\_\_\_。
三、解答题1. 已知矩阵\[B = \begin{bmatrix} 2 & 1 \\ 4 & 2\end{bmatrix}\],求矩阵\[B\]的逆矩阵。
2. 设\[x\]是\[3 \times 1\]的列向量,\[A\]是\[3 \times 3\]的矩阵,若\[Ax = 0\],证明\[x\]是矩阵\[A\]的零空间的基。
答案一、选择题1. 正确答案:A. 0解析:若矩阵B与矩阵A相抵消,则B的列向量是A的行向量的线性组合,因此B的秩小于等于A的秩。
由于A的秩为1,所以B的秩为0。
2. 正确答案:D. A和B都不可逆解析:若AB=0,则A和B至少有一个是不可逆的。
因为如果A可逆,则AB=I,这与AB=0矛盾。
同理,如果B可逆,则AB=I,也与AB=0矛盾。
二、填空题1. 正确答案:0解析:线性相关意味着存在不全为零的系数使得向量和为零向量。
2. 正确答案:2, -1解析:通过计算特征多项式\[|A - λI| = 0\],解得特征值为2和-1。
三、解答题1. 解:矩阵B的逆矩阵计算如下:\[B^{-1} = \frac{1}{\det(B)} \cdot \text{adj}(B)\]其中,\[\det(B) = 2 \cdot 2 - 1 \cdot 4 = 0\],因此矩阵B 不可逆,没有逆矩阵。
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数10323211112)(x x x xx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-0100002000010 n n .7.行列式=--001)1(2211)1(111 n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211 ,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001031002112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a d b a dc ad c b dcbad c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 210001200000210001210001211.aa a aa a a a aD ---------=1101100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
考研数学一(线性代数)历年真题试卷汇编11(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A、B、A+B、A—1+B—1均为n阶可逆方阵,则(A—1+B—1)—1= A.A—1+B—1B.A+BC.A(A+B)—1BD.(A+B)—1正确答案:C解析:由(A—1+B—1)[A(A+B)—1B]=(E+B—1A)(A+B)—1B—B—1(B+A)(A+B)—1B=B—1B=E,或A(A+B)—1B=[B—1(A+B)A—1]—1=(B—1AA —1+B—1BA—1)—1=(B—1+A—1)—1=(A—1+B—1)—1即知只有(C)正确.知识模块:矩阵2.设n维行向量α=(),矩阵A=I—αTα,B=I+2αTα,其中I为n阶单位矩阵,则ABA.O.B.一I.C.I.D.I+αTα.正确答案:C解析:AB=(I一αTα)(I+2αTα)=I+2αTα—αTα一2αTααTα=I+αT α一2αT(ααT)α.而ααT+.故得AB=I.知识模块:矩阵3.设三阶矩阵A=,若A的伴随矩阵的秩等于1,则必有A.a=b或a+2b=0.B.a=b或a+2b≠0。
C.a≠b且a+2b=0.D.a≠b且a+2b≠0.正确答案:C解析:由r(A*)=1,知A*至少有一个元素Aij=(一1)i+1Mij≠0.其中Mij为A的(i,j)元素的余子式即A的一个2阶子式,故r(A)≥2,又由0=|A*|=|A2|.知|A|=0,故得,r(A)=2.由0=|A|=(a+2b)(a一b)2,得a=b或a+2b=0,若a=b.则显然有r(A)≤1,与r(A)=2矛盾,故a≠b且a+2b=0.知识模块:矩阵4.设矩阵B=,已知矩阵A相似于B,则秩(A一2E)与秩(A—E)之和等于A.2.B.3.C.4.D.5.正确答案:C解析:由条件知存在可逆矩阵P.使P—1AP=B.故有P—1(A一2E)P=P—1AP—2E=B一2E=,P—1(A—E)P=B—E=,利用相似矩阵有相同的秩.得r(A一2E)+r(A—E)==3+1=4.知识模块:矩阵5.设其中A可逆,则B—1等于A.A—1P1P2B.P1A—1P2C.P1P2A—1D.P2A—1P1正确答案:C解析:利用初等变换与初等矩阵的关系.可得B=AP2P1.故B—1=P—1P —1A—1=P1P2A—1.知识模块:矩阵6.设矩阵A=(aij)3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A 的转置矩阵.若a1,a2,a3为三个相等的正数,则a11为A.B.C.D.正确答案:A解析:由比较A*=AT对应元素知a=A,(i,j=1,2,3),其中A,为|Aij|中aij的代数余子式,利用行列式按行展开法则得|A|=a1j2=3a112>0.又由A*=AT两端取行列式得|A|2=|A|,→|A|=1,故得3a112=1,a11=.知识模块:矩阵填空题7.设则秩(AB)=_________.正确答案:2解析:秩(AB)=秩(A)=2.知识模块:矩阵8.设B≠O满足BA=O,则t=_________.正确答案:t=一3.解析:BA=O且B≠O时,必有|A|=0.知识模块:矩阵9.设矩阵B满足A2一AB=2B+4E,则B=_________.正确答案:解析:B=(A+2E)—1(A2一4E)=(A+2E)—1(A+2E)(A一2E)=A一2E= 知识模块:矩阵10.设n(n≥3)阶方阵的秩为n一1,则a=_________.正确答案:解析:r(A)=n一1→|A|=[1+(n—1)a](1一a)n—1≠0→a=或a=1而当a=1时,有r(A)=1;而当a=时,有r(A)=n一1.知识模块:矩阵11.设的伴随矩阵为A*,且A*BA=2BA一8E.则矩阵B=_________.正确答案:解析:B=8(2E—A*)—1A—1=8[A(2E—A*)—1=8(2A—AA*)—1=8(2A—|A|E)—1=8(2A+2E)=4(A+E)—1=.知识模块:矩阵12.设n≥2为正整数,则An一2An—1=_________.正确答案:O解析:因A2=2A,故当n=2时,An一2An+1=A2一2A=O;当n>2时,An一2An+1=An—2(A2一2A)=An—2O=O,故恒有An一2An—1=O(n≥2).知识模块:矩阵13.设A、B分别为m阶和n阶方阵,且|A|=a,|B|=b,则行列式=_________.正确答案:(一1)mn|A||B|解析:(一1)mnab.可用行列式的拉普拉斯展开法则.或经mn次相邻两列的互换,得=(一1)mn|A||B|.知识模块:矩阵14.设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_________.正确答案:O解析:0.当r(A4×4)=2时,A中3阶子式全为零=>A*=O.知识模块:矩阵15.设A、B均是n阶矩阵,且|A|—2,|B|=一3,A*为A的伴随矩阵,则行列式|2A*B—1|=_________.正确答案:解析:|2A*B—1|=2n|A*||B—1|=2n|A|n—1|B|—1=一.知识模块:矩阵16.设B=(E+A)—1(E—A),则(E+B)—1=_________.正确答案:解析:E+B=E+(E+A)—1(E—A),两端左乘E+A,得(E+A)(E+B)=E+A+E—A=2E→[(E+A)](E+B)=E→(E+B)—1=.知识模块:矩阵17.设α为3维列向量,αT是α的转量.若ααT=,则αTα=_________.正确答案:3.解析:设α=,则ααT=故αTα=a12+a22+a32=1+1+1=3.知识模块:矩阵18.设三阶方阵A、B满足A2B—A—B=E,其中E为三阶单位矩阵,若A=,则行列式|B|=_________.正确答案:解析:由题设方程解得(A—E)B=E,两端取行列式,得2|B=1,故|B|=.知识模块:矩阵19.设n维向量α=(a,0,…,0,a)T,a<0;E为n阶单位矩阵,矩阵A=E一ααT,B=E+ααT,其中A的逆矩阵为B,则a=_________.正确答案:一1.解析:由αTα=2a2,及E=AB=E+ααT一ααT一α(αTα)αT=E+(一1—2a)ααT,得一1—2a=0,→a=一1.知识模块:矩阵20.设A、B均为三阶矩阵,E是三阶单位矩阵.已知AB=2A+B,B=,则(A—E)—1=_________.正确答案:解析:由题设方程得(A—E)B一2A=O,→(A—E)B一2(A—E)=2E,→(A —E)(B一2E)=2E,→(A—E)—1=.知识模块:矩阵21.设A=,B=P—1AP,其中P为3阶可逆矩阵,则B2004—2A2=_________.正确答案:解析:由于A2=,A4=(A2)2=E,A2004=(A4)501=E501=E.故B2004一2A2=P —1A2004P一2A2=E一2A2=.知识模块:矩阵22.设A=(aij)3×3是实正交矩阵,且a11=1,b=(1,0,0)T,则线性方程组Ax=b的解是_________.正确答案:解析:由于正交矩阵的行(列)向量组均为正交单位向量组,故A=,又A—1=AT,故方程组Ax=b的解为x=A—1b=ATb=.知识模块:矩阵23.已知α1,α2均为2维向量,矩阵A=[2α1+α2,α1—α2],β=[α1,α2],若行列式|A|=6,则|B|=_________。
线性代数历年考研题库
线性代数历年考研题库
线性代数是数学中的一门重要学科,它研究向量空间、线性映射和线性方程组等内容。
在考研数学中,线性代数是一个重要的考点,因此熟悉历年考研题库是非常必要的。
本文将介绍一些线性代数历年考研题库中的经典题目,帮助考生更好地备考。
一、向量空间
1. 设V是数域F上的线性空间,U是V的非空子集,证明U是V的子空间的充要条件是:对于V中任意两个向量α和β,如果α和β都属于U,则α+β也属于U,且对于任意标量k,有kα属于U。
2. 设V是数域F上的线性空间,U是V的非空子空间,证明V/U也是一个线性空间。
二、线性映射
1. 设V和W是数域F上的线性空间,T:V→W是一个线性映射。
证明:如果T 是单射,则T的核空间只包含零向量。
2. 设V和W是数域F上的线性空间,T:V→W是一个线性映射。
证明:如果T 是满射,则T的像空间等于W。
三、线性方程组
1. 设A是一个m×n的矩阵,b是一个m维向量。
证明:如果线性方程组Ax=b 有解,则对于任意标量k,线性方程组A(kx)=kb也有解。
2. 设A是一个n×n的矩阵,如果存在非零向量x使得Ax=0,证明A不是满秩矩阵。
四、特征值与特征向量
1. 设A是一个n×n的矩阵,λ是A的一个特征值,x是对应于λ的特征向量。
证明:对于任意标量k,kλ也是A的特征值,kx是对应于kλ的特征向量。
2. 设A是一个n×n的矩阵,λ是A的一个特征值,x是对应于λ的特征向量。
证明:如果A是可逆矩阵,则1/λ是A的逆矩阵的特征值,x是对应于1/λ的特征向量。
五、内积空间
1. 设V是一个实内积空间,证明:对于任意向量x和y,有||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)。
2. 设V是一个实内积空间,证明:对于任意向量x和y,有||x+y||^2 ≤ ||x||^2 + 2||x||·||y|| + ||y||^2。
以上只是线性代数历年考研题库中的一部分题目,通过解答这些题目,可以加深对线性代数的理解和掌握。
在备考过程中,考生还可以积极参加线性代数的习题课、模拟考试等,提高解题能力和应试水平。
祝愿所有考生在考试中取得好成绩!。