遥感影像纹理分析方法综述与展望
- 格式:pdf
- 大小:444.48 KB
- 文档页数:7
遥感图像处理与分析算法综述随着遥感技术的发展,遥感图像处理与分析算法在各个领域中得到了广泛的应用。
遥感图像处理与分析算法是指通过对遥感图像进行数字处理和分析,来提取和解释图像中的信息。
本文将综述一些常见的遥感图像处理与分析算法,包括图像增强、分类与分割等。
一、图像增强图像增强是指通过一系列的操作,提高图像的质量和可视化效果。
常见的图像增强算法包括直方图均衡化、滤波和增强函数等。
直方图均衡化是一种常用的图像增强方法,它通过对图像的直方图进行变换,来增加图像的对比度。
该方法通过将图像的像素值映射到一个新的分布上,从而改变图像的亮度分布。
滤波是另一种常见的图像增强方法,通过在图像的空域或频域中对像素进行处理,来减少噪声和增强图像细节。
常见的滤波算法包括高通滤波和低通滤波等。
高通滤波可以增强图像的边缘和细节,而低通滤波则能够平滑图像并去除噪声。
增强函数是一种通过对图像的像素值进行非线性映射,来增强图像的方法。
常见的增强函数包括对数变换、幂次变换和伽马变换等。
对数变换可以扩展暗部像素的动态范围,而幂次变换则能够增强图像的对比度。
二、分类与分割分类与分割是遥感图像处理与分析的重要内容,它们能够将图像中的不同对象进行区分和提取。
常见的分类与分割算法包括聚类分析、最大似然分类和支持向量机等。
聚类分析是一种通过将像素划分到不同的类别中,来实现图像分类和分割的方法。
常见的聚类分析算法包括K均值聚类和自适应聚类等。
K均值聚类将图像像素划分为K个簇,每个簇代表一个类别,而自适应聚类则能够根据像素的分布进行不同权重的划分。
最大似然分类是一种基于概率统计的图像分类方法,它通过计算像素在每个类别中的概率,并选择概率最大的类别作为最终的分类结果。
最大似然分类算法能够准确地对图像中的不同对象进行分类,并且具有较强的鲁棒性。
支持向量机是一种通过构建一个最优决策边界,来实现图像分类和分割的方法。
支持向量机利用训练样本,通过最大化分类边界与样本之间的距离,来找到一个最优的分类超平面。
遥感影像纹理分析方法综述与展望遥感影像纹理分析是指利用遥感影像数据进行纹理特征提取和分析的方法,通过对影像中的纹理特征进行提取和分析,可以揭示地物的空间信息和场景的地貌特征,对土地利用分类、地质勘察、环境监测等领域具有重要的应用价值。
本文将对遥感影像纹理分析的方法进行综述和展望。
一、遥感影像纹理特征的提取方法1.统计纹理分析法:通过对影像中像元灰度值的一维或二维统计分布进行分析,提取纹理特征。
常用的统计纹理分析方法有灰度共生矩阵(GLCM)、灰度平均值方差、灰度直方图等。
这些方法简单易行,适用于各种遥感影像类型。
2.频域纹理分析法:将影像从空域转换到频域,通过分析频谱分布来提取纹理特征。
常用的频域纹理分析方法有傅里叶变换、小波变换等。
这些方法能够较好地反映纹理的频域特征,适用于特定类型的遥感影像。
3.结构纹理分析法:通过分析影像中物体的结构特征,提取纹理信息。
常用的结构纹理分析方法有形态学运算、区域分割、纹理滤波等。
这些方法能够较好地捕捉影像中物体的结构信息,适用于土地利用分类等方面。
二、遥感影像纹理分析的应用1.土地利用分类:通过分析不同土地利用类型的纹理特征,可以对土地利用进行自动分类。
纹理特征可以提供关于土地利用类型、空间分布和结构特征等信息,对土地资源管理和规划具有重要的意义。
2.地质勘察:通过分析地质图像中的纹理特征,可以获取地质结构和地质演化信息。
纹理特征的提取可以帮助地质学家进行地质构造分析、岩石分类和矿产勘查等工作。
3.环境监测:通过分析遥感影像中的纹理特征,可以对环境质量进行评估和监测。
例如,通过分析水域表面的纹理特征,可以判断水质的清澈程度和水藻的分布情况。
三、遥感影像纹理分析的展望随着遥感技术的不断发展和遥感影像数据的不断增多,遥感影像纹理分析面临着以下几个方面的挑战和发展方向:1.大数据处理:随着遥感影像数据量的不断增加,如何高效地处理大规模遥感影像数据,提取出有效的纹理特征,并进行分析和应用,是一个亟待解决的问题。
遥感影像解译中的纹理特征提取方法与实践指南遥感影像解译是一项重要的技术,在许多领域有着广泛的应用。
纹理特征提取是遥感影像解译中的一个关键步骤,它可以帮助我们从图像中获取有关地物表面纹理信息的重要指标。
本文将介绍纹理特征提取的一些常用方法,并给出一些实践指南。
一、纹理特征提取方法1. 统计方法统计方法是最常用的纹理特征提取方法之一。
它基于像素灰度值之间的统计特性,通过计算各种统计参数来描述图像的纹理特征。
常见的统计参数包括均值、方差、协方差、相关性等。
这些参数可以用来刻画图像的纹理粗糙程度、纹理方向等。
2. 傅立叶变换方法傅立叶变换方法利用频域分析的思想,将图像从空域转换到频域,通过分析频谱信息提取纹理特征。
常见的方法有二维离散傅立叶变换(DFT)、小波变换(WT)等。
这些方法可以捕捉到图像不同频率上的纹理细节信息,对于某些纹理样式的提取效果较好。
3. 统计模型方法统计模型方法基于图像纹理统计特性的假设,使用统计模型来描述图像的纹理结构。
常见的统计模型包括灰度共生矩阵(GLCM)、自回归模型(AR)等。
这些模型可以帮助我们从图像中提取出与纹理特征相关的统计参数,通过对比这些参数的差异来获取纹理信息。
二、纹理特征提取的实践指南1. 选择合适的特征提取方法在进行纹理特征提取时,需要根据具体的应用场景选择合适的方法。
对于需要捕捉细节纹理的场景,可以尝试傅立叶变换方法;对于需要考虑纹理方向的场景,可以使用统计方法;对于需要全局纹理信息的场景,可以使用统计模型方法。
2. 采用多尺度特征提取纹理特征的提取通常需要考虑不同尺度下的纹理变化。
因此,可以使用多尺度分析的方法,通过对图像进行多次滤波或变换,提取不同尺度下的纹理特征。
这样可以更好地捕捉到不同尺度下的纹理细节,提高纹理特征的区分能力。
3. 结合其他特征进行综合分析纹理特征是遥感影像解译的一个重要方面,但单独使用纹理特征可能无法完全描述地物的复杂特征。
因此,可以结合其他特征如颜色、形状等进行综合分析,提高解译结果的准确性。
遥感影像处理中的纹理分析方法探讨遥感影像处理是一项重要的技术,可以提供大量的地理信息,用于环境监测、资源管理和城市规划等领域。
在遥感影像处理中,纹理分析方法是一种常用的技术,可以提取图像中的纹理信息,帮助我们理解和描述地物的特征。
本文将探讨一些常见的纹理分析方法,并介绍它们在遥感影像处理中的应用。
首先,我们来介绍一种常见的纹理分析方法——灰度共生矩阵(Gray LevelCo-occurrence Matrix,GLCM)。
灰度共生矩阵可以用来描述图像中不同像素对之间的灰度变化关系,从而提取纹理信息。
它基于一个假设,即相同纹理的像素对在图像中的分布应具有一定的统计规律。
通过计算灰度共生矩阵中的各种统计特征,如对比度、相关度、能量和熵等,可以得到图像的纹理特征。
灰度共生矩阵在遥感影像处理中有广泛的应用。
例如,在土地利用分类中,可以利用灰度共生矩阵提取不同土地类型的纹理特征,从而进行分类分析。
此外,灰度共生矩阵还可以用来检测图像中的纹理边界,帮助我们识别建筑物、道路等地物。
另一种常见的纹理分析方法是小波变换。
小波变换是一种时频分析方法,可以将图像分解为不同频率的子带图像,从而提取图像的纹理信息。
小波变换的特点是可以捕捉到图像的局部特征,对于纹理边界和纹理的细节描述具有较好的效果。
小波变换在遥感影像处理中也有广泛的应用。
例如,在地表覆盖变化检测中,可以利用小波变换提取图像的纹理特征,从而识别出不同时间段的遥感影像中地物的变化情况。
此外,小波变换还可以用于地物提取、遥感图像的增强等方面。
除了上述方法外,还有一些其他的纹理分析方法也值得关注。
例如,局部二值模式(Local Binary Pattern,LBP)是一种基于像素之间灰度差异的纹理分析方法。
LBP可以用来描述图像中不同像素点的灰度分布模式,从而提取纹理特征。
在遥感影像处理中,LBP可以应用于图像分类、目标检测等方面。
总结起来,纹理分析方法在遥感影像处理中起着重要的作用。
遥感图像纹理特征提取与分类分析研究遥感技术的应用日益广泛,其成像质量比传统的图像获取方式更高,并且可以获取超大范围的地表图像。
遥感图像的纹理特征可以帮助我们更好地理解地表特征,因此提取和分类遥感图像的纹理特征变得越来越重要。
纹理特征是指图像中局部区域的像素分布情况,通过计算这些分布的统计特征,如平均灰度、标准差、方差、对比度、能量等,可以描述该局部区域的纹理特征。
提取出一幅遥感图像中的纹理特征信息,可以帮助我们分析该图像中各个区域的地物类型和地貌特征。
在遥感图像处理中,纹理特征提取方法主要包括局部二值模式(LBP)、灰度共生矩阵(GLCM)、边缘方向直方图(EOH)等方法。
这些方法都是通过将图像划分为小的局部区域,然后计算每个区域的纹理特征,来描述整幅图像的纹理特征。
其中,局部二值模式是比较常用的方法,它可以通过将每个像素与其周围的像素比较,判断像素之间的灰度差异性来计算纹理特征。
而灰度共生矩阵则是通过计算不同灰度级别之间的出现次数来计算纹理特征,例如灰度共生矩阵可以被用来描述图像边缘的粗糙度和方向等信息。
纹理特征的分类分析通常利用机器学习方法。
机器学习是一个基于大量数据,自动分析和提取出数据特征、模式、规律的过程,其中深度学习是机器学习的一种方法,其特点是利用多层神经网络来建模并学习数据的复杂特征。
在遥感图像处理中,通常使用监督学习和无监督学习两种机器学习方法来进行遥感图像的分类分析。
在监督学习中,我们首先需要为每个像素标注其所属类别,这可以由人工标注或其他分类方法得到。
然后使用这些已知类别的像素和对应的纹理特征训练一个分类器,例如支持向量机(SVM)、决策树、随机森林等。
分类器可以根据训练数据学习到各个类别的纹理特征,然后利用这些特征对未知区域进行分类。
无监督学习则不需要对每个像素进行标注,而是采用聚类分析的方法,将具有相似纹理特征的像素划分为同一类别,例如k-means聚类算法。
在遥感图像处理中,通常将多个纹理特征用于分类分析。
遥感影像解译中的纹理特征提取与分类算法研究遥感影像解译是利用遥感技术获取的影像数据来获取地表信息的过程。
其中,纹理特征提取与分类算法在遥感影像解译中起着重要的作用。
本文将探讨纹理特征提取与分类算法在遥感影像解译中的研究现状和应用。
一、纹理特征提取方法研究纹理特征是指图像上的局部空间灰度分布的某种统计规律,可以用于描述不同地物的纹理特性。
在遥感影像解译中,纹理特征有助于提取地物的空间结构信息,从而更准确地分类地物。
1.像素级纹理特征提取方法像素级的纹理特征提取方法主要采用统计学方法和频域方法。
统计学方法基于灰度共生矩阵(GLCM)和灰度差异矩阵(GDM)等,通过对图像像素间的灰度关系进行统计和计算,提取纹理特征。
频域方法主要利用傅里叶变换或小波变换将图像转换为频域表示,从中提取纹理特征。
2.基于区域的纹理特征提取方法基于区域的纹理特征提取方法考虑到了图像中的区域上下文信息,对于遥感影像解译中复杂的地物分类任务特别有效。
常见的方法包括灰度共生矩阵(GLCM)特征提取、灰度差异矩阵(GDM)特征提取、局部二值模式(LBP)特征提取等。
二、纹理特征分类算法研究纹理特征提取后,需要将其应用于地物分类。
目前,常见的纹理特征分类算法包括最大似然分类、支持向量机(SVM)、随机森林(RF)、卷积神经网络(CNN)等。
1.最大似然分类最大似然分类是常用的遥感影像分类方法之一,基于统计学原理,通过最大化后验概率来进行分类。
在纹理特征分类中,最大似然分类器可以与纹理特征结合,提高分类精度。
2.支持向量机(SVM)支持向量机是一种常用的机器学习算法,可用于分类和回归问题。
在纹理特征分类中,SVM可以通过构建支持向量机模型进行分类,根据纹理特征的统计规律将地物进行分类。
3.随机森林(RF)随机森林是一种集成学习算法,能够有效地减小过拟合问题。
在纹理特征分类中,随机森林可以将多个决策树进行组合,对纹理特征进行分类。
4.卷积神经网络(CNN)卷积神经网络是一种深度学习算法,在遥感影像解译中具有广泛的应用。
遥感影像变化检测方法综述及展望孙晓霞;张继贤;燕琴;高井祥【摘要】变化检测技术是遥感应用领域的一个重要研究方向.本文首先对常见的变化检测方法进行了概括性介绍与优缺点评述,并分析了当前变化检测方法中存在的普遍问题;并在此基础上,展望了一种基于影像分割的变化检测方法:在仅对其中一个时相影像进行分割的基础上,建立了两时相影像间的对应图斑单元与变化判别规则,实现图斑单元问的直接比较来提取变化信息.并分析了基于分割的变化检测方法与像素级变化检测方法相比具有的优势.%Change detection is one of the important topics in remote sensing application field. In this paper, the main methods applied in change detection were firstly introduced and evaluated. The problems existing in the currents techniques were analyzed,and then a novel image segmentation based change detection approach was proposed. In this method,one of the two images is firstly segmented into homogeneous regions,and then the second image is divided into regions using the same polygons generated in the first image. Finally, the two images are compared by region to region using the established detection rules. This method is expected to improve the accuracy and the speed of change detection to some extent. At last, the advantage of the image segmentation based change detection approach was presented by being compared with the pixel-based change detection method.【期刊名称】《遥感信息》【年(卷),期】2011(000)001【总页数】5页(P119-123)【关键词】遥感;变化检测;影像分割【作者】孙晓霞;张继贤;燕琴;高井祥【作者单位】中国矿业大学,徐州,221116;中国测绘科学研究院,北京,100830;中国测绘科学研究院,北京,100830;中国测绘科学研究院,北京,100830;中国矿业大学,徐州,221116【正文语种】中文【中图分类】TP791 引言随着社会与科技的发展,人类开发资源与改造自然的能力不断增强,自然界的变化和人类的各种活动每天都在改变着地表景观及其土地利用形式。
遥感影像解译中的纹理特征提取方法与实践指南引言:纹理特征是遥感影像解译中的重要信息之一,可以提供有关地物和地表类型的详细信息。
纹理特征提取是利用图像处理和分析技术来定量描述和分析纹理特征的过程。
本文将介绍一些常用的纹理特征提取方法,并提供一些实践指南,以帮助研究人员和从业人员在遥感影像解译中更好地运用纹理特征。
一、纹理特征提取的方法1.统计特征提取法:统计特征提取法是最常用的纹理特征提取方法之一、它基于对图像区域的像素值统计进行分析,包括均值、标准差、方差、最值等统计量。
这些统计特征可以用来描述纹理的均匀性、粗糙度和细节等信息。
2.结构特征提取法:结构特征提取法是基于图像的空间结构进行分析的方法。
其中,灰度共生矩阵(GLCM)和灰度差异共生矩阵(GLDM)是常用的结构特征提取方法。
GLCM通过计算灰度级之间的相对位置关系,描述纹理的对比度、方向、平滑度等特性;GLDM则描述不同灰度级之间的寻找熵、对比度等特性。
3.频域特征提取法:频域特征提取法是将图像转换到频域进行分析的方法。
其中最常用的方法是对图像进行傅里叶变换,并计算其频谱特征。
频域特征能够提供关于纹理重复性和变化的信息。
4.模型特征提取法:模型特征提取法是利用数学模型对纹理进行建模,并从模型中提取特征。
其中,小波变换是常用的模型特征提取方法之一、小波变换能够捕捉到图像中的局部特征,提供更详细的纹理信息。
二、纹理特征提取的实践指南1.数据选择:选择与研究目标相关的高质量遥感影像数据进行分析。
确保数据清晰、分辨率适中,以获取更准确的纹理特征。
2.区域选择:选取具有代表性的区域进行分析。
遥感影像往往包含大量的信息,为了减少冗余和噪声,可以选择感兴趣的区域进行特征提取。
3.特征选择:根据研究目标选择适当的纹理特征。
不同的纹理特征可以提供不同的信息,因此需要根据需求进行选择。
4.参数设置:为提取特定纹理特征,需要根据实际情况设置合适的参数。
这些参数包括窗口大小、灰度级数量、邻域距离等。
遥感影像中种植作物结构分类方法综述目录1.内容综述................................................2 1.1 研究背景与意义.........................................31.2 国内外研究现状与发展趋势...............................32.遥感影像技术基础........................................5 2.1 遥感技术概述...........................................6 2.2 遥感影像数据类型与特点.................................72.3 遥感影像处理流程.......................................83.种植作物结构特征分析....................................9 3.1 种植作物分类体系......................................10 3.2 种植作物生长过程与结构变化............................123.3 种植作物结构特征提取方法..............................134.遥感影像中种植作物结构分类方法.........................14 4.1 基于监督学习的分类方法................................15 4.1.1 支持向量机..........................................17 4.1.2 决策树与随机森林....................................18 4.1.3 梯度提升树..........................................19 4.2 基于无监督学习的分类方法..............................20 4.2.1 聚类算法............................................224.2.2 异常检测算法........................................244.3 基于深度学习的分类方法................................264.3.1 卷积神经网络........................................274.3.2 循环神经网络........................................294.3.3 生成对抗网络........................................305.案例分析与实验评估.....................................315.1 案例选择与数据来源....................................325.2 实验设计与参数设置....................................335.3 实验结果与对比分析....................................345.4 分析与讨论............................................346.结论与展望.............................................366.1 研究成果总结..........................................376.2 存在问题与挑战........................................376.3 未来研究方向与展望....................................391. 内容综述随着遥感技术的不断发展,遥感影像在农业领域的应用越来越广泛,尤其是在种植作物结构分类方面取得了显著的成果。
如何进行遥感图像的处理与分析遥感技术是指通过卫星、飞机等远程手段获取地球表面信息的一种技术,它具有广泛的应用领域,包括环境监测、农业、城市规划等。
遥感图像的处理和分析是遥感技术的重要组成部分,它能够帮助我们从海量的遥感数据中提取有效信息,为决策提供科学依据。
本文将介绍如何进行遥感图像的处理与分析。
一、遥感图像的预处理遥感图像的预处理是图像处理的第一步,它主要包括图像校正、辐射校正和大气校正等。
图像校正是将图像转换为常用的坐标系统,如UTM坐标系或地理坐标系,以便进行后续的分析。
辐射校正是将图像的数字值转换为表面反射率,以消除光照条件的影响。
大气校正是消除大气散射对图像的影响,使得图像更加准确和可靠。
二、遥感图像的特征提取特征提取是从遥感图像中提取与研究对象有关的信息特征。
常用的特征包括光谱特征、纹理特征和形状特征等。
光谱特征是指通过对不同波段的遥感图像进行统计和分析,来获取地物的光谱信息。
纹理特征是指通过分析图像中的纹理变化来获取地物的纹理特征。
形状特征是指通过对地物的形状进行测量和分析,来获取地物的形状信息。
这些特征能够帮助我们对地物进行分类和识别。
三、遥感图像的分类与识别遥感图像的分类与识别是将图像中的像素或区域划分成不同的类别,并将其与标志样本进行比较,以实现遥感图像的自动解译和分析。
常用的分类方法包括有监督分类和无监督分类。
有监督分类依赖于标志样本,通过训练分类器来实现图像的分类。
无监督分类则是根据图像的统计特征对图像进行自动聚类。
分类和识别的准确性往往取决于样本的选择和分类器的性能。
四、遥感图像的变化检测遥感图像的变化检测是指通过对多期遥感图像进行比较和分析,来获取地物变化的信息。
常用的变化检测方法包括像元级变化检测和目标级变化检测。
像元级变化检测通过对图像的像素进行比较,来获取地物的变化信息。
目标级变化检测则是通过对地物的目标进行分析,来获取地物变化的信息。
变化检测能够帮助我们了解地表环境的动态变化和变化原因。
附件一:遥感影像云识别方法综述国内外对云的检测与分类研究较多,有较多的研究成果报道。
其方法大致可以分为两类,一类是基于光谱的方法,主要利用云在不同的光谱波段有不同反射特征,大部分以灰度阈值或灰度聚类的方法实现,主要用于多光谱影像,早期研究较多。
如用于A VHRR的ISCCR 法(ROSSOW,1989)、CLA VR法(STOWE,1991)和用于的C02法(WGLIE,1994),近期亦研究用于MODIS的一些云识别与分类的方法,主要为以前方法的改造。
另一类是基于纹理的方法主要应用云影像的灰度空间分布特征。
纹理特征常以统计模型法、结构法、场模型法或频域/空域联合分析法来度量。
其中尤以传统的统计模型研究较多,如灰度共生矩阵(GLCM)、灰度差分矩阵(GLDM)、灰度差分矢量(GLDV)、和差直方图(SADH)等,新近提出的一些方法如场模型法中的分形分维、马尔可夫随机场方法,频域/空域联合分析法中的Gabor变换、小波变换等,有不少的研究成果报道。
1. 基于光谱特征的方法:主要有ISCCP方法、APLOOL方法、CO薄片法、CLAVR方法等。
ISCCP方法主要由Rossow(1989)Seze和Rossow(1991a)及RossowG和arder(1993)和等开发研制,检测方法中公用到窄的可见光波段(0.6)和红外窗区波段的资料。
它假定观测辐射办一自晴空和云两种情况(这两种大气状况相联系的辐射值变化并不相互重叠),把每一个像元的观测辐射值与晴空辐射值比较,若两者的差大于晴空辐射值本身的变化时,定该像元点为云点。
因此算法依赖于阈值,阈值勤的大小就确定了晴空计值中不确定性的大小,当像元的车射值明显有别于晴空像元时,认为像元被云覆盖,但当像元部分被云覆盖时,会发生误判。
算法主要由有五部分组成:1 单一红外图像的空间对比试验。
2 三个连续红处图像的时间对比试验。
3可见光和红外图像的空间/时间的累计统计合成。
遥感影像变化检测综述一、本文概述随着遥感技术的快速发展和广泛应用,遥感影像变化检测已成为地球科学、环境科学、城市规划等领域的重要研究工具。
本文旨在综述遥感影像变化检测的基本原理、方法、技术及其在各领域的应用,以期对遥感影像变化检测领域进行全面的梳理和总结,为相关研究和应用提供参考和借鉴。
本文首先介绍了遥感影像变化检测的基本概念和研究意义,然后重点阐述了遥感影像变化检测的主要方法和技术,包括基于像素的方法、基于对象的方法和基于深度学习的方法等。
本文还探讨了遥感影像变化检测在土地利用/覆盖变化、城市扩张、自然灾害监测等领域的应用,并分析了当前遥感影像变化检测面临的挑战和未来的发展趋势。
本文旨在为遥感影像变化检测领域的研究者和实践者提供全面的理论支持和实践指导。
二、遥感影像变化检测的基本原理遥感影像变化检测是一种通过对比不同时间点的遥感影像,识别并提取地表覆盖和特征变化的技术。
其基本原理主要基于遥感影像的像素级、特征级和决策级三个层次的变化检测。
在像素级变化检测中,通过对两个或多个时相的遥感影像进行像素级别的比较,直接识别出发生变化的区域。
这种方法通常依赖于像素值的差异,如灰度值、色彩值等,通过设定阈值或采用统计方法来判断像素是否发生变化。
像素级变化检测能够提供较为精细的变化信息,但也可能受到噪声、光照条件、传感器差异等因素的影响。
特征级变化检测则侧重于从遥感影像中提取出关键特征,如纹理、形状、边缘等,并对这些特征进行变化分析。
这种方法通过提取和比较不同时相影像中的特征信息,可以更加准确地识别出地表覆盖和特征的变化。
特征级变化检测通常需要对遥感影像进行预处理,如滤波、增强等,以提高特征提取的准确性和稳定性。
决策级变化检测是在更高层次上对遥感影像进行变化分析。
它通常基于分类或目标识别的结果,通过比较不同时相影像的分类结果或目标识别结果,来判断地表覆盖和特征的变化。
决策级变化检测可以提供更加宏观和全面的变化信息,但也需要更加复杂的算法和模型支持。
图像纹理特征提取方法综述一、本文概述随着计算机视觉和图像处理技术的飞速发展,图像纹理特征提取已成为该领域的一个重要研究方向。
纹理作为图像的基本属性之一,反映了图像的局部模式和结构信息,对于图像识别、分类、分割等任务具有至关重要的作用。
本文旨在全面综述图像纹理特征提取方法的研究现状和发展趋势,以期为相关领域的研究人员提供有益的参考和启示。
本文将首先介绍纹理特征提取的基本概念和研究意义,阐述其在图像处理和分析中的重要性。
随后,将详细综述经典的纹理特征提取方法,包括基于统计的方法、基于结构的方法、基于模型的方法和基于变换的方法等,分析它们的优缺点和适用范围。
在此基础上,本文将重点介绍近年来新兴的深度学习纹理特征提取方法,包括卷积神经网络(CNN)、循环神经网络(RNN)等,探讨它们在纹理特征提取方面的优势和应用前景。
本文还将对纹理特征提取方法的应用领域进行简要介绍,包括图像分类、目标检测、图像分割等,并展望未来的研究方向和挑战。
通过本文的综述,我们希望能够为相关领域的研究人员提供全面的纹理特征提取方法知识,促进该领域的进一步发展。
二、纹理特征提取的基本概念和原理纹理是图像的一种重要属性,描述了图像局部区域的像素排列模式和重复结构。
纹理特征提取旨在从图像中识别并量化这些模式,以用于诸如图像分类、目标识别、场景理解等计算机视觉任务。
在进行纹理特征提取时,主要涉及到几个核心概念,包括滤波器、特征向量、统计量以及纹理模型。
滤波器:滤波器在纹理特征提取中扮演着关键角色,用于检测图像中的特定频率和方向信息。
常见的滤波器包括Gabor滤波器、小波变换滤波器、局部二值模式(LBP)滤波器等。
这些滤波器能够在不同尺度上提取图像的局部信息,从而捕获到纹理的精细结构。
特征向量:通过滤波器处理后的图像数据需要进一步转化为特征向量,以便进行后续的分析和比较。
特征向量通常是一组数值,用于量化图像中某一区域的纹理特征。
常见的特征向量包括灰度共生矩阵(GLCM)的统计量、傅里叶变换系数、小波变换系数等。
遥感科学技术与色彩纹理分析摘要本文提出了一种基于航空影像的建设用地信息自动提取方法。
针对航空影像光谱信息少,色彩信息和纹理信丰富的特点,该方法首先采用HSV 色彩变换和纹理分析手段充分挖掘影像中所包含的色彩信息与纹理信息,在此基础上采用多特征阈值分割技术将色彩信息与纹理信息有机结合进行建设用地信息提取,并使用邻域分析方法对提取结果进行修正。
通过对研究区域航空影像的处理,结果表明,该方法提取精度较高,且易于实现。
“十二五”期间,我国仍将处于经济社会发展的重要战略机遇期,也是资源环境约束加剧的矛盾凸显期,随着人口高峰、工业化高峰和城镇化高峰的相继逼近,城市空间急剧扩展,土地利用问题将日益严重。
据统计,近20年来,建设用地增加的面积仅次于耕地面积的增加,居所有地类中的第2位,已成为中国土地利用变化中变化最明显、影响范围最大的一类,它的扩展对于耕地、草地、林地、水域等土地利用类型有着不同程度的影响。
因此,及时准确地掌握建设用地规模和时空分布特征,对于优化国土空间开发格局,推进城市化进程,实现可持续发展具有重要意义。
随着信息技术和遥感技术的发展与日益成熟,借助遥感技术实施国土监测,已经成为国土部门进行国土资源监察的重要手段之一。
相关职能部门能据此在第一时间获得建设用地规模及时空分布特征的相关数据,以制定相应方针或措施合理控制建设用地规模与扩展速度,对于耕地和基本农田的保护具有积极的现实意义。
目前我国上至国土资源部,下至地方国土行政主管部门,都有相对成熟的遥感图像采集机制,然而图像信息提取工作缺乏相应技术支持,对于土地利用变化监测多以人工解译为主。
由于我国疆域的广阔性、分布复杂性,人工解译工作并不能满足实际业务需求,尤其是在大比例尺尺度下,图像解译工作采用人力监测显然费时、费力且效果不佳。
近年来,遥感技术尤其是航空遥感技术的快速发展与广泛应用为建设用地监测提供了一种先进的技术手段,相比于卫星影像,航空影像的空间分辨率更高,实时性更好,更有利于监测变化较快的建设用地。