[选修3-5]碰撞与类碰撞
- 格式:doc
- 大小:118.70 KB
- 文档页数:3
第4课碰撞备课堂教学目标:(一)知识与技能1.会用动量守恒定律处理碰撞问题。
2.掌握弹性碰撞和非弹性碰撞的区别。
3.知道对心碰撞和非对心碰撞的区别。
4.知道什么是散射。
5.会用动量、能量的观点综合分析、解决一维碰撞问题.(二)过程与方法1、通过探究一维弹性碰撞的特点,体验科学探究的过程(由简单到复杂),掌握科学探究的方法(理论和实验相结合)。
2、理解从研究宏观碰撞到微观碰撞的引申思路,体验这种引申的重大意义,并进一步感受动量守恒定律的普适性。
(三)情感态度与价值观知道散射和中子的发现过程,体会理论对实践的指导作用,进一步了解动量守恒定律的普适性.重点:碰撞类问题的处理思想以及一维弹性碰撞的定量分析。
用动量、能量的观点综合分析、解决一维碰撞问题。
难点:通过定性研究二维弹性碰撞,理解从研究宏观碰撞到微观碰撞的引申思路。
教学方法:讲练法、举例法、阅读法教学用具:投影仪、投影片讲法速递(一)引入新课:观看丁俊晖打斯诺克的视频,讨论回答斯诺克在碰撞中有些在一条直线上,有些不在一条直线上的原因。
板书:第4节碰撞(二)进行新课:预习检查:1.从能量角度分类(1)弹性碰撞:碰撞过程中机械能守恒.(2)非弹性碰撞:碰撞过程中机械能不守恒.(3)完全非弹性碰撞:碰撞后合为一体或碰后具有共同速度,这种碰撞动能损失最大. 2.从碰撞前后物体运动的方向是否在同一条直线上分类(1)正碰:(对心碰撞)两个球发生碰撞,如果碰撞之前球的速度方向与两球心的连线在同一条直线上,碰撞之后两个球的速度方向仍会沿着这条直线的方向而运动.(2)斜碰:(非对心碰撞)两个球发生碰撞,如果碰撞之前球的运动速度方向与两球心的连线不在同一条直线上,碰撞之后两球的速度方向都会偏离原来两球心的连线而运动.判断正误:1.发生碰撞的两个物体,动量是守恒的.(√) 2.发生碰撞的两个物体,机械能是守恒的.(×)3.碰撞后,两个物体粘在一起,动量是守恒的,但机械能损失是最大的.(√) 思考:两小球发生对心碰撞,碰撞过程中,两球的机械能守恒吗?【提示】 两球发生对心碰撞,动量是守恒的,但机械能不一定守恒,只有发生弹性碰撞时,机械能才守恒.预习检查: 1.弹性碰撞特例(1)两质量分别为m 1、m 2的小球发生弹性正碰,v 1≠0,v 2=0,则碰后两球速度分别为v 1′=m 1-m 2m 1+m 2v 1,v 2′=2m 1m 1+m 2v 1.(2)若m 1=m 2的两球发生弹性正碰,v 1≠0,v 2=0,则v ′1=0,v ′2=v 1,即两者碰后交换速度. (3)若m 1≪m 2,v 1≠0,v 2=0,则二者弹性正碰后,v 1′=-v 1,v 2′=0.表明m 1被反向以原速率弹回,而m 2仍静止.(4)若m 1≫m 2,v 1≠0,v 2=0,则二者弹性正碰后,v ′1=v 1,v ′2=2v 1.表明m 1的速度不变,m 2以2v 1的速度被撞出去.2.散射 (1)定义微观粒子相互接近时并不发生直接接触,因此微观粒子的碰撞又叫做散射. (2)散射方向由于粒子与物质微粒发生对心碰撞的概率很小,所以多数粒子在碰撞后飞向四面八方. 判断正误:1.与静止的小球发生弹性碰撞时,入射小球碰后的速度不可能大于其入射速度.(√) 2.两球发生弹性正碰时,两者碰后交换速度.(×)3.微观粒子发生散射时,并不是微观粒子直接接触碰撞.(√)思考:1.如图所示,光滑水平面上并排静止着小球2、3、4,小球1以速度v 0射来,已知四个小球完全相同,小球间发生弹性碰撞,则碰撞后各小球的运动情况如何?【提示】 小球1与小球2碰撞后交换速度,小球2与小球3碰撞后交换速度,小球3与小球4碰撞后交换速度,最终小球1、2、3静止,小球4以速度v 0运动.2.微观粒子能否碰撞?动量守恒定律适用于微观粒子吗?【提示】 宏观物体碰撞时一般相互接触,微观粒子碰撞时不一定接触,但只要符合碰撞的特点,就可认为是发生了碰撞,可以用动量守恒的规律分析求解.弹性碰撞的规律推导:质量为m 1的物体,以速度v 1与原来静止的物体m 2发生完全弹性碰撞,设碰撞后它们的速度分别为v ′1和v ′2,碰撞前后的速度方向均在同一直线上。
高三物理选修3-5第十六章动量守恒定律第四节碰撞弹性碰撞模型及应用专题专项训练习题集【典题强化】1.光滑水平地面上有两个静止的小物块a和b,a的质量为m,b的质量M可以取不同的数据。
现使a以某一速度向b运动,此后a与b发生弹性碰撞()A.当M=m时,碰撞后b的速度最大B.当M=m时,碰撞后b的动能最大C.当M>m时,若M越小,碰撞后b的速度越小D.当M<m时,若M越小,碰撞后b的速度越大2.如图所示,质量为m2的小球B静止在光滑的水平面上,质量为m1的小球A以速度为v0靠近B,并与B发生弹性碰撞。
当m1和v0一定时,若m2越大。
则()A.碰撞过程中B受到的冲量越小B.碰撞过程中A受到的冲量越大C.碰撞后A的速度越小D.碰撞后A的速度越大3.如图所示,小球A的质量为m A=5kg,动量大小为p A=4kgm/s,小球A水平向右运动与静止的小球B 发生弹性碰撞,碰后A的动量大小为p A′=1kgm/s,方向水平向右,则()=3kgm/sA.碰后小球B的动量大小为pB.碰后小球B的动量大小为p B=5kgm/sC.小球B的质量为15kgD.小球B的质量为3kg4.在光滑水平面上有三个完全相同的小球排成一条直线,2、3小球静止,并靠在一起,1球以速度v0射向它们,如图所示。
设碰撞过程中不损耗机械能,则碰撞后三个小球的速度是()A.v1=v2=v3=v0/3 B.v1=0,v2=v3=v0/2C.v1=0,v2=v3=v0/3 D.v1=v2=0,v3=v05.如图所示,B、C、D、E、F,5个小球并排放置在光滑的水平面上,B、C、D、E,4个小球质量相等,而F球质量小于B球质量,A球的质量等于F球质量。
A球以速度v0向B球运动,所发生的碰撞均为弹性碰撞,则碰撞之后()A.5个小球静止,1个小球运动B.4个小球静止,2个小球运动C.3个小球静止,3个小球运动D.6个小球都运动6.如图所示,A、B两球放在光滑的水平面上,水平面的右侧与竖直平面内一光滑曲面相切,现给A一向右的速度,让A与B发生对心弹性碰撞,小球沿曲面上升到最高点后又能再沿曲面滑回到水平面。
学案1 碰撞 学案2 动量[目标定位] 1.知道什么是碰撞,把握弹性碰撞和非弹性碰撞的区分.2.理解动量、冲量的概念,知道动量的转变量,并会求动量的转变量.3.理解动量定理的物理意义和表达式,能用动量定理解释现象和解决实际问题.一、碰撞中的动能变化及碰撞分类 [问题设计]某试验小组用课本中“探究碰撞前后物体动能的变化”的试验方案,探究碰撞前后动能的变化.争辩中分别得到了两组数据,如下表所示: m 1与静止的m 2碰撞,碰后分开(表一)m 1与静止的m 2碰撞,碰后粘合在一起(表二)答案 计算结果:①0.016 5 ②0.014 6 ③0.008 8 ④0.004 5从表一的数据可以看出:在试验误差允许范围内,两滑块碰撞前后的总动能几乎相等. 从表二的数据可以看出,两滑块碰撞前后的总动能并不相等,碰撞后总动能削减了.[要点提炼] 1.碰撞的定义做相对运动的两个(或几个)物体相遇而发生相互作用,在很短的时间内,它们的运动状态会发生显著变化,这一过程叫做碰撞. 2.碰撞的分类(1)弹性碰撞:碰撞前后两滑块的总动能不变. (2)非弹性碰撞:碰撞后两滑块的总动能削减了.(3)完全非弹性碰撞:两物体碰后粘在一起,以相同的速度运动. 3.弹性碰撞和非弹性碰撞的区分(1)从形变的角度:发生弹性碰撞的两物体碰后能够恢复原状,而发生非弹性碰撞的两物体碰后不能恢复原状.(2)从动能的角度:弹性碰撞的两物体碰撞前后动能守恒,非弹性碰撞的两物体碰撞后的动能削减,完全非弹性碰撞中动能损失最多. 二、动量 1.动量的概念(1)概念:物体的质量和速度的乘积定义为该物体的动量. (2)公式:p =m v .(3)单位:国际单位制为千克·米/秒(kg·m/s) 2.对动量的理解(1)动量的矢量性:动量是矢量,它的方向与速度v 的方向相同. (2)动量是相对量:由于速度与参考系的选择有关.一般以地面为参考系. 3.对动量变化Δp =p ′-p 的理解 (1)矢量性:与速度变化的方向相同.(2)若p ′、p 不在一条直线上,要用平行四边形定则求矢量差;若p ′、p 在一条直线上,先规定正方向,再用正、负表示p ′、p ,则可用Δp =p ′-p =m v ′-m v 进行代数运算. 4.动量p =m v 与动能E k =12m v 2的区分动量和动能表达式分别为p =m v 和E k =12m v 2.动量是矢量,而动能是标量.当速度发生变化时,物体的动量发生变化,而动能不肯定(填“肯定”或“不肯定”)发生变化. 三、动量定理 [问题设计]如图1所示,一个质量为m 的物体在碰撞时受到另一个物体对它的力是恒力F ,在F 的作用下,经过时间t ,速度从v 变为v ′,应用牛顿其次定律和运动学公式推导物体的动量转变量Δp 与恒力F 及作用时间t 的关系.图1答案 这个物体在碰撞过程的加速度a =v ′-vt ①依据牛顿其次定律F =ma ② 由①②得F =m v ′-vt整理得:Ft =m (v '-v )=m v ′-m v 即Ft =m v ′-m v =Δp [要点提炼] 1.冲量(1)冲量的定义式:I =Ft .(2)冲量是过程(填“过程”或“状态”)量,反映的是力在一段时间内的积累效果. (3)冲量是矢量,冲量的方向与力F 的方向相同. 2.动量定理(1)内容:物体在一个过程始末,所受合力与作用时间的乘积等于物体的动量变化. (2)数学表达式:Ft =m v ′-m v ,其中F 为物体受到的合外力. (3)对动量定理的理解①动量定理反映了合外力的冲量是动量变化的缘由.②动量定理的表达式是矢量式,运用动量定理解题时,要留意规定正方向.③公式中的F 是物体所受的合外力,若合外力是变力,则F 应是合外力在作用时间内的平均值.一、碰撞的分类及其特点例1 一个质量为2 kg 的小球A 以v 0=3 m/s 的速度与一个静止的、质量为1 kg 的小球B 正碰.试依据以下数据,分析碰撞性质.(1)碰后A 、B 的速度均为2 m/s.(2)碰后A 的速度为1 m /s ,B 的速度为4 m/s. 解析 碰前系统的动能E k0=12m A v 0 2=9 J. (1)当碰后A 、B 速度均为2 m/s 时,碰后系统的动能 E k =12m A v A 2+12m B v B2 =(12×2×22+12×1×22) J =6 J<E k0 故碰撞为非弹性碰撞.(2)当碰后v A =1 m /s ,v B =4 m/s 时,碰后系统的动能 E k ′=12m A v 2A +12m B v B2 =(12×2×12+12×1×42) J =9 J =E k0 故碰撞为弹性碰撞.答案 (1)非弹性碰撞 (2)弹性碰撞 二、对动量及变化量的理解例2 羽毛球是速度较快的球类运动之一,运动员扣杀羽毛球的速度可达到100 m /s ,假设球飞来的速度为50 m/s ,运动员将球以100 m/s 的速度反向击回.设羽毛球的质量为10 g ,试求: (1)羽毛球的动量变化量; (2)羽毛球的动能变化量.解析 (1)以羽毛球飞来的方向为正方向,则羽毛球的初速度:v =50 m /s ,羽毛球的末速度:v ′=-100 m/s p 1=m v 1=10×10-3×50 kg·m /s =0.5 kg·m/s. p 2=m v 2=-10×10-3×100 kg·m /s =-1 kg·m/s所以动量的变化量Δp =p 2-p 1=-1 kg·m /s -0.5 kg·m/s =-1.5 kg·m/s. 即羽毛球的动量变化量大小为1.5 kg·m/s ,方向与羽毛球飞来的方向相反.(2)羽毛球的初动能:E k =12m v 2=12.5 J ,羽毛球的末动能:E k ′=12m v ′2=50 J.所以ΔE k =E k ′-E k =37.5 J.答案 (1)1.5 kg·m/s ,方向与羽毛球飞来的方向相反 (2)37.5 J三、对动量定理的理解和应用例3 质量为0.5 kg 的弹性小球,从1.25 m 高处自由下落,与地板碰撞后回跳高度为0.8 m ,g 取10 m/s 2. (1)若地板对小球的平均冲力大小为100 N ,求小球与地板的碰撞时间;(2)若小球与地板碰撞无机械能损失,碰撞时间为0.1 s ,求小球对地板的平均冲力.。
高中物理选修3-5动量守恒定律碰撞的速度合理性公式如此题:两个小球A 、B 在光滑水平面上相向运动,已知它们的质量分别是m 1= 4kg ,m 2= 2kg ,A 的速度v 1=3m /s (设为正),B 的速度v 2= -3m/s ,则它们发生正碰后,其速度可能分别是A. 均为+1 m /sB. +4 m /s 和-5m /sC. +2m /s 和- 1m /sD. -1m/s 和+5m /s 答案:AD一般解法:设碰撞后两物体速度分别是v A 和v B ,由动量守恒定律可以得到:m 1v 1+m 2v 2=m 1v A +m 2v B ①分别将v A =1m /s ,v B =1m /s ;v A =4m /s ,v B =-5m /s ;v A =2m /s ,v B =-1m /s ;v A =-1m /s ,v B =5m /s 代入①中;可验证4个选项都满足动量守恒定律,再看动能变化情况: 设碰撞前得动能为E k ,碰撞后的动能为E k ′E k = 12m 1v 12+ 12m 2v 22=27J E k ′=12m 1v A 2+ 12m 2v B 2 由于碰撞过程动能不可能增加,所以应有E k ≥E k ‘,据此可排除选项B ;选项C 虽满足E k ≥E k ‘,但A 、B 沿同一直线相向运动,发生碰撞后各自仍保持原来速度的方向(v A >0,v B <0),这显然是不符合实际的,因此选项C 错误;验证选项A 、D 均满足E k >E k ‘.故正确的选项为A (完全非弹性碰撞)和D (弹性碰撞)。
总结归纳后我们可以发现,被撞物体的速度(记为v 2)总在一个范围,假设被撞物体的起始速度为0,碰撞的物体起始速度为v 0,按照动量守恒定律和动能定理,我们可以求解被撞物体的速度(v 2)⎥⎦⎤⎢⎣⎡++∈0211021122,v m m m v m m m v 前者是分配速度,后者是教材例题的结论。
第1课实验:探究碰撞中的不变量备课堂教学目标:(一)知识与技能1、明确探究碰撞中的不变量的基本思路;2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法;3、掌握实验数据处理的方法。
(二)过程与方法知道实验探究过程。
(三)情感态度与价值观渗透物理学方法的教育,体会科学探究的要素。
重点:探究碰撞中的不变量的基本思路难点:碰撞前后的速度的测量方法教学方法:多媒体展示、实验演示、推理计算教学用具:细线2条、小钢球若干、打点计时器、电源、导线若干、小车2个、橡皮泥、撞针讲法速递(一)引入新课:碰撞是常见的现象,以宏观、微观现象为例,从生产、生活中的现象(包括实验现象)中提出研究的问题----碰撞前后是否有什么物理量保持不变?引导学生从现象出发去发现隐藏在现象背后的自然规律。
板书:第1节实验:探究碰撞中的不变量(二)进行新课: 演示:A 、B 是两个悬挂起来的钢球,质量相等。
使B 球静止,拉起A 球,放开后A 与B 碰撞,观察碰撞前后两球运动的变化。
换为质量相差较多的两个小球,重做以上实验通过演示实验的结果看出,两物体碰后质量虽然没有改变,但运动状态改变的程度与物体质量的大小有关。
让学生通过观察现象猜想碰撞前后可能的“不变量”描述思路:两个物体各自的质量与自己的速度的乘积之和是不是不变量? m 1 v 1 + m 2v 2 = m 1 v 1’ + m 2 v 2’ ?或者,各自的质量与自己的速度的二次方的乘积之和是不变量? m 1 v 12+ m 2v 22= m 1 v 1’2+ m2 v 2’2?也许,两个物体的速度与自己质量的比值之和在碰撞前后保持不变?22112211m v m v m v m v '+'=+ ?……指明了探究的方向和实验的目的制定计划与设计实验:P4~P5参考案例:给学生一定的设计空间 P3需要考虑的问题: 讨论操作和数据处理中的技术性问题(1)获得一维碰撞的方案①利用气垫导轨实现两滑块发生一维碰撞;②利用等长悬线悬挂等大小球实现两球发生一维碰撞;③利用小车在光滑桌面上碰撞另一静止小车实现一维碰撞。
碰撞__________________________________________________________________________________ __________________________________________________________________________________1.理解常见的碰撞模型。
2.学会用动量守恒能量守恒解决相关问题。
1.碰撞(1)碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象. (2)在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒; (3)根据碰撞过程中系统总动能的变化情况,可将碰撞分为几类:①弹性碰撞:总动能没有损失或总动能损失很小,可以忽略不计,此碰撞称为弹性碰撞.可使用动量守恒定律和机械能守恒定律帮助计算. 如: 若一个运动的球1m 与一个静止的球2m 碰撞,则 根据动量守恒定律:________________________ 根据机械能守恒定律:______________________ 得到:121112m m v v m m -'=+,121122m v v m m '=+②一般碰撞:碰撞结束后,动能有部分损失.③完全非弹性碰撞:两物体碰后粘合在一起,这种碰撞损失动能最多. (4)判断碰撞过程是否存在的依据 ①动量守恒②机械能不增加(动能不增加):k1k2k1k2E E E E ''++≥或2222121212122222p p p p m m m m ++≥ ③速度要合理:碰前两物体同向,则v v 后前>,并且碰撞后,原来在前的物体速度一定增大,并有v v ''后前≥;两物体相向运动,碰后两物体的运动方向不可能都不改变.(v 后为在后方的物体速度,v 前为在前方的物体速度) (5)常见模型①“速度交换”模型:质量相同的两球发生弹性正碰.若10v v =,20v =,则有1200,v v v ''==. ②“完全非弹性碰撞”模型:两球正碰后粘在一起运动.若10v v =,20v =,则有1012m v v m m =+共,动能损失最大,22k 101211()22E m v m m v ∆=-+共. ③“弹性碰撞”模型:若102,0v v v ==,则有121012m m v v m m -'=+,120122m v v m m '=+.2.反冲(1)指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象. (2)在反冲现象中系统的动量是守恒的.①质量为M 的物体以对地速度v 抛出其本身的一部分,若该部分质量为m ,则剩余部分对地反冲速度为:mv v M m'=-. ②反冲运动中的已知条件常常是物体的相对速度,在应用动量守恒定律时,应将相对速度转换为绝对速度(一般为对地速度). (3)反冲现象中往往伴随有能量的变化.3.爆炸(1)爆炸过程中,内力远远大于外力,动量守恒. (2)在爆炸过程中,有其它形式的能转化为机械能.4. 人船模型(1)移动距离问题分析①若一个原来静止的系统的一部分发生运动,则根据动量守恒定律可知,另一部分将向相反方向运动.11220m v m v -=,则2121m v v m =经过时间的积累,运动的两部分经过了一段距离,同样的,有2121m x x m =. ②当符合动量守恒定律的条件,而仅涉及位移而不涉及速度时,通常可用平均动量求解.解此类题通常要画出反映位移关系的草图.(2)人船模型中,人的位移与船的位移分别为 M l L M m =+船人人船,m l L M m =+人船人船,其中L 是人和船的相对位移.类型一:碰撞后的动量例1.A 、B 两小球在光滑水平面上沿同一直线向同一方向运动,A 球的动量为5 kg ·m/s ,B 球的动量是7 kg ·m/s ,当A 球追上B 球发生碰撞, 则碰撞后A 、B 两球动量的可能值为: ( ) A. p A ′=6 kg ·m/s p B ′=6 kg ·m/s B. p A ′=3 kg ·m/s p B ′=9kg ·m/s C .p A ′=-2 kg ·m/s p B ′=14 kg ·m/s D .p A ′=-5 kg ·m/s p B ′=17kg ·m解析:由于A追上B发生碰撞,所以可知v A >v B 且碰后 v B ′>v B v B ′≥v A,即p B ′>p B ,故可排除选项A。
碰撞与类碰撞
江苏省江阴长泾中学 夏双亚
高中《动量》部分内容是历年高考的热点内容,碰撞问题是动量部分内容的重点和难点之一,在课本中,从能量角度把碰撞分为弹性碰撞和非弹性碰撞,而学生往往能够掌握这种问题的解决方法,但只要题型稍加变化,学生就感到束手无策。
在此,作者从另外一个角度来研究碰撞问题,期望把动量中的碰撞问题和类似于碰撞问题归纳和总结一下,供读者参考。
从两物体相互作用力的效果可以把碰撞问题分为: 一般意义上的碰撞:相互作用力为斥力的碰撞 相互作用力为引力的碰撞(例如绳模型)
类碰撞:
相互作用力既有斥力又有引力的碰撞(例如弹簧模型)
一、一般意义上的碰撞
如图所示,光滑水平面上两个质量分别为m 1、m 2
小球相碰。
这种碰撞可分为正碰和斜碰两种,在高中
阶段只研究正碰。
正碰又可分为以下几种类型:
1、完全弹性碰撞:碰撞时产生弹性形变,碰撞后形
变完全消失,碰撞过程系统的动量和机械能均守恒
2、完全非弹性碰撞:碰撞后物体粘结成一体或相对静止,即相互碰撞时产生的形变一点没有恢复,碰撞后相互作用的物体具有共同速度,系统动量守恒,但系统的机械能不守恒,此时损失的最多。
3、一般的碰撞:碰撞时产生的形变有部分恢复,此时系统动量守恒但机械能有部分损失。
例:在光滑水平面上A 、B 两球沿同一直线向右运动,A 追上B 发生碰撞,碰前两球动量分别为s m kg P A /12⋅=、s m kg P B /13⋅=,则碰撞过程中两物体的动量变化可能的是( )
A 、s m kg P A /3⋅-=∆,s m kg P
B /3⋅=∆
B 、s m kg P A /4⋅=∆,s m kg P B /4⋅-=∆
C 、s m kg P A /5⋅-=∆,s m kg P B /5⋅=∆
D 、s m kg P A /24⋅-=∆,s m kg P B /24⋅=∆
[析与解]:碰撞中应遵循的原则有:
1、统动量守恒原则:即0=∆+∆B A P P 。
此题ABCD 选项均符合
2、物理情景可行性原则:
(1)、碰撞前,A 追上B 发生碰撞,所以有碰前B A v v >
(2)、碰撞时,两球之间是斥力作用,因此前者受到的冲量向前,动量增加;后
者受到的冲量向后,动量减小,既0<∆A P ,0>∆B P 。
此题B 选项可以排除
(3)、碰撞后,A 球位置在后,所以有''B A v v >
3、系统能量守恒原则:在碰撞中,若没有能量损耗,则系统机械能守恒;若能量有损失,则系统的机械能减小;而系统的机械能不可能增加。
一般而言,碰撞
中的重力势能不变, 所以有'+'=+KB KA KB KA E E E E 。
此题中D 选项可以排除。
综上所述,本题正确答案为(A 、C )
二、类碰撞中绳模型
例:如图所示,光滑水平面上有两个质量相等的物体,
其间用一不可伸长的细绳相连,开始B 静止,A 具有
s m kg P A /4⋅=(规定向右为正)的动量,开始绳松弛,
那么在绳拉紧的过程中,A 、B 动量变化可能是( )
A 、s m kg P A /4⋅-=∆,s m kg P
B /4⋅=∆
B 、s m kg P A /2⋅=∆,s m kg P B /2⋅-=∆
C 、s m kg P A /2⋅-=∆,s m kg P B /2⋅=∆
D 、s m kg P P B A /2⋅=∆=∆
[析与解]:绳模型中两物体组成的系统同样要满足上述的三个原则,只是在第2个原则中,由于绳对两个小球施加的是拉力,前者受到的冲量向后,动量减小;后者受到的冲量向前,动量增加,当两者的速度相等时,绳子的拉力为零,一起做匀速直线运动。
综上所述,本题应该选择C 选项。
三、类碰撞中弹簧模型
例:在光滑水平长直轨道上,放着一个静止的弹簧振子,
它由一轻弹簧两端各联结一个小球构成,两小球质量相
等,现突然给左端小球一个向右的速度V ,试分析从开
始运动到弹簧第一次恢复原长这一过程中两球的运动
情况并求弹簧第一次恢复到自然长度时,每个小球的速度?
[析与解]:刚开始,A 向右运动,B 静止,A 、B 间距离减小,弹簧被压缩,对两球产生斥力,相当于一般意义上的碰撞,此时A 动量减小,B 动量增加。
当两者速度相等时,两球间距离最小,弹簧形变量最大。
接着,A 、B 不会一直做匀速直线运动,弹簧要恢复原长,对两球产生斥力,A 动量继续减小,B 动量继续增加。
所以,到弹簧第一次恢复原长时,A 球动量最小,B 球动量最大。
在整个过程中,系统动量守恒,从开始到第一次恢复原长时,弹簧的弹性势能均为零,即系统的动能守恒。
A B mv mv mv =+
222111222
A B mv mv mv =+
解得:A v v =
0B v = (这组解即为刚开始两个物体的速度)
或 0A v =
B v v = (此组解为弹簧第一次恢复原长时两个物体的速度)
当然,读者还可以继续讨论接下来两个物体的运动情况。
实际上,不管是一般意义上的碰撞,还是类碰撞,在相互作用时两个物体的受力情况、冲量方向及动量变化情况是学生处理这类问题的难点所在。
下面作者再补充一些相关习题作巩固用
1、甲、乙两球在光滑水平面上,在同一直线同一方向上运动,它们的动量分别为5/P kg m s =⋅甲,7/P
kg m s =⋅乙。
已知甲的速度大于乙的速度,甲球与乙球相碰,碰撞后乙球的动量变为10/kg m s ⋅,则甲、乙两球质量m 甲和m 乙的关系为m m =甲乙。
2、甲、乙两球放在光滑水平面上,它们用细绳相连。
开始时细绳处于松弛状态,现使两球反向运动,如图
所示,当细绳拉紧,突然绷断,此后两球的运动情况
可能是图中的( )
3、如图所示,滑块A 、B 的质量分别为1m 、2m ,且12m m <,由轻质弹簧相连接,置于水平气垫导轨上,用一细线把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧,两个滑块一起以恒定的速度0v 向右滑动。
某时刻烧断细线,当弹簧伸长至本身的自然长度时,滑块A 的速度恰好为零,求
(1)最初弹簧处于最大压缩状态时的弹性势能为多少?
(2)定量分析在以后的运动过程中,滑块B 是否会有速度等于零的时刻?。