二次函数的应用复习教案
- 格式:doc
- 大小:131.00 KB
- 文档页数:5
二次函数在实际问题中的应用一、知识回顾二次函数是一种常见的函数形式。
其一般式为 y=ax^2+bx+c,其中 a、b、c 是实系数,a≠0。
在二次函数图像的右开口和左开口两种情况下,其又有不同的性质:1.右开口。
此时 a>0,二次函数在顶点处取得最小值,最小值等于 c-b^2/(4a)。
2.左开口。
此时 a<0,二次函数在顶点处取得最大值,最大值等于 c-b^2/(4a)。
在实际问题中,用二次函数可以描述很多现象。
下面就来看看具体的应用。
二、实际问题中的应用1.水桶倒水有一个体积为 V 的圆柱形水桶,现在要倒掉其中的水,当水流速度为 v 时,需要 t 秒才能将桶内的水倒光。
现在需要求出水面下降深度 h 随时间 t 的变化关系。
分析:设最初水面为 y=0,水倒光时水面到桶底的距离为 h0。
可知 h(t)=h0-Vt/S,其中S 是底面积。
由于水的体积随时间的变化遵循等速度变化规律,即 V=Stv,将其代入 h(t) 中得到 h(t)=h0-tv。
得到与时间 t 的关系式后,可化为二次函数形式,即 h(t)=-\frac{v}{2}t^2+h0。
此时二次函数是左开口的,其最大值为 h0,即水面下降到最大深度时的位置。
2.抛物线运动有一个物体从平地上以初速度 v0 竖直向上抛,忽略空气阻力,球的落地时间为 t0。
现在需要求出球的最高高度和以及任意时间离落地面的高度 h(t)。
分析:在竖直上抛运动过程中,球的高度随时间的变化遵循自由落体公式 h(t)=-\frac{1}{2}gt^2+v0t。
由于自由落体是二次函数,且此时为右开口,所以球的最高高度为 h_max=v0^2/(2g)。
而将 t0 代入二次函数中,可以得到球落地时的高度 h0,即 h0=-\frac{1}{2}gt0^2+v0t0。
再将 h(t) 化为二次函数形式:h(t)=-\frac{1}{2}gt^2+v0t0+\frac{1}{2}gt0^2,此时是左开口的二次函数形式。
二次函数复习教案一、教材分析二次函数时描述现实世界变量之间的重要数学模型,也是某些单变量最优化问题的数学模型,还是一种非常基本的初等函数,对二次函数的研究学习和复习,将为学生进一步学习函数,利用函数性质解决实际应用问题奠定基础积累经验。
在前面学习中,学生已经通过大量丰富有趣的现实背景,运用由简入繁从特殊到一般的研究方法从多方面探索研究了二次函数的概念、性质以及实际应用。
因为二次函数考查的知识点比较多,因此,在复习中,应注重学生对基本概念性质的掌握情况,通过大量不同实际问题,促使学生分析问题、解决问题意识和能力的的提高以及函数模型的进一步加深巩固。
二、学生情况分析初三的学生,已经具备一定的生活经验和有效学习方法,思维比较开阔,能独立思考和探索中形成自己的观点,他们能迅速利用周围的小组合作,共同探讨解决学习中的问题。
在复习课中,学生需要掌握二次函数的基本概念、性质以及有条理的思考和语言表达能力。
三、教学目标1、能根据具体问题,选取表格、表达式、图像这三种方式中适当的方法表示变量之间的二次函数关系2、会作二次函数的图象,并能根据图像对二次函数的基本性质进行分析表达。
3、能根据二次函数的表达式确定二次函数的开口方向、对称轴和定点坐标。
4、能利用二次函数解决实际问题,并能对变量的变化趋势进行预测。
四、教学理念和方式创设一种师生交往的互动、互惠的教学关系,师生之间彼此平等、互教互学,形成一个真正的“学习共同体”。
在这个过程中,教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求的新的发展,从而达到共识、共享、共进实现教学相长和共同发展。
教师在教学中是组织者、引导者、合作者;建立和谐的、民主的、平等的的师生关系。
整个过程学生是学习的主人,他们在教师的指导下进行主动的、富有个性的学习;教师应充分利用现实情景与先进教学技术,增加教学过程的趣味性,充分调动学生的积极性。
五、教学媒体选用为使教学活动有序高效进行,本节课通过多媒体辅助教学,将一些重难点进行分化演示,加深学生的理解掌握。
二次函数复习(第一课时)教学设计一、教材分析二次函数是中考的重点内容之一,二次函数的应用是培养学生数学建模和数学思想的重要素材,是每年必考的题型。
本部分包括了初中代数的重要数学思想和方法,复习时必须高度重视。
二次函数与前面学习的二次三项式、一元二次方程有着密切联系并将为今后高中学习不等式和二次曲线打下基础、积累经验、提供可以借鉴的方法。
本节课通过对二次函数的图象与性质的复习,加深学生对函数知识的理解和应用。
二、复习目标1.知识目标会画二次函数的图象,能通过图象得出二次函数的性质;会求二次函数的最大值或最小值,并能确定相应自变量的值;知道二次函数系数与图象的关系。
2.技能目标理解数形结合的数学思想的应用,学会用数形结合的思想解决问题。
3.情感目标通过对数学问题的解决,培养学生的钻研精神,激发学生学习数学的兴趣。
三、教材处理针对初三复习时间紧、任务重的实际情况,我决定利用梳理知识点的复习方法展开复习,对常考的知识点进行归纳整理,让学生先掌握基础知识,再让学生构建二次函数的知识体系,然后通过一些应用性的题目提升学生的能力以提高学生运用知识分析问题、解决问题的能力。
四、学情分析二次函数部分在年前学习时由于时间比较紧,一部分同学对二次函数的性质掌握不是太好。
再者,函数是初中数学的难点,学生理解和学习起来有一定的难度,所以,基础比较差一些的学生学习起来还是有一些困难。
但现在学生已经复习了一次函数和反比例函数,对函数的认识有了一定程度的加深,复习起来应该比讲新授课时应该要顺利的多。
在复习时要针对学生的实际,先掌握基础知识,再让学生构建二次函数的知识体系,然后通过一些应用性的题目提升学生的能力。
第一轮复习一定要注重基础,要注重实效。
五、教法分析梳理知识、查漏补缺、讲练结合、归纳总结、提升能力。
六、复习过程1、回归教材知识梳理(1)二次函数的概念;(2)二次函数的三种解析式;(3)二次函数的图象与性质;(4)二次函数的图象与a,b,c的关系。
二次函数复习教案
一、教学目标:
1. 理解二次函数的定义和性质;
2. 能够将二次函数的图像进行标注和解释;
3. 掌握二次函数的顶点、轴对称、对称轴和对称点的相关概念;
4. 能够通过顶点坐标或其他已知条件求解二次函数的参数;
5. 能够解二次方程和二次不等式。
二、教学内容:
1. 二次函数的定义和性质讲解;
2. 二次函数的图像标注和解释;
3. 二次函数的顶点、轴对称、对称轴和对称点的相关概念;
4. 二次函数参数的求解;
5. 二次方程和二次不等式的解法。
三、教学过程:
1. 探究:通过变化a、b、c的值,观察二次函数图像的变化,并总结二次函数的性质。
2. 概念讲解:介绍二次函数的定义和性质,引入顶点、轴对称、对称轴和对称点的概念。
3. 例题演练:通过给定顶点坐标或其他已知条件,求解二次
函数的参数。
4. 解二次方程和二次不等式:介绍解二次方程和二次不等式
的方法和步骤。
5. 课堂练习:提供一些练习题,学生独立完成,然后进行批
改和讲解。
6. 拓展训练:布置课后作业,要求学生进一步加深对二次函数的理解和掌握。
四、教学评价:
1. 在课堂练习和课后作业中,观察学生解题过程和答案,评价学生对二次函数的掌握程度。
2. 对课堂练习中出现的常见错误进行讲解和纠正。
3. 针对学生困惑的问题进行答疑和解释。
五、教学资源:
1. 教材教辅资料;
2. 多媒体教学设备;
3. 课前准备好的例题、练习题和答案;
4. 批改和讲解学生练习的纸质材料。
二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。
2. 学会如何列写二次函数的一般形式。
3. 掌握二次函数的图像特点。
教学重点:1. 二次函数的定义和一般形式。
2. 二次函数的图像特点。
教学难点:1. 理解二次函数的图像特点。
2. 掌握如何求解二次函数的零点。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。
2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。
2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。
3. 举例说明如何列写二次函数的一般形式。
4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 讲解练习题的答案,解析解题思路。
四、课堂小结(5分钟)2. 强调二次函数的图像特点。
教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。
在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。
在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。
二次函数教案(二)教学目标:1. 学会如何求解二次方程。
2. 理解二次函数的零点与二次方程的关系。
3. 掌握二次函数的图像与x轴的交点。
教学重点:1. 求解二次方程的方法。
2. 二次函数的零点与图像的关系。
教学难点:1. 理解二次方程的解法。
2. 掌握二次函数的图像与x轴的交点。
1. 教学课件或黑板。
2. 练习题。
教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。
2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。
2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。
二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。
2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。
3. 提高学生解决与二次函数相关的实际问题的能力。
教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。
- 回顾二次函数的图像特点,如开口方向、顶点位置等。
- 强调二次函数的轴对称性和零点的概念。
3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。
- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。
4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。
- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。
2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。
- 引导学生将问题转化为二次函数的方程,并解方程求出答案。
3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。
- 鼓励学生通过做更多的练习来巩固所学知识。
教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。
- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。
2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。
- 二次函数练习题,包括图像练习和实际问题练习。
评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。
《二次函数的应用》教学设计35321212++-=x x y 3532121-2++=x x y 教学环节教学内容 学生活动环节目标 创设情境问题引入 1.已知二次函数 ,求出抛物线的顶点坐标与对称轴。
2.已知二次函数图象的顶点坐标是(6,2.6),且经过点(0,2),求这个二次函数的表达式 。
3.抛物线 c bx x y ++=261-经过点(0,4)经过点(3,217),求抛物线的关系式。
问题:(1)求二次函数顶点坐标的方法 (2)设表达式的思路(3)如何求二次函数与x 轴及y 轴的交点坐标课前布置,独立完成,上课时没完成的继续完成,之后组内批阅,找学生上台板演,并回答老师提出的问题。
这三个小题是后面实际应用问题的答案,学生在复习二次函数基础知识的同时,把后面的计算提到前面来,便于后面把教学重点放在解题思路的分析与掌握上,减少学生的计算量。
探索交流获得新知1例题解析例 1 :这是王强在训练掷铅球时的高度y (m)与水平距离x(m)之间的函数图像,其关系式为 ,则铅球达到的最大高度是_____米,此时离投掷点的水平距离是____米。
铅球出手时的高度是_____米,此次掷铅球的成绩是____米。
2、跟踪练习:如图,排球运动员站在点O 处练习发球,将球从1、学生独立思考后回答问题答案。
2、根据图像回答解题思路。
(前面已经求过前两个空,只计算后面两个即可)引导学生得到解决问题的方法:这四个问题都是求线段的长度,共同点为已知点的一个坐标,可将其代入表达式求另一个坐标,再把坐标转化成线段的长。
O点正上方2 m的A处发出,把球看成点,出手后水平运行6米达到最大高度2.6米,(1) 运行的高度记为y(m),运行的水平距离记为x(m),建立平面平面直角坐标系如图,求y 与x的函数表达式(不要求写出自变量x的取值范围);(2) 若球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m。
《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。
《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
二次函数复习课〔一〕
真北中学张礼莉
一、教学目的:
1.梳理二次函数知识,加深对二次函数概念和二次函数图像及其性质的理解;
2.能从二次函数图像上获取正确、有用的信息,并能用合理的方法求函数解析式,进步观察、分析、归纳和概括的才能.
3.在综合运用二次函数知识的过程中领会图形运动、数形结合以及分类、化归等数学思想方法.
二、教学重点与难点:
重点:二次函数概念和从二次函数图像上获取正确有用的信息.
难点:二次函数知识综合运用中的分类讨论.
三、教学过程:
此函数解析式. 的图像如图所示,
-43
2
问:从图像上得到什么信息?你如何求?
90。
《二次函数》的复习教学设计数学《二次函数》优秀教案篇一一、教材分析本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。
主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。
在具体探究过程中,从特殊的例子出发,分别研究a0和a0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。
二、学情分析本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。
三、教学目标(一)知识与能力目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;2、能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。
(二)过程与方法目标通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。
(三)情感态度与价值观目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;2、在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。
四、教学重难点1、重点通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。
2、难点二次函数y=ax2+bx+c(a≠0)的图像的性质。
五、教学策略与设计说明本节课主要渗透类比、化归数学思想。
对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。
六、教学过程教学环节(注明每个环节预设的时间)(一)提出问题(约1分钟)教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。
二次函数的应用
教学目标
1.掌握二次函数与一元二次方程、一元二次不等式的关系.
2.会建构二次函数模型,解决实际问题.
教学过程
师:上一节我们复习了二次函数的哪些知识?(学生回答)今天我们继续来复习二次函数的有关内容.
考点一、二次函数与一元二次方程、一元二次不等式的关系 例1、(2014•四川)已知二次函数y =ax 2+bx +c 的图象如图,则b 2
﹣4ac________0
说明:1.一元二次方程20ax bx c ++= 是二次函数2y ax bx c =++当函数值0y =时的情况,二次函数 y = ax 2+bx+c 的图象与x 轴的交点的横坐标是一元二次方程ax 2+bx+c=0的实数根.
2.b 2﹣4ac 是一元二次方程根的判别式,y =0时,ax 2+bx+c=0的根的情况可以由抛物线与x 轴的
交点个数确定。
【答案】 b 2
﹣4ac >0
【处理办法】学生回答,有问题教师说明.
例2、 已知二次函数y =ax 2+bx 的图象经过点(2,0),(-1,6).ax 2+bx >0时x________
说明:ax2+bx>0即为y>0时的x值,学生通过观察图象即可解决。
【答案】x<0或x>2.
【处理办法】学生回答,有问题教师说明.
例3(2015•山东日照)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,
其中正确的是()
A.①②③B.①③④C.①③⑤D.②④⑤
【答案】C
【处理办法】学生回答,有问题教师说明.
例4.(2015•四川)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B 左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为
_____________________.
解析:新定义
先求出y=x2+2x+1和y=2x+2的交点C′的坐标为(1,4),再求出“梦之星”抛物线y=x2+2x+1的顶点A坐标(﹣1,0),接着利用点C和点C′关于x轴对称得到C(1,﹣4),则可设顶点式y=a(x﹣1)2﹣4,然后把A点坐标代入求出a的值即可得到原抛物线解析式.
答案为y=x2﹣2x﹣3.
【处理办法】学生自己思考之后小组讨论,有问题全班讨论
提醒:解决有关二次方程、不等式的问题,借助于函数图象是最直观、最简便的方法,在找相应的自变量取值范围的时候,要沿着横轴的方向从左向右观察,才能做到不重不漏
考点二 利用二次函数解决实际问题
例1. (2015•广东梅州)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
售价(元/件) 100 110 120 130 …
月销量(件) 200 180 160 140 …
已知该运动服的进价为每件60元,设售价为x 元.
(1)请用含x 的式子表示:①销售该运动服每件的利润是______元;②月销量是_______件;(直接写出结果)
(2)设销售该运动服的月利润为y 元,那么售价为多少时,当月的利润最大,最大利润是多少?
分析:(1)根据利润=售价﹣进价求出利润,运用待定系数法求出月销量;
(2)根据月利润=每件的利润×月销量列出函数关系式,根据二次函数的性质求出最大利润.
解:(1)①销售该运动服每件的利润是(x ﹣60)元;
②设月销量W 与x 的关系式为w=kx+b ,
由题意得, ,
解得, ,
∴W=﹣2x+400;
(2)由题意得,y=(x ﹣60)(﹣2x+400)
=﹣2x2+520x ﹣24000
=﹣2(x ﹣130)2+9800,
∴售价为130元时,当月的利润最大,最大利润是9800元. 数最值公式求法得出即可
【处理方法】学生在下面求出,有问题讲解.
例2(2013山西)如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,桥拱最高点C 到AB 的距离为9m ,AB=36m ,D ,E 为桥拱底部的两点,且DE ∥AB ,点E 到直线AB 的距离为7m ,则DE 的长为_____m.
【答案】48
【解析】以C 为原点建立平面直角坐标系,如右上图,依题意,得B (18,-9),
设抛物线方程为:2y ax =,将B 点坐标代入,得a =-136,所以,抛物线方程为:2136
y x =-,
E 点纵坐标为y =-16,代入抛物线方程,-16=2136
x ,解得:x =24,所以,DE 的长为48m. (建立不同坐标系求得的结果不变)
例3(2011广东)商场对某种商品进行市场调查,1至6月份该种商品的销售情况如下: ○1销售成本p (元/千克)与销售月份x 的关系如图所示:
○2销售收入q (元/千克)与销售月份x 满足;q=-2
3x+15 ○3销售量m (千克)与销售月份x 满足m=100x+200;
试解决以下问题:
根据图形(1)求p 与x 之间的函数关系式; (2)求该种商品每月的销售利润y (元)与销售月份x 的函数关系式,并求出哪个月的销售利润最大?
【答案】(1)p=-x+10
(2)y=(q -p)m=……=-50(x -4)2+1800 故4月份销售利润最大.
【处理方法】分析后学生在下面完成.
例4. (2015•浙江)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人.设新工人李明第X 天生产的粽子数量为y 只,y 与x 满足如下关系:
(1)李明第几天生产的粽子数量为420只?
(2)如图,设第x 天每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图形来刻画.若李明第x 天创造的利润为w 元,求w 关于x 的函数表达式,并求出第几天的利润最大,最大利润时多少元?(利润=出厂价-成本)
【处理方法】学生独立完成后,教师给出答案.
【答案】解:(1)设李明第n 天生产的粽子数量为420只, 16x 月份)
49o
由题意可知:30n+120=420,
解得n=10.
答:第10天生产的粽子数量为420只.
(2)由图象得,当0≤x≤9时,p=4.1;
当9≤x≤15时,设P=kx+b,
把点(9,4.1),(15,4.7)代入得,,
解得,
∴p=0.1x+3.2,
①0≤x≤5时,w=(6﹣4.1)×54x=102.6x,当x=5时,w最大=513(元);
②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,
∵x是整数,
∴当x=9时,w最大=714(元);
③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,
∵a=﹣3<0,
∴当x=﹣=12时,w最大=768(元);
综上,当x=12时,w有最大值,最大值为768.
点评:本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.
小结本节内容
师生一起回顾本节复习考点及其它收获.。