遥感影像纹理分析方法研究
- 格式:pdf
- 大小:743.11 KB
- 文档页数:6
遥感影像纹理分析方法综述与展望遥感影像纹理分析是指利用遥感影像数据进行纹理特征提取和分析的方法,通过对影像中的纹理特征进行提取和分析,可以揭示地物的空间信息和场景的地貌特征,对土地利用分类、地质勘察、环境监测等领域具有重要的应用价值。
本文将对遥感影像纹理分析的方法进行综述和展望。
一、遥感影像纹理特征的提取方法1.统计纹理分析法:通过对影像中像元灰度值的一维或二维统计分布进行分析,提取纹理特征。
常用的统计纹理分析方法有灰度共生矩阵(GLCM)、灰度平均值方差、灰度直方图等。
这些方法简单易行,适用于各种遥感影像类型。
2.频域纹理分析法:将影像从空域转换到频域,通过分析频谱分布来提取纹理特征。
常用的频域纹理分析方法有傅里叶变换、小波变换等。
这些方法能够较好地反映纹理的频域特征,适用于特定类型的遥感影像。
3.结构纹理分析法:通过分析影像中物体的结构特征,提取纹理信息。
常用的结构纹理分析方法有形态学运算、区域分割、纹理滤波等。
这些方法能够较好地捕捉影像中物体的结构信息,适用于土地利用分类等方面。
二、遥感影像纹理分析的应用1.土地利用分类:通过分析不同土地利用类型的纹理特征,可以对土地利用进行自动分类。
纹理特征可以提供关于土地利用类型、空间分布和结构特征等信息,对土地资源管理和规划具有重要的意义。
2.地质勘察:通过分析地质图像中的纹理特征,可以获取地质结构和地质演化信息。
纹理特征的提取可以帮助地质学家进行地质构造分析、岩石分类和矿产勘查等工作。
3.环境监测:通过分析遥感影像中的纹理特征,可以对环境质量进行评估和监测。
例如,通过分析水域表面的纹理特征,可以判断水质的清澈程度和水藻的分布情况。
三、遥感影像纹理分析的展望随着遥感技术的不断发展和遥感影像数据的不断增多,遥感影像纹理分析面临着以下几个方面的挑战和发展方向:1.大数据处理:随着遥感影像数据量的不断增加,如何高效地处理大规模遥感影像数据,提取出有效的纹理特征,并进行分析和应用,是一个亟待解决的问题。
遥感影像的变化检测与分析方法在当今科技飞速发展的时代,遥感技术凭借其能够获取大范围、多光谱、多时相的地表信息的强大能力,成为了众多领域中不可或缺的工具。
而遥感影像的变化检测与分析方法,更是在资源监测、环境评估、城市规划等方面发挥着关键作用。
遥感影像变化检测,简单来说,就是通过对比不同时期的遥感影像,找出其中发生变化的区域和特征。
这一过程就像是在玩“找不同”的游戏,但要复杂和精确得多。
为了实现准确的变化检测,首先得有高质量的遥感影像数据。
这些影像通常来自卫星、飞机等平台,包含了丰富的地物信息。
然而,在获取影像的过程中,可能会受到天气、传感器精度等因素的影响,导致影像存在噪声、几何变形等问题。
所以,在进行变化检测之前,需要对影像进行预处理,包括辐射校正、几何校正等操作,以提高影像的质量和一致性。
常用的变化检测方法可以大致分为基于像元的方法和基于对象的方法。
基于像元的方法直接对影像中的每个像素进行分析和比较。
其中,差值法是一种常见的思路,就是将两个时期的影像对应像素的灰度值相减,得到差值影像。
如果差值超过了一定的阈值,就认为该像素发生了变化。
这种方法简单直观,但容易受到噪声的干扰,而且对于光谱相似但实际发生变化的区域可能检测不出来。
相比之下,基于对象的方法则先将影像分割成不同的对象,然后再对这些对象进行变化检测。
这种方法考虑了地物的空间特征和上下文信息,能够更好地处理复杂的场景。
例如,面向对象的分类后比较法,先对不同时期的影像分别进行分类,然后比较分类结果,从而确定变化的区域。
除了上述方法,还有一些基于特征的变化检测技术。
这些特征可以是地物的形状、纹理、光谱特征等。
通过提取和比较这些特征,来判断是否发生了变化。
在进行变化检测之后,接下来就是对检测结果的分析。
这包括对变化区域的类型识别、面积计算、变化趋势预测等。
例如,在城市发展研究中,通过分析变化区域,可以了解城市扩张的方向和速度,为城市规划提供依据。
遥感影像处理中的纹理分析方法探讨遥感影像处理是一项重要的技术,可以提供大量的地理信息,用于环境监测、资源管理和城市规划等领域。
在遥感影像处理中,纹理分析方法是一种常用的技术,可以提取图像中的纹理信息,帮助我们理解和描述地物的特征。
本文将探讨一些常见的纹理分析方法,并介绍它们在遥感影像处理中的应用。
首先,我们来介绍一种常见的纹理分析方法——灰度共生矩阵(Gray LevelCo-occurrence Matrix,GLCM)。
灰度共生矩阵可以用来描述图像中不同像素对之间的灰度变化关系,从而提取纹理信息。
它基于一个假设,即相同纹理的像素对在图像中的分布应具有一定的统计规律。
通过计算灰度共生矩阵中的各种统计特征,如对比度、相关度、能量和熵等,可以得到图像的纹理特征。
灰度共生矩阵在遥感影像处理中有广泛的应用。
例如,在土地利用分类中,可以利用灰度共生矩阵提取不同土地类型的纹理特征,从而进行分类分析。
此外,灰度共生矩阵还可以用来检测图像中的纹理边界,帮助我们识别建筑物、道路等地物。
另一种常见的纹理分析方法是小波变换。
小波变换是一种时频分析方法,可以将图像分解为不同频率的子带图像,从而提取图像的纹理信息。
小波变换的特点是可以捕捉到图像的局部特征,对于纹理边界和纹理的细节描述具有较好的效果。
小波变换在遥感影像处理中也有广泛的应用。
例如,在地表覆盖变化检测中,可以利用小波变换提取图像的纹理特征,从而识别出不同时间段的遥感影像中地物的变化情况。
此外,小波变换还可以用于地物提取、遥感图像的增强等方面。
除了上述方法外,还有一些其他的纹理分析方法也值得关注。
例如,局部二值模式(Local Binary Pattern,LBP)是一种基于像素之间灰度差异的纹理分析方法。
LBP可以用来描述图像中不同像素点的灰度分布模式,从而提取纹理特征。
在遥感影像处理中,LBP可以应用于图像分类、目标检测等方面。
总结起来,纹理分析方法在遥感影像处理中起着重要的作用。
遥感图像纹理特征提取与分类分析研究遥感技术的应用日益广泛,其成像质量比传统的图像获取方式更高,并且可以获取超大范围的地表图像。
遥感图像的纹理特征可以帮助我们更好地理解地表特征,因此提取和分类遥感图像的纹理特征变得越来越重要。
纹理特征是指图像中局部区域的像素分布情况,通过计算这些分布的统计特征,如平均灰度、标准差、方差、对比度、能量等,可以描述该局部区域的纹理特征。
提取出一幅遥感图像中的纹理特征信息,可以帮助我们分析该图像中各个区域的地物类型和地貌特征。
在遥感图像处理中,纹理特征提取方法主要包括局部二值模式(LBP)、灰度共生矩阵(GLCM)、边缘方向直方图(EOH)等方法。
这些方法都是通过将图像划分为小的局部区域,然后计算每个区域的纹理特征,来描述整幅图像的纹理特征。
其中,局部二值模式是比较常用的方法,它可以通过将每个像素与其周围的像素比较,判断像素之间的灰度差异性来计算纹理特征。
而灰度共生矩阵则是通过计算不同灰度级别之间的出现次数来计算纹理特征,例如灰度共生矩阵可以被用来描述图像边缘的粗糙度和方向等信息。
纹理特征的分类分析通常利用机器学习方法。
机器学习是一个基于大量数据,自动分析和提取出数据特征、模式、规律的过程,其中深度学习是机器学习的一种方法,其特点是利用多层神经网络来建模并学习数据的复杂特征。
在遥感图像处理中,通常使用监督学习和无监督学习两种机器学习方法来进行遥感图像的分类分析。
在监督学习中,我们首先需要为每个像素标注其所属类别,这可以由人工标注或其他分类方法得到。
然后使用这些已知类别的像素和对应的纹理特征训练一个分类器,例如支持向量机(SVM)、决策树、随机森林等。
分类器可以根据训练数据学习到各个类别的纹理特征,然后利用这些特征对未知区域进行分类。
无监督学习则不需要对每个像素进行标注,而是采用聚类分析的方法,将具有相似纹理特征的像素划分为同一类别,例如k-means聚类算法。
在遥感图像处理中,通常将多个纹理特征用于分类分析。
遥感影像的图像处理与分析技术在当今科技飞速发展的时代,遥感技术已成为获取地球表面信息的重要手段之一。
遥感影像作为遥感技术的主要产物,包含着丰富的地理、生态、环境等方面的信息。
而如何对这些海量的遥感影像进行有效的图像处理和分析,以提取有价值的信息,成为了众多领域关注的焦点。
遥感影像的获取通常通过卫星、飞机等平台搭载的传感器完成。
这些传感器接收到的原始影像数据可能存在多种问题,如噪声干扰、几何畸变、辐射误差等。
因此,在进行后续的分析之前,必须对这些影像进行预处理,以提高数据的质量和可用性。
图像增强是遥感影像预处理中的一项重要技术。
它的目的是通过调整影像的对比度、亮度等参数,突出影像中的有用信息,增强图像的视觉效果,便于后续的分析和判读。
常见的图像增强方法包括直方图均衡化、线性拉伸、非线性拉伸等。
例如,直方图均衡化可以使影像的灰度分布更加均匀,从而增强图像的整体对比度;线性拉伸则可以根据用户设定的灰度范围,对影像进行有针对性的增强。
几何校正也是不可或缺的一步。
由于传感器的姿态、地球的曲率等因素,获取的遥感影像可能会存在几何变形。
通过选取地面控制点,建立影像与实际地理坐标之间的数学关系,可以对影像进行几何校正,使其能够准确地与地理信息系统中的其他数据进行匹配和叠加。
在完成预处理后,接下来就是对遥感影像进行分类。
分类的目的是将影像中的像元按照其特征划分为不同的类别,例如土地利用类型(如耕地、林地、建设用地等)、植被类型(如森林、草原、荒漠等)等。
传统的分类方法有基于像元的分类和基于对象的分类。
基于像元的分类方法,如最大似然分类法,是根据像元的光谱特征,计算其属于各个类别的概率,然后将像元划分到概率最大的类别中。
然而,这种方法往往忽略了像元之间的空间关系,在处理复杂的地物类型时可能会出现误分。
基于对象的分类方法则是先对影像进行分割,将具有相似特征的像元组合成一个对象,然后再对这些对象进行分类。
这种方法充分考虑了地物的空间特征和纹理信息,能够提高分类的准确性。
遥感影像分类的算法与精度评价方法探究随着遥感技术的发展和应用广泛,遥感影像的分类成为了研究的热点之一。
遥感影像分类是将遥感影像中的像素按照其地物类别进行识别和分类的过程。
在遥感影像分类中,算法的选择和精度评价方法的确定至关重要。
本文将探究遥感影像分类的算法和精度评价方法,并分析它们在实际应用中的优缺点。
一、遥感影像分类算法1. 基于像素的分类算法基于像素的分类算法是遥感影像分类中最常用的一种方法。
它将每个像素点作为独立的单元进行分类,通常使用的算法包括最大似然法、支持向量机和决策树等。
最大似然法是一种概率统计的算法,可以通过计算每个像素点的概率来确定其所属类别。
支持向量机利用样本点在特征空间中的位置来构建分类器,对于非线性可分的遥感影像分类效果较好。
决策树将遥感影像的特征按照一定的规则组织成树状结构,通过判断路径上的条件来确定像素的分类。
2. 基于对象的分类算法基于对象的分类算法是近年来兴起的一种分类方法。
它将相邻的像素点合并成对象,然后对这些对象进行分类。
与基于像素的分类算法相比,基于对象的分类算法考虑了空间上的相邻关系,可以更好地处理遥感影像中的纹理和边界信息。
基于对象的分类算法常用的有分水岭算法、区域生长算法和基于图的分割算法等。
二、遥感影像分类精度评价方法遥感影像分类精度评价是判断分类结果好坏的重要标准。
常用的精度评价方法包括混淆矩阵、准确度评价和Kappa系数等。
1. 混淆矩阵混淆矩阵是一种将分类结果与实际情况进行对比的方法。
它将分类结果按照实际类别进行统计,得到一个矩阵,其中每个元素表示分类结果中被正确分类到某一类的像素个数。
通过分析混淆矩阵可以得到不同类别的分类精度和错误分类情况。
2. 准确度评价准确度评价是计算分类结果准确率的一种方法。
准确率是指分类结果中被正确分类的像素数占总像素数的比例。
准确度评价方法可以根据分类结果中每个类别的像素数和正确分类的像素数来计算准确率。
3. Kappa系数Kappa系数是一种用来评价分类结果与实际情况一致性的方法。
遥感影像解译中的纹理特征提取方法与实践指南引言:纹理特征是遥感影像解译中的重要信息之一,可以提供有关地物和地表类型的详细信息。
纹理特征提取是利用图像处理和分析技术来定量描述和分析纹理特征的过程。
本文将介绍一些常用的纹理特征提取方法,并提供一些实践指南,以帮助研究人员和从业人员在遥感影像解译中更好地运用纹理特征。
一、纹理特征提取的方法1.统计特征提取法:统计特征提取法是最常用的纹理特征提取方法之一、它基于对图像区域的像素值统计进行分析,包括均值、标准差、方差、最值等统计量。
这些统计特征可以用来描述纹理的均匀性、粗糙度和细节等信息。
2.结构特征提取法:结构特征提取法是基于图像的空间结构进行分析的方法。
其中,灰度共生矩阵(GLCM)和灰度差异共生矩阵(GLDM)是常用的结构特征提取方法。
GLCM通过计算灰度级之间的相对位置关系,描述纹理的对比度、方向、平滑度等特性;GLDM则描述不同灰度级之间的寻找熵、对比度等特性。
3.频域特征提取法:频域特征提取法是将图像转换到频域进行分析的方法。
其中最常用的方法是对图像进行傅里叶变换,并计算其频谱特征。
频域特征能够提供关于纹理重复性和变化的信息。
4.模型特征提取法:模型特征提取法是利用数学模型对纹理进行建模,并从模型中提取特征。
其中,小波变换是常用的模型特征提取方法之一、小波变换能够捕捉到图像中的局部特征,提供更详细的纹理信息。
二、纹理特征提取的实践指南1.数据选择:选择与研究目标相关的高质量遥感影像数据进行分析。
确保数据清晰、分辨率适中,以获取更准确的纹理特征。
2.区域选择:选取具有代表性的区域进行分析。
遥感影像往往包含大量的信息,为了减少冗余和噪声,可以选择感兴趣的区域进行特征提取。
3.特征选择:根据研究目标选择适当的纹理特征。
不同的纹理特征可以提供不同的信息,因此需要根据需求进行选择。
4.参数设置:为提取特定纹理特征,需要根据实际情况设置合适的参数。
这些参数包括窗口大小、灰度级数量、邻域距离等。
高分辨率遥感影像处理方法及技巧研究遥感影像是通过从远距离采集地球表面特定区域的光谱或辐射能信息而获取的图像。
高分辨率遥感影像具有更细致的空间分辨率,能够提供更多的细节,因此在许多领域具有广泛的应用。
然而,高分辨率遥感影像的处理是一个复杂的过程,需要使用各种方法和技巧来提取有用的信息。
本文将探讨一些常用的高分辨率遥感影像处理方法及技巧。
首先,高分辨率遥感影像的预处理是非常重要的。
预处理包括图像去噪、辐射定标、几何校正等步骤。
图像去噪是为了去除影像中的噪声,以提高影像的质量。
常用的去噪方法有中值滤波、均值滤波和小波去噪等。
辐射定标是将原始高分辨率遥感影像转换为反射率或辐射亮度,以便进行后续的分析和处理。
几何校正是为了消除图像中的几何变形,使得图像在地理坐标和投影坐标之间具有一致的映射关系。
其次,高分辨率遥感影像的特征提取是应用中的关键步骤。
特征提取可以帮助我们理解影像中的信息,并提取出我们感兴趣的目标。
常用的特征提取方法有基于像素的方法和基于对象的方法。
基于像素的方法是从单个像素出发,通过计算像素的光谱、纹理和形状等特征来表征目标。
基于对象的方法则是将像素组织成不同的对象,并提取对象级别的特征。
常见的特征提取方法包括主成分分析、支持向量机和深度学习等。
另外,高分辨率遥感影像还可以通过分类方法进行分析和处理。
分类是将遥感影像中的像素或对象分配给不同的类别。
常用的分类方法包括监督分类和无监督分类。
监督分类是利用已知类别的样本对影像进行训练,并使用分类器来确定未知样本所属的类别。
无监督分类则是根据像素的统计特征将影像分成不同的集群。
常见的监督分类算法包括最大似然分类、支持向量机和随机森林等。
此外,高分辨率遥感影像处理还需要考虑空间信息的分析。
空间信息分析是通过考虑邻域像素之间的关系来提取更多的有用信息。
常见的空间信息分析方法包括纹理分析、形态学处理和分割等。
纹理分析是通过计算像素的纹理统计特征来表征目标的纹理特性。
遥感影像数据在测绘中的处理与分析方法引言在当今信息化时代,遥感技术的快速发展为测绘工作带来了前所未有的机遇和挑战。
遥感影像数据是一种重要的测绘数据源,能够提供大范围、高分辨率的地表信息。
本文将介绍遥感影像数据在测绘中的处理与分析方法。
一、影像预处理影像预处理是遥感影像数据处理的第一步,其目的是排除无用信息,提取有用信息。
常见的预处理方法包括辐射校正、大气校正、几何校正等。
1. 辐射校正辐射校正是将原始遥感影像数据转换为标准辐射度的过程。
该过程包括辐射矫正和亮度均衡化两个步骤。
辐射矫正通过校正反射率、发射率等参数,将原始数据转换为地物的辐射度。
亮度均衡化用于增强影像的对比度,使得地物边界更加清晰。
2. 大气校正遥感影像在传输过程中受大气影响,导致图像亮度和颜色的变化。
大气校正的目标是恢复图像中地物表面的真实反射率。
常用的大气校正方法有大气逐点校正法、模型法和图像增强法等。
3. 几何校正几何校正是将遥感影像数据的像素坐标转换为地理坐标,使得影像与地球表面几何关系一致。
几何校正包括地面控制点标定、几何变换等操作。
二、影像分类与解译影像分类与解译是遥感影像数据处理的关键步骤,其目的是将影像中的像元分为不同的类别,并解释其含义。
常用的影像分类与解译方法包括有监督分类、无监督分类、目标检测、变化检测等。
1. 有监督分类有监督分类是一种基于训练样本的分类方法。
它通过事先提供一些已知类别的样本,并根据这些样本进行分类判别。
常见的有监督分类方法有最大似然法、支持向量机、人工神经网络等。
2. 无监督分类无监督分类是一种不需要提供样本的分类方法。
它通过对影像像素进行聚类分析,将相似像素聚为一类。
常见的无监督分类方法有聚类分析、K-means算法等。
3. 目标检测目标检测是通过分析遥感影像数据中的某些特征,识别出目标物体的位置和属性。
常用的目标检测方法有边缘检测、纹理分析、形状分析等。
4. 变化检测变化检测是通过比较不同时刻的遥感影像数据,检测出地表发生的变化。
遥感影像的解译与分类方法和技巧遥感技术是通过获取地球表面的电磁辐射信息来获取地表信息的一种重要技术手段。
随着遥感技术的发展和应用范围的不断扩大,遥感影像的解译与分类方法和技巧也愈发成为研究的热点。
本文将探讨遥感影像解译与分类的方法和技巧。
一、遥感影像解译方法1. 目视解译法目视解译法是通过人工直接观察遥感影像的色彩、纹理、形状及其在空间分布上的特征,判断地物类型的一种解译方法。
它主要适用于图像上地物边缘清晰、大尺度地物的解译,如城市、河流等。
这种方法在短时间内可以获取较好的解译结果,但主观性较强,解译效率较低。
2. 图像数字化解译图像数字化解译是将遥感影像转化为数字图像,利用计算机和数字图像处理软件进行解译分析的方法。
数字化解译可以提高解译的客观性和准确性,可以利用像元的灰度、光谱特征等进行解译。
这种方法适用于在细节解译方面精确度要求较高的场景。
3. 分割解译分割解译是将遥感影像划分为若干个不同的区域或对象,并对这些区域或对象进行分类和解译。
这种方法可以充分利用图像中地物的空间信息,有利于对图像进行更细致的解译和分析。
分割解译在城市、森林等复杂地物类型的解译中具有一定的优势。
二、遥感影像分类技巧1. 特征提取特征提取是对遥感影像中各类地物的特征进行提取和分析的过程。
常见的地物特征包括光谱特征、纹理特征、形态特征等。
不同地物类别的特征往往具有较大的差异,因此提取和利用这些特征可以有效地区分不同的地物类别。
2. 分类算法分类算法是指将遥感影像根据像素的光谱、空间等特征进行自动分类的一种方法。
常见的分类算法包括最大似然分类、支持向量机分类、决策树分类等。
选择适合的分类算法对于提高分类准确性和效率非常重要,常需要根据具体问题的特点来选择合适的算法。
3. 数据融合数据融合是指将不同传感器或不同分辨率的遥感数据进行融合,提高遥感影像解译和分类的准确性和精度。
融合可以通过像元级、特征级和决策级等多种方式进行。
实验一利用灰度共生矩阵提取纹理信息一、实验要求1、编写灰度共生矩阵提取纹理信息的程序。
2、分别提取道路、河流、草地的纹理特征,比较它们的不同。
二、实验原理灰度共生矩阵通过对影像灰度级之间联合条件概率密度p (i ,j /d,θ)的计算表示纹理。
p (i ,j /d,θ)表示在给定空间距离d和方向θ时,灰度i为始点,出现灰度级为j的概率。
通过对图像上保持某种距离的两像素分别具有某灰度的状况进行统计而得到,描述了成堆像素的灰度组合分布,p (i ,j /d,θ)常用矩阵形式表示,称为灰度共生矩阵。
通常θ方向为:0,45,90,135,4个方向。
这样p (i ,j /d,θ)为一对称矩阵。
式中,i,j分别为两个像素的灰度;G为图像的灰度级数,d为两个像素间的位置关系,用d =(Δx ,Δy)表示,即为两个像素间在x和y方向上的距离分别为Δx,Δy不同的d决定了两像素间的距离和方向。
当两像素的位置关系选定后,可生成一定d下的灰度共生矩阵Pd为了能更直观地以共生矩阵描述纹理状况,从共生矩阵导出一些反映矩阵状况的参数,典型的有以下几种:(1)能量:是灰度共生矩阵元素值的平方和,所以也称能量,反映了图像灰度分布均匀程度和纹理粗细度。
如果共生矩阵的所有值均相等,则ASM值小;相反,如果其中一些值大而其它值小,则ASM值大。
当共生矩阵中元素集中分布时,此时ASM值大。
ASM值大表明一种较均一和规则变化的纹理模式。
(2)对比度:,其中。
反映了图像的清晰度和纹理沟纹深浅的程度。
纹理沟纹越深,其对比度越大,视觉效果越清晰;反之,对比度小,则沟纹浅,效果模糊。
灰度差即对比度大的象素对越多,这个值越大。
灰度公生矩阵中远离对角线的元素值越大,CON越大。
(3)相关:它度量空间灰度共生矩阵元素在行或列方向上的相似程度,因此,相关值大小反映了图像中局部灰度相关性。
当矩阵元素值均匀相等时,相关值就大;相反,如果矩阵像元值相差很大则相关值小。
测绘技术遥感影像解译方法遥感影像解译方法是测绘技术中非常重要的一环。
随着科技的发展和遥感技术的不断进步,遥感影像解译方法的应用越来越广泛,对于土地利用、资源调查、环境监测等领域起到了至关重要的作用。
本文将探讨几种常用的测绘技术遥感影像解译方法。
一、光谱特征解译法光谱特征解译法是基于不同地物在光谱上表现出不同的特征,通过分析遥感影像上的光谱曲线来判断其代表的地物类型。
这种方法应用广泛,能够解译出较为精确的地物信息。
例如,通过研究特定植物的光谱曲线,可以判断该地区是否存在该植物,从而进行植被覆盖分析。
光谱特征解译法需要对不同地物的光谱特征进行充分了解,同时还需结合地物的形态、空间分布等因素进行综合分析。
二、纹理特征解译法纹理特征解译法是通过分析遥感影像上地物的纹理信息来进行解译。
不同地物的纹理特征有所不同,通过提取和分析纹理特征,可以判断遥感影像上的地物类型。
例如,建筑物、道路、水体等地物在遥感影像上的纹理特征差异较大,可以通过纹理特征解译法将其准确地识别出来。
纹理特征解译法在城市规划、交通规划等方面具有较高的应用价值。
三、形状特征解译法形状特征解译法是通过分析遥感影像上地物的形状信息,来进行解译。
地物的形状特征对于不同地物类型来说是独特的,通过提取和分析形状特征,可以准确地判断地物类型。
例如,山体、湖泊、建筑物等地物在遥感影像上的形状特征各不相同,可以通过形状特征解译法将其区分开来。
形状特征解译法在城市规划、自然资源调查等方面具有广泛的应用。
四、时序特征解译法时序特征解译法是通过分析遥感影像序列中地物的变化趋势来进行解译。
地物在不同时间段上的变化会受到不同因素的影响,通过对地物变化的观测和分析,可以准确地判断地物类型。
例如,湿地在不同季节上的变化趋势与其他地物有所区别,可以通过时序特征解译法将其识别出来。
时序特征解译法在农业监测、环境监测等领域具有重要的意义。
综上所述,测绘技术中的遥感影像解译方法有多种多样,每种方法都有其独特的优势和适用范围。
地理国情监测遥感影像解译方法对比与分析地理国情监测是指通过遥感影像解译,从空间上对国土资源的利用、生态环境的状况、经济社会发展等国情进行全面、系统的监测和评估。
地理国情监测的目的是为了更好地了解国土资源的现状和动态、合理利用资源、保护生态环境、推动可持续发展。
遥感影像解译方法是地理国情监测的关键技术之一,下面将对常用的遥感影像解译方法进行对比与分析。
1.目视解译法:目视解译法是一种直观的解译方法,通过人眼观察遥感影像,根据影像的颜色、纹理、形状等特征进行解译。
该方法适用于简单地物解译,如道路、建筑物等,解译速度快,但对于复杂的地物和混合像元的解译效果较差。
2.目标解译法:目标解译法是通过提前设定解译目标和规则,将遥感影像中的特定目标提取出来。
常用的目标解译方法有阈值法、模板匹配法等。
阈值法根据像素点的灰度值与预先设定的阈值进行对比,将目标和背景分离出来;模板匹配法则是通过建立目标模板,在遥感影像中寻找相似的目标。
目标解译法精度较高,但需要提前设置解译规则,对于没有明确目标的解译会遇到困难。
3.特征解译法:特征解译法是根据地物的特征进行解译。
常用的特征解译方法有纹理特征法、形状特征法等。
纹理特征法通过分析地物表面的纹理特征,如纹理方向、纹理密度等,将相似的地物纹理进行解译;形状特征法则是通过分析地物的形状特征,如长宽比、曲率等,在遥感影像中提取具有相似形状的地物。
特征解译法对复杂的地物有很好的解译效果,但需要事先确定地物的特征参数。
4.综合解译法:综合解译法是将以上不同的解译方法进行组合,通过多个方法的综合运用来提高解译的准确性和可靠性。
例如,可以先采用目视解译法快速提取出地物的大致范围,然后再采用目标解译法和特征解译法对细节进行进一步的解译。
综合解译法充分利用各种方法的优势,提高解译效果,但需要较多的解译经验。
总之,地理国情监测遥感影像解译方法各有优劣,不同的解译方法适用于不同的地理国情监测需求。
附件一:遥感影像云识别方法综述国内外对云的检测与分类研究较多,有较多的研究成果报道。
其方法大致可以分为两类,一类是基于光谱的方法,主要利用云在不同的光谱波段有不同反射特征,大部分以灰度阈值或灰度聚类的方法实现,主要用于多光谱影像,早期研究较多。
如用于A VHRR的ISCCR 法(ROSSOW,1989)、CLA VR法(STOWE,1991)和用于的C02法(WGLIE,1994),近期亦研究用于MODIS的一些云识别与分类的方法,主要为以前方法的改造。
另一类是基于纹理的方法主要应用云影像的灰度空间分布特征。
纹理特征常以统计模型法、结构法、场模型法或频域/空域联合分析法来度量。
其中尤以传统的统计模型研究较多,如灰度共生矩阵(GLCM)、灰度差分矩阵(GLDM)、灰度差分矢量(GLDV)、和差直方图(SADH)等,新近提出的一些方法如场模型法中的分形分维、马尔可夫随机场方法,频域/空域联合分析法中的Gabor变换、小波变换等,有不少的研究成果报道。
1. 基于光谱特征的方法:主要有ISCCP方法、APLOOL方法、CO薄片法、CLAVR方法等。
ISCCP方法主要由Rossow(1989)Seze和Rossow(1991a)及RossowG和arder(1993)和等开发研制,检测方法中公用到窄的可见光波段(0.6)和红外窗区波段的资料。
它假定观测辐射办一自晴空和云两种情况(这两种大气状况相联系的辐射值变化并不相互重叠),把每一个像元的观测辐射值与晴空辐射值比较,若两者的差大于晴空辐射值本身的变化时,定该像元点为云点。
因此算法依赖于阈值,阈值勤的大小就确定了晴空计值中不确定性的大小,当像元的车射值明显有别于晴空像元时,认为像元被云覆盖,但当像元部分被云覆盖时,会发生误判。
算法主要由有五部分组成:1 单一红外图像的空间对比试验。
2 三个连续红处图像的时间对比试验。
3可见光和红外图像的空间/时间的累计统计合成。
摘要随着遥感技术的快速发展,遥感图像已经广泛应用于工业、农业和军事等领域中。
其中,遥感图像分类是其重要组成部分。
遥感数据源的增多,人们对遥感数据处理分析方法和手段也在不断发展,新的分类特征及分类方法都在不断的涌现。
有效特征的提取及分类器的选取是决定分类效果的关键。
本文针对可见光遥感图像,采用纹理特征作为分类特征。
本文首先研究了传统的统计纹理特征如:共生矩阵纹理特征、灰度差分纹理特征、行程长度纹理特征、Tamura 纹理特征以及灰度信息特征的提取方法。
基于类内、类间方差标准,本文从所提取的统计纹理特征中选取出了具有较强分类能力的纹理特征作为有效分类特征。
接下来本文将与大多数哺乳动物的视觉表皮简单细胞的二维感受野模型具有相似的性质的Gabor滤波器引入到纹理特征的提取中。
本文详细介绍了Gabor滤波器的定义与构造方法,针对不同的遥感景物类别构造了对纹理有较强分类能力的Gabor滤波器。
对于Gabor滤波图像,本文以直方谱特征描述纹理,用于分类。
论文最后研究了最近邻分类器及神经网络分类器,并通过分类实验证实了Gabor滤波器结合直方谱特征的分类性能优于传统的统计纹理特征。
关键词:遥感图像分类纹理特征Gabor滤波器直方谱特征分类器AbstractWith the development of remote sensing technology, remote sensing images have been widely utilized in industry, agriculture and military affairs. Remote sensing classification is very important to all these applications. Now, many features and classifiers have been proposed. The extraction of efficient features and the selection of classifiers are pivotal for classification.This thesis employs texture features for remote sensing classification. The contents of this thesis could be summarized as follow. First, it introduces the definition of traditional statistical texture features such as: co-occurrence features, gray-level difference features, run-length features, Tamura features and gray-level information features. Based on the criterion of variances between & intra classes efficient features have been chosen among the extracted features. Secondly, The Gabor filter with the ability of simulating the biological vision has been used for texture features extraction. After the definition of Gabor filter and construction method, this thesis constructs series of Gabor filters with strong ability for classification. Spectrum histogram features has been applied to describe texture information of images processed by Gabor filters. Lastly, the thesis does some research on nearest neighbor classifiers and neural network classifiers and the experiment demonstrates that Gabor filter combined with spectrum histogram features yield higher accuracy than traditional statistical texture features.Key Words: Remote sensing classification Texture features Gabor filter Spectrum histogram features Classifiers目录摘要 (I)Abstract (III)1 绪论1.1 论文研究的背景和意义 (1)1.2 研究现状 (2)1.3 论文研究内容 (4)1.4 论文的结构安排 (4)2 纹理特征2.1 纹理的一些基本概念 (5)2.2 纹理分析方法 (14)2.3 特征归一化策略 (15)2.4 (实验结果 (18)2.5 本章小结 (19)3 Gabor滤波器3.1 Gabor滤波器的提出 (20)3.2 Gabor滤波器的构造 (21)3.3 本章小结 (28)4 Gabor直方谱纹理特征4.1 Gabor方向选择通道 (29)4.2 直方图特征的提取 (30)4.3 Gabor直方谱特征的提取 (32)4.4 Gabor滤波器通道选择 (33)4.5 特征提取结果 (35)4.6 本章小结 (38)5 分类器5.1 K-近邻分类算法 (39)5.2 神经网络分类器 (41)5.3 本章小结 (45)6 实验结果 (46)7 全文总结与展望7.1 论文的主要研究内容 (48)7.2 论文的特色 (48)7.3 需要进一步研究的工作 (48)致谢 (49)参考文献 (50)附录1 攻读硕士学位期间发表的论文目录 (54)1 绪论1.1 论文研究的背景和意义遥感作为采集地球数据及其变化信息的重要技术手段,在世界范围内的许多政府部门,科研单位和公司得到了广泛的应用。
遥感影像的变化检测方法研究在当今科技迅速发展的时代,遥感技术因其能够提供大范围、多时相、多光谱的地球表面信息而在众多领域发挥着重要作用。
其中,遥感影像的变化检测作为遥感技术的一个关键应用方向,旨在识别和分析不同时期遥感影像中地物的变化情况,为资源管理、环境监测、城市规划等领域提供有价值的决策支持。
遥感影像变化检测的基本概念并不复杂,但实现准确且可靠的变化检测却面临诸多挑战。
简单来说,就是对比不同时间获取的同一地区的遥感影像,找出其中地物发生变化的部分。
然而,实际操作中会受到多种因素的影响。
首先,遥感影像本身的质量和特性就是一个重要因素。
不同的传感器获取的影像在分辨率、光谱范围、辐射精度等方面可能存在差异。
比如,高分辨率影像能提供更详细的地物信息,但获取成本较高;而中低分辨率影像虽然细节不够丰富,但覆盖范围广。
其次,地物的复杂性和多样性也增加了变化检测的难度。
例如,城市地区的建筑物变化频繁,而自然环境中的植被生长和季节变化也会带来干扰。
再者,气候变化、大气条件等外部因素也会影响影像的质量和地物的表现。
针对这些挑战,研究人员提出了多种遥感影像变化检测方法。
基于像素的方法是较为常见的一类。
这种方法直接比较两个时期影像中对应像素的灰度值或光谱特征。
差值法就是其中的一种简单而直接的方式,通过计算两个时期影像像素值的差值来确定变化区域。
如果差值超过一定阈值,就认为该像素发生了变化。
这种方法计算简单,但容易受到噪声和辐射差异的影响,导致误检和漏检。
比值法通过计算两个时期影像像素值的比值来判断变化。
它在一定程度上能够减少辐射差异的影响,但对于变化程度较小的区域可能不够敏感。
基于分类的方法则是先对两个时期的影像分别进行分类,然后比较分类结果来确定变化区域。
这种方法考虑了地物的类别信息,相对基于像素的方法更具鲁棒性,但分类过程本身可能存在误差,而且计算量较大。
变化向量分析(CVA)是一种综合考虑多个波段光谱变化的方法。