高考物理第一轮复习教案第6章《机械能》5机械能守恒定律的应用
- 格式:doc
- 大小:118.35 KB
- 文档页数:4
实验6:验证机械能守恒定律一、实验目的验证机械能守恒定律.二、实验原理在只有重力做功的自由落体运动中,物体的重力势能和动能互相转化,但总的机械能守恒。
若物体从静止开始下落,下落高度为h 时的速度为v,恒有mgh=错误!m v2。
故只需借助打点计时器,通过纸带测出重物某时刻的下落高度h和该时刻的瞬时速度v,即可验证机械能守恒定律。
测定第n点的瞬时速度的方法是:测出第n点相邻的前、后两段相等时间间隔T内下落的高度x n-1和x n+1(或用h n-1和h n+1),然后由公式v n=错误!或由v n=错误!可得v n(如图所示)。
三、实验器材铁架台(带铁夹)、电磁打点计时器与低压交流电源(或电火花打点计时器)、重物(带纸带夹子)、纸带数条、复写纸片、导线、毫米刻度尺。
四、实验步骤1.安装器材:如图所示,将打点计时器固定在铁架台上,用导线将打点计时器与低压电源相连,此时电源开关应为断开状态。
2.打纸带:把纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔,用手竖直提起纸带,使重物停靠在打点计时器下方附近,先接通电源,待计时器打点稳定后再松开纸带,让重物自由下落,打点计时器就在纸带上打出一系列的点,取下纸带,换上新的纸带重打几条(3~5条)纸带。
3.选纸带:分两种情况说明(1)若选第1点O到下落到某一点的过程,即用mgh=错误!m v2来验证,应选点迹清晰,且1、2两点间距离小于或接近2 mm的纸带,若1、2两点间的距离大于2 mm,这是由于打点计时器打第1个点时重物的初速度不为零造成的(如先释放纸带后接通电源等错误操作会造成此种结果)。
这样第1个点就不是运动的起始点了,这样的纸带不能选。
(2)用错误!m v错误!-错误!m v错误!=mgΔh验证时,由于重力势能的相对性,处理纸带时选择适当的点为基准点,这样纸带上打出的第1、2两点间的距离是否为2 mm就无关紧要了,所以只要后面的点迹清晰就可以选用。
高中物理《机械能守恒定律》教学教案(6篇)重点、难点分析篇一1.机械能守恒定律是本章教学的重点内容,本节教学的重点是使学生掌握物体系统机械能守恒的条件;能够正确分析物体系统所具有的机械能;能够应用机械能守恒定律解决有关问题。
2.分析物体系统所具有的机械能,尤其是分析、判断物体所具有的重力势能,是本节学习的难点之一。
在教学中应让学生认识到,物体重力势能大小与所选取的参考平面(零势面)有关;而重力势能的变化量是与所选取的参考平面无关的。
在讨论物体系统的机械能时,应先确定参考平面。
3.能否正确选用机械能守恒定律解决问题是本节学习的另一难点。
通过本节学习应让学生认识到,从功和能的角度分析、解决问题是物理学的重要方法之一;同时进一步明确,在对问题作具体分析的条件下,要能够正确选用适当的物理规律分析、处理问题。
说明篇二势能是相互作用的物体系统所共有的,同样,机械能也应是物体系统所共有的。
在中学物理教学中,不必过份强调这点,平时我们所说物体的机械能,可以理解为是对物体系统所具有的机械能的一种简便而通俗的说法。
教学目标篇三1.在已经学习有关机械能概念的基础上,学习机械能守恒定律,掌握机械能守恒的条件,掌握应用机械能守恒定律分析、解决问题的基本方法。
2.学习从功和能的角度分析、处理问题的方法,提高运用所学知识综合分析、解决问题的能力。
小结篇四1.在只有重力做功的过程中,物体的机械能总量不变。
通过例题分析要加深对机械能守恒定律的理解。
2.应用机械能守恒定律解决问题时,应首先分析物体运动过程中是否满足机械能守恒条件,其次要正确选择所研究的物理过程,正确写出初、末状态物体的机械能表达式。
3.从功和能的角度分析、解决问题,是物理学研究的重要方法和途径。
通过本节内容的学习,逐步培养用功和能的观点分析解决物理问题的能力。
4.应用功和能的观点分析处理的问题往往具有一定的综合性,例如与圆周运动或动量知识相结合,要注意将所学知识融汇贯通,综合应用,提高综合运用知识解决问题的能力。
机械能守恒定律及其应用教案第一章:机械能守恒定律的引入1.1 教学目标让学生了解机械能的概念引导学生理解机械能守恒定律的定义使学生能够运用机械能守恒定律进行简单问题的计算1.2 教学内容机械能的定义及表示方法机械能守恒定律的表述机械能守恒定律的证明1.3 教学方法通过实例引入机械能的概念,引导学生思考机械能的变化通过实验演示机械能守恒的现象,让学生直观地理解机械能守恒定律利用数学方法证明机械能守恒定律,加深学生对定律的理解第二章:机械能守恒定律的应用2.1 教学目标使学生能够运用机械能守恒定律解决实际问题培养学生运用物理学知识解决工程问题的能力2.2 教学内容机械能守恒定律在简单运动中的应用机械能守恒定律在复杂运动中的应用2.3 教学方法通过实例分析,让学生学会运用机械能守恒定律解决实际问题利用计算机软件或物理实验设备,模拟复杂运动情况,帮助学生理解和应用机械能守恒定律第三章:机械能守恒定律在力学问题中的应用3.1 教学目标让学生掌握机械能守恒定律在力学问题中的应用方法培养学生解决力学问题的能力3.2 教学内容机械能守恒定律在直线运动中的应用机械能守恒定律在曲线运动中的应用3.3 教学方法通过典型例题,引导学生学会运用机械能守恒定律解决力学问题利用物理实验设备,进行力学实验,帮助学生理解和应用机械能守恒定律第四章:机械能守恒定律在工程问题中的应用4.1 教学目标使学生能够运用机械能守恒定律解决工程问题培养学生运用物理学知识解决实际问题的能力4.2 教学内容机械能守恒定律在机械设计中的应用机械能守恒定律在能源转换中的应用4.3 教学方法通过实际案例,让学生学会运用机械能守恒定律解决工程问题利用计算机软件,进行模拟计算,帮助学生理解和应用机械能守恒定律第五章:机械能守恒定律的综合应用5.1 教学目标让学生能够综合运用机械能守恒定律解决复杂问题培养学生解决实际问题的能力5.2 教学内容机械能守恒定律在不同情境下的综合应用5.3 教学方法通过综合案例,让学生学会综合运用机械能守恒定律解决实际问题利用计算机软件或物理实验设备,进行模拟实验,帮助学生理解和应用机械能守恒定律第六章:非保守力与机械能守恒6.1 教学目标让学生理解非保守力的概念引导学生掌握非保守力作用下机械能守恒的条件使学生能够分析并解决非保守力作用下的机械能守恒问题6.2 教学内容非保守力的定义与特点非保守力作用下机械能守恒的条件非保守力作用下的机械能守恒问题分析与计算6.3 教学方法通过实例讲解非保守力的概念及其对机械能守恒的影响利用数学方法分析非保守力作用下的机械能守恒条件通过实际问题引导学生运用机械能守恒定律解决非保守力作用下的物体运动问题第七章:机械能守恒定律在碰撞问题中的应用7.1 教学目标让学生掌握机械能守恒定律在碰撞问题中的应用培养学生分析并解决碰撞问题的能力7.2 教学内容碰撞问题的基本概念与分类机械能守恒定律在弹性碰撞中的应用机械能守恒定律在非弹性碰撞中的应用7.3 教学方法通过实例分析碰撞问题,引导学生理解并应用机械能守恒定律利用物理实验设备进行碰撞实验,帮助学生直观地理解碰撞现象结合数学方法与计算机软件,模拟碰撞过程,加深学生对机械能守恒定律在碰撞问题中的应用第八章:机械能守恒定律在地球物理学中的应用8.1 教学目标使学生了解机械能守恒定律在地球物理学中的应用培养学生运用物理学知识解决地球物理学问题的能力8.2 教学内容地球物理学中机械能守恒定律的应用实例机械能守恒定律在地球内部运动中的应用机械能守恒定律在地表运动中的应用8.3 教学方法通过地球物理学实例,让学生了解机械能守恒定律在地球物理学中的应用利用计算机软件与物理实验设备,模拟地球内部与地表运动,帮助学生理解并应用机械能守恒定律第九章:机械能守恒定律在现代科技中的应用9.1 教学目标让学生了解机械能守恒定律在现代科技领域的应用培养学生运用物理学知识解决实际问题的能力9.2 教学内容机械能守恒定律在航空航天领域的应用机械能守恒定律在新能源开发中的应用机械能守恒定律在其他现代科技领域的应用9.3 教学方法通过实例介绍机械能守恒定律在航空航天等领域的应用,引导学生了解并应用机械能守恒定律解决实际问题利用计算机软件与物理实验设备,模拟相关科技领域的运动过程,帮助学生理解并应用机械能守恒定律第十章:机械能守恒定律的综合练习与拓展10.1 教学目标让学生能够综合运用机械能守恒定律解决复杂问题培养学生解决实际问题的能力10.2 教学内容机械能守恒定律在不同情境下的综合应用练习机械能守恒定律在实际工程问题中的应用拓展10.3 教学方法通过综合练习题,让学生学会综合运用机械能守恒定律解决实际问题利用计算机软件或物理实验设备,进行模拟实验与计算,帮助学生理解和应用机械能守恒定律重点解析本文主要介绍了机械能守恒定律及其应用,分为十个章节。
机械能守恒定律及其应用教案一、教学目标:1. 让学生了解机械能守恒定律的概念及其表述形式。
2. 培养学生运用机械能守恒定律分析和解决实际问题的能力。
3. 通过对机械能守恒定律的学习,培养学生对物理学的好奇心和探究精神。
二、教学内容:1. 机械能守恒定律的定义及表述形式。
2. 机械能守恒定律的实验验证。
3. 机械能守恒定律在实际问题中的应用。
4. 机械能守恒定律的拓展与深化。
三、教学重点与难点:1. 教学重点:机械能守恒定律的定义、表述形式及其应用。
2. 教学难点:机械能守恒定律在复杂情境中的应用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生探究机械能守恒定律。
2. 利用实验现象,加深学生对机械能守恒定律的理解。
3. 通过实际问题,培养学生运用机械能守恒定律解决问题的能力。
4. 采用讨论、小组合作等教学手段,提高学生的参与度和积极性。
五、教学过程:1. 引入:通过观察和分析生活中的实例,引导学生思考机械能的转化和守恒。
2. 讲解:介绍机械能守恒定律的定义、表述形式,并通过实验现象进行验证。
3. 应用:分析实际问题,让学生运用机械能守恒定律解决问题。
4. 拓展与深化:探讨机械能守恒定律在其他领域的应用,激发学生的学习兴趣。
6. 作业布置:布置一些有关机械能守恒定律的实际问题,让学生课后思考和探究。
六、教学评估:1. 课堂问答:通过提问方式检查学生对机械能守恒定律的理解程度。
2. 实验报告:评估学生在实验中对机械能守恒定律的验证能力。
3. 课后作业:分析学生完成作业的情况,了解学生对机械能守恒定律的应用能力。
4. 小组讨论:评估学生在小组合作中的参与程度和问题解决能力。
七、教学反思:1. 针对学生的反馈,反思教学内容的难易程度是否适合学生。
2. 思考教学方法是否有效,能否更好地激发学生的学习兴趣。
3. 分析实验环节的效果,考虑是否需要改进实验设置或增加实验内容。
八、教学延伸:1. 邀请相关领域的专家或企业代表,进行专题讲座或实地考察,拓宽学生的知识视野。
机械能守恒定律及其应用教案一、教学目标1. 让学生理解机械能守恒定律的概念及意义。
2. 培养学生运用机械能守恒定律解决实际问题的能力。
3. 引导学生掌握机械能守恒定律的实验方法和技巧。
二、教学内容1. 机械能守恒定律的定义及表达式。
2. 机械能守恒定律的应用实例。
3. 机械能守恒定律的实验操作步骤及注意事项。
三、教学过程1. 导入:通过分析生活中常见的机械能转化现象,引发学生对机械能守恒定律的思考。
2. 讲解:详细讲解机械能守恒定律的定义、表达式及适用条件。
3. 案例分析:分析多个机械能守恒定律的应用实例,让学生理解并掌握定律的应用方法。
4. 实验演示:进行机械能守恒定律的实验演示,让学生直观地观察到能量的转化过程。
5. 学生实验:分组进行机械能守恒定律的实验,培养学生动手操作能力和观察能力。
6. 总结:对本节课的内容进行总结,强调机械能守恒定律在实际生活中的应用。
四、教学评价1. 课堂问答:检查学生对机械能守恒定律的理解程度。
2. 实验报告:评估学生在实验中的操作技能和观察能力。
3. 课后作业:检验学生对机械能守恒定律的应用能力。
五、教学资源1. 课件:制作精美的课件,帮助学生直观地理解机械能守恒定律。
2. 实验器材:准备充足的实验器材,确保每个学生都能动手操作。
3. 参考资料:提供相关的参考资料,方便学生课后进一步学习。
教案编写:教案编辑专员六、教学重点与难点重点:1. 理解机械能守恒定律的定义和表达式。
2. 掌握机械能守恒定律的应用方法。
3. 熟悉机械能守恒定律的实验操作步骤。
难点:1. 判断系统中哪些能量是守恒的。
2. 处理复杂的机械能转化问题。
3. 在实验中准确测量和计算机械能的变化。
七、教学方法1. 讲授法:讲解机械能守恒定律的理论基础。
2. 案例分析法:通过具体实例展示机械能守恒定律的应用。
3. 实验教学法:通过实验演示和学生动手实验,加深对机械能守恒现象的理解。
4. 讨论法:鼓励学生在课堂上提问和讨论,提高解决问题的能力。
第五章 机械能及其守恒定律第一讲 功和功率一、基本概念(一)功1.定义:物体受到力的作用,并在力的方向上发生一段位移,就说力对物体做了功。
2.做功的两个不可缺少的因素:力和物体在力的方向上发生的位移。
3.计算公式:W=F ·scos α,其中F 是恒力,s 为力的作用点的位移,α为F 、s 二者之间的夹角。
4.功是标量,其单位是焦(J )。
正功表示是动力对物体做功,负功表示阻力对物体做功。
5.合力的功:合力的功等于这个合力的分力所做功的代数和。
即: ++=21W W W 合(二)功率1.功率是表示做功的快慢的物理量,计算公式为t w P =或θcos Fv P =。
功率的单位是瓦(W )。
2.由公式tw P =求得的一般是平均功率。
由公式αcos Fv P =求得的一般是瞬时功率(v 为瞬时速度),也可以是平均功率(v 为平均速度)。
3.发动机铭牌上的额定功率,指的是该发动机正常工作时的输出功率.并不是任何时候发动机的功率都等于额定功率.实际输出功率可在零和额定值之间取值.(三)几点说明1.常用的判断力做功与否及做功正负的方法:根据功的计算公式W =Flcos α可得到以下几种情况:(1)看力F 与l 夹角α——常用于恒力做功的情形.(2)看力F 与v 方向夹角α——常用于曲线运动情形.若α为锐角做正功,若α为直角则不做功,若α为钝角则做负功,也叫物体克服阻力做功2.摩擦力的功无论是静摩擦力,还是动摩擦力都可以做正功、负功还可以不做功.一对静摩擦力做功的代数和为零,滑动摩擦力对某物体不总是做负功,但是对产生摩擦力的两物体组成的系统中的一对滑动摩擦力做的总功总是负值,W=-f Δs ,Δs 为两物体间的相对滑动距离.3.变力做功一般不能依定义式W=Fscos α直接求解,但可依物理规律间接求解.如利用平均力法、图象法(F-s 图)、动能定理法等方法求解(四)机车的恒功率启动和匀加速启动(1)恒功率启动(恒定功率启功卡车,牵引力是变力,不能用公式直接求功,但可用W =Pt 求功) 机车自静止开始,保持牵引力的功率不变,在运动过程中阻力F f 也不变;随速度v 的增加,牵引力F 会减小,加速度减小;当F=F f 时,a=0,此时速度最大,且v m =P/F f ;以后以v m 做匀速直线运动,其过程可以由下面的框图表示。
专题五 动力学、动量和能量观点的综合应用力学的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律).熟练应用三大观点分析和解决综合问题是本专题要达到的目的.关键能力·分层突破考点一 碰撞模型的拓展模型1“弹簧系统”模型1.模型图2.模型特点(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方面,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.(4)弹簧处于原长时,弹性势能为零.例1. (多选)如图甲所示,物块a、b间拴接一个压缩后被锁定的轻质弹簧,整个系统静止放在光滑水平地面上,其中a物块最初与左侧固定的挡板相接触,b物块质量为1 kg.现解除对弹簧的锁定,在a物块离开挡板后,b物块的v t关系图象如图乙所示.则下列分析正确的是( )A.a的质量为1 kgB.a的最大速度为4 m/sC.在a离开挡板后,弹簧的最大弹性势能为1.5 JD.在a离开挡板前,a、b及弹簧组成的系统动量和机械能都守恒模型2“滑块—木板”模型1.模型图2.模型特点(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移也最大.(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大.例2. 如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为m.P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L.物体P置于P1的最右端,质量为2m且可看作质点.P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起.P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内).P与P2之间的动摩擦因数为μ.求:(1)P1、P2刚碰完时的共同速度v1和P的最终速度v2;(2)此过程中弹簧的最大压缩量x和相应的弹性势能E p.教你解决问题第一步:审条件 挖隐含P的速度不变.①“与静止的P2发生碰撞,碰撞时间极短”隐含→P1、P2获得共同速度.②“碰撞后P1与P2粘连在一起”隐含→P1、P2、P三者有共同速度及整个碰撞过程③“P压缩弹簧后被弹回并停在A点”隐含→中的弹性势能变化为零.第二步:审情景 建模型①P1与P2碰撞建模碰撞模型.→②P与P2之间的相互作用建模滑块—滑板模型.→第三步:审过程 选规律①动量守恒定律―→求速度.②能量守恒定律―→求弹簧的压缩量x及弹性势能E p.模型3“子弹打木块”模型1.模型图2.模型特点(1)子弹打入木块若未穿出,系统动量守恒,能量守恒,即mv 0=(m +M )v ,Q 热=fL相对=12mv2-12(M +m )v 2.(2)若子弹穿出木块,有mv 0=mv 1+Mv 2,Q 热=fL 相对=12mv −0212mv −1212M v 22.例3.(多选)如图所示,一质量m 2=0.25 kg 的平顶小车,车顶右端放一质量m 3=0.30 kg 的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.45,小车静止在光滑的水平轨道上.现有一质量m 1=0.05 kg 的子弹以水平速度v 0=18 m/s 射中小车左端,并留在车中,子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g 取10m s2.下列分析正确的是( )A .小物体在小车上相对小车滑行的时间为13s B .最后小物体与小车的共同速度为3 m/s C .小车的最小长度为1.0 mD .小车对小物体的摩擦力的冲量为0.45 N·s 跟进训练1.[2022·黑龙江哈尔滨模拟](多选)如图所示,两个小球A 、B 大小相等,质量分布均匀,分别为m 1、m 2,m 1<m 2,A 、B 与轻弹簧拴接,静止在光滑水平面上,第一次用锤子在左侧与A 球心等高处水平快速向右敲击A ,作用于A 的冲量大小为I 1,第二次两小球及弹簧仍静止在水平面上,用锤子在右侧与B 球心等高处水平快速向左敲击B ,作用于B 的冲量大小为I 2,I 1=I 2,则下列说法正确的是( )A .若两次锤子敲击完成瞬间,A 、B 两球获得的动量大小分别为p 1和p 2,则p 1=p 2B .若两次锤子敲击分别对A 、B 两球做的功为W 1和W 2,则W 1=W 2C .若两次弹簧压缩到最短时的长度分别为L 1和L 2,则L 1<L 2D .若两次弹簧压缩到最短时,A 、弹簧、B 的共同速度大小分别为v 1和v 2,则v 1>v 22.如图甲所示,质量为M =3.0 kg 的平板小车C 静止在光滑的水平面上,在t =0时,两个质量均为1.0 kg的小物体A和B同时从左右两端水平冲上小车,1.0 s内它们的v t 图象如图乙所示,g取10 m/s2.(1)小车在1.0 s内的位移为多大?(2)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?考点二 力学三大观点解决多过程问题1.三大力学观点的选择技巧根据问题类型,确定应采用的解题方法.一般来说,只涉及作用前后的速度问题,考虑采用动量守恒和能量守恒;涉及运动时间与作用力的问题,采用动量定理,考虑动能定理;涉及变化情况分析时由于涉及变量较多,一般采用图象法等.2.三大解题策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度.(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功).(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例4. 如图所示,质量为M=100 g、带有光滑弧形槽的滑块放在水平面上,弧形槽上圆弧对应的圆心角为θ=60°,半径R=0.2 m,与其处于同一竖直平面内的光滑半圆轨道cd的半径为r=0.2 m,c、d两点为半圆轨道竖直直径的两个端点,轨道与水平面相切于c点,已知b点左侧水平面光滑,b、c间的水平面粗糙.两质量分别为m1=100 g、m2=50 g的物块P、Q放在水平面上,两物块之间有一轻弹簧(弹簧与两物块均不拴接),用外力将轻弹簧压缩一定长度后用细线将两物块拴接在一起,初始时弹簧储存的弹性势能为E p=0.6 J.某时刻将细线烧断,弹簧将两物块弹开,两物块与弹簧分离时,物块P还未滑上弧形槽,物块Q还未滑到b点,此后立即拿走弹簧,物块P冲上弧形槽,已知x bc=1 m,重力加速度g=10 m/s2,两物块均可看成质点,忽略物块P冲上弧形槽瞬间的能量损失.(1)通过计算分析物块P能否从滑块左侧冲出,若能,求出物块P上升的最大高度,若不能,求出物块P和滑块的最终速度大小.(2)要使物块Q能冲上半圆轨道且不脱离半圆轨道,则物块Q与水平面间的动摩擦因数μ应满足什么条件?跟进训练3.如图所示,在竖直平面(纸面)内固定一内径很小、内壁光滑的圆管轨道ABC,它由两个半径均为R的四分之一圆管顺接而成,A、C两端切线水平.在足够长的光滑水平台面上静置一个光滑圆弧轨道DE,圆弧轨道D端上缘恰好与圆管轨道的C端内径下缘水平对接.一质量为m的小球(可视为质点)以某一水平速度从A点射入圆管轨道,通过C点后进入圆弧轨道运动,过C点时轨道对小球的压力为2mg,小球始终没有离开圆弧轨道.已知圆弧轨道DE的质量为2m.重力加速度为g.求:(1)小球从A点进入圆管轨道时的速度大小;(2)小球沿圆弧轨道上升的最大高度.专题五 动力学、动量和能量观点的综合应用关键能力·分层突破例1 解析:由题意可知,当b的速度最小时,弹簧恰好恢复原长,设此时a的速度最大为v,由动量守恒定律和机械能守恒定律得:m b v0=mb v1+m a v,12m b v2=12m b v12+12m a v2,代入数据解得:m a=0.5 kg,v=4 m/s,故A错误,B正确;两物块的速度相等时,弹簧弹性势能最大,由动量守恒定律和机械能守恒定律得:m b v0=(m a+m b)v2,E p=12mbv−212(ma+m b)v22,代入数据解得:Ep=1.5 J,故C正确;在a离开挡板前,a、b及弹簧组成的系统受到挡板向右的力,所以系统机械能守恒、动量不守恒,故D错误.答案:BC例2 解析:(1)P1、P2碰撞瞬间,P的速度不受影响,根据动量守恒mv0=2mv1,解得v1=v 0 2最终三个物体具有共同速度,根据动量守恒:3mv0=4mv2,解得v2=3 4 v0(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:1 2×2mv+¿1212×2mv−212×4m v22¿=2mgμ(L+x)×2解得x=v0232μg-L在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p=2mgμ(L+x)解得E p=116mv2答案:(1)v0234v0 (2)v0232μg-L 116mv2例3 解析:子弹射入小车的过程中,由动量守恒定律得:m1v0=(m1+m2)v1,解得v1=3 m/s;小物体在小车上滑行过程中,由动量守恒定律得(m1+m2)v1=(m1+m2+m3)v2,解得v2=1.5 m/s,选项B错误;以小物体为研究对象,由动量定理得I=μm3gt=m3v2,解得t=13s,选项A正确;小车对小物体的摩擦力的冲量为I=0.45 N·s,选项D正确;当系统相对静止时,小物体在小车上滑行的距离为l,由能量守恒定律得μm3gl=1 2(m1+m2)v−1212(m1+m2+m3)v22,解得l=0.5 m,所以小车的最小长度为0.5 m,选项C错误.答案:AD1.解析:由动量定理I=Δp可知,由于I1=I2,则两次锤子敲击完成瞬间有p1=p2,故A正确;由于两次锤子敲击完成瞬间两球具有动量大小相等,由E k=p22m可知,A球获得的初动能更大,由动能定理可知W1>W2,故B错误;由动量守恒定律可得m1v0=(m1+m2)v,得v=m1v0m1+m2,由能量守恒有12m1v2=12(m1+m2)v2+E p,得E p=m1m2 2(m1+m2)v2,由于p1=p2,则质量越大的,初速度越小,即A球获得的初速度较大,则敲击A球后弹簧的最大弹性势能较大,即L1<L2,故C正确;由动量守恒定律可得m1v0=(m1+m2)v=p,得v=m1v0m1+m2=pm1+m2,则两次共速的速度大小相等,即v1=v2,故D错误.答案:AC2.解析:(1)由v-t图象可知:A、B的加速度大小为a A=2 m/s2,a B=2 m/s2由牛顿第二定律可知,f A=2 N,f B=2 N所以平板小车在1.0 s内所受合力为零,故小车不动,即位移为零.(2)由图象可知0~1.0 s内A、B的位移分别为:x A=12(2+4)×1 m=3 m,x B=12×2×1 m=1 m1.0 s后,系统的动量守恒,三者的共同速度为v,则mv A=(M+2m)v,代入数据得:v=0.4 m/s1.0 s后A减速,小车和B一起加速且a车=23+1m/s2=0.5 m/s2x′A=v2−v A2-2a A=0.96 mx车=v22a车=0.16 m车的长度至少为l=x A+x B+x′A-x车=4.8 m.答案:(1)0 (2)4.8 m例4 解析:(1)弹簧将两物块弹开的过程中弹簧与两物块组成的系统动量守恒、机械能守恒,设弹簧恢复原长后P、Q两物块的速度大小分别为v1、v2,则有0=m1v1-m2v2,E p=12m1v+¿1212m2v22¿解得v1=2 m/s,v2=4 m/s物块P以速度v1冲上滑块,P与滑块相互作用的过程中水平方向动量守恒,系统的机械能守恒,假设P不能从滑块的左侧冲出,且P在滑块上运动到最高点时的速度为v,距水平面的高度为h,则有m1v1=(m1+M)v,12m1v12=12(m1+M)v2+m1gh解得h=0.1 m由于h=R(1-cos 60°),所以物块P恰好不能从滑块左侧冲出,假设成立,之后物块P沿弧形槽从滑块上滑下,设物块P返回到水平面时的速度为v3、滑块的速度为v4,由动量守恒定律和机械能守恒定律得m1v1=m1v3+Mv4,12m1v12=12m1v+¿3212M v42¿解得v3=0,v4=2 m/s.(2)若Q恰能经过d点,则Q在d点的速度v d满足m2g=m2v d2 rQ从b点运动到半圆轨道最高点d的过程,由动能定理有-μm2gx bc-2m2gr=12m2v−d212m2v22解得Q恰能经过半圆轨道最高点时μ=0.3若Q恰好能运动到与半圆轨道圆心等高点,则由动能定理得-μm2gx bc-m2gr=0−12m2v22解得Q恰能运动到与半圆轨道圆心等高点时μ=0.6若Q恰能到达c点,则由动能定理得-μm2gx bc=0−12m2v22解得Q恰能运动到c点时μ=0.8分析可知,要使Q能冲上半圆轨道且不脱离半圆轨道,应使0<μ≤0.3或0.6≤μ<0.8.答案:(1)见解析 (2)0<μ≤0.3或0.6≤μ<0.83.解析:(1)小球过C点时,有2mg+mg=m v C2R,解得v C=√3gR.小球从A到C,由机械能守恒定律得12m v2=12m vC2+mg·2R,联立解得v0=√7gR(2)小球冲上圆弧轨道后的运动过程,在水平方向上,由动量守恒定律得mv C=(m+2m)v共.由机械能守恒定律得12m vC2=12(m+2m)v共2+mgh,联立解得h=R.答案:(1)√7gR (2)R。
第五节机械能守恒定律和能量守恒1.动能与势能(包括重力势能与弹性势能)的和叫做机械能。
2.在只有重力(或者弹力)做功的情形下,物体的动能与势能可以相互转化,但机械能的总量保持不变,这个定律叫做机械能守恒定律。
3.能量守恒定律:能量既不会消灭,也不会产生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。
例1AB是竖直平面内的四分之一圆弧轨道,在下端B与水平直轨相切,如图所示.一小球自A点起由静止开始沿轨道下滑。
已知圆轨道半径为R,小球的质量为m,不计各处摩擦。
求:(1)小球经过圆弧轨道的B点和水平轨道的C点时,所受轨道支持力N B、N C各是多大?(2)小球下滑到距水平轨道的高度为R/2时所受轨道支持力N为多大?【解析】由A到B的过程中,四分之一圆弧轨道对球不做功,只有重力做功,所以这个过程中机械能守恒mgR=错误!mv错误!对B点受力分析可知重力G和支持力两者的合力提供球做圆周运动的向心力N B-G=错误!当运动到C点时,竖直方向受力平衡即N C=G所以:N B=3mg N C=mg(2)当运动到距水平轨道的高度为R/2时,设此时的速度为v,所受轨道支持力为N,只有重力做功,机械能守恒,由机械能守恒定律得mg错误!=错误!mv2受力分析可得N-sin30°mg=错误!N=错误!mg即所受轨道支持力为错误!mg【答案】(1)3mg mg(2)错误!mg例2山地滑雪是人们喜爱的一项体育运动,一滑雪坡由AB 和BC组成,AB是倾角为37°的斜坡,BC是半径R=5 m的圆弧面,圆弧面和斜面相切于B,与水平面相切于C,如图所示,AB竖直高度差h=8。
8 m,运动员连同滑雪装备总质量为80 kg,从A点由静止滑下通过C点后飞落(不计空气阻力和摩擦阻力,g取10 m/s2,sin 37°=0.6,cos 37°=0.8)。
第3讲机械能守恒定律及其应用1 重力做功与重力势能(1)重力做功的特点:重力做功与路径无关,只与初、末位置的高度差有关。
(2)重力做功与重力势能变化的关系①定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加。
②定量关系:物体从位置A到位置B的过程中,重力对物体做的功等于物体重力势能的减少量,即W G=-ΔE p。
③重力势能的变化量是绝对的,与参考面的选取无关。
湖南长沙雅礼中学月考)(多选)质量为m的物体,从静止开始以2g的加速度竖直向下运动h高度,下列说法正确的是()。
A.物体的重力势能减少2mghB.物体的机械能保持不变C.物体的动能增加2mghD.物体的机械能增加mgh【答案】CD2 弹性势能(1)定义:发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能。
(2)大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大。
(3)弹力做功与弹性势能变化的关系:类似于重力做功与重力势能变化的关系,用公式可表示为W=-ΔE p。
【温馨提示】弹性势能是由物体的相对位置决定的。
同一根弹簧的伸长量和压缩量相同时,弹簧的弹性势能相同。
(2018江苏南京10月模拟)如图所示,在光滑水平面上有一物体,它的左端固定连接一弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去F后,物体将向右运动,在物体向右运动的过程中,下列说法正确的是()。
A.弹簧的弹性势能逐渐减少B.弹簧的弹性势能逐渐增加C.弹簧的弹性势能先增加再减少D.弹簧的弹性势能先减少再增加【答案】D3 机械能守恒定律(1)内容:在只有重力或弹力做功的系统内,动能与势能可以互相转化,而总的机械能保持不变。
(2)机械能守恒定律的三种表达形式及应用①守恒观点:a.表达式,E k1+E p1=E k2+E p2或E1=E2。
b.意义,系统初状态的机械能等于末状态的机械能。
6.5 机械能守恒定律的应用 知识目标 一、应用机械能守恒定律解题的基本步骤 (1)根据题意选取研究对象(物体或系统).
(2)明确研究对象的运动过程,分析对象在过程中的受力情况,弄清各力做功的情况,判断机械能是否守恒.
(3)恰当地选取零势面,确定研究对象在过程中的始态和末态的机械能.
(4)根据机械能守恒定律的不同表达式列式方程,若选用了增(减)量表达式,(3)就应成为确定过程中,动能、势能在过程中的增减量或各部分机械能在过程中的增减量来列方程进行求解.
【例1】如图5一66所示一质量为m 的小球,在B 点从静止开始沿半球形容器内壁无摩擦地滑下,B 点与容器底部A 点的高度差为h ,容器质量为M ,内壁半径
为R .求:
(1)当容器固定在水平桌面上,小球滑至底部A 时,容器内壁对小球
的作用力大小.
(2)当容器放置在光滑的水平桌面上,小球滑至底部A 时,小球相对容器的速度大小. 解析:(1)m 下滑只有重力做功,机械能守恒mgh=½mv 2
达底端A ,根据牛顿第二定律T -mg=mv 2/R 所以T=mg +2mgh/R=mg (1+2h/R ) (2若容器在光滑水平桌面上,选m 和M 为研究对象,系统机械能守恒,水平方向上动量守恒
mgh=½mv 2+½Mu 12,0=mv 十Mu 1 所以u 1=-mv/M
代入得
mgh =½mv 2M M m +,所以v=M ghM 2,小球相对容器的速度大小为v /=v —u 1=v 十mv/M
所以v /=()M
M m gh +2 答案:(1)mg (1+2h/R ),(2)
()M M m gh +2 规律方法
1、机械能守恒定律与圆周运动结合
物体在绳、杆、轨道约束的情况下在竖直平面内做圆周运动,往往伴随着动能,势能的相互转化,若机械能守恒,即可根据机械能守恒去求解物体在运动中经过某位里时的
速度,再结合圆周运动、牛顿定律可求解相关的运动学、动力学的量.
【例2】如图1所示.一根长L 的细绳,固定在O 点,绳另一端系一条质量为m 的小球.起初将小球拉至水平于A 点.求(1)小球从A 点由静止释放后到达最低点C 时的速度.(2)小球摆到最低点时细绳的拉力。
解:(1)由机械能守恒有:mgl=½mv C 2;2C v gl = (2) 在最低点,由向心力公式有T -mg=mv 2/l;T=3mg; 【例3】在上例中,将小球自水平向下移,使细绳与水平方向成θ=300
角,如图2所示.求小球从A 点由静止释放后到达最低点C 时细绳的拉
力.
解:()211sin ;2
C mgl mv θ-=()21sin C v gl gl θ=-= 2
,2v T mg m T mg l -==
【例4】如图,长为L 的细绳一端拴一质量为m 的小球,另一端固定在O 点,在O 点的正下方某处P 点有一钉子,把线拉成水平,由静止释放小球,使线碰到
钉子后恰能在竖直面内做圆周运动,求P 点的位置?
解析: 设绳碰到钉子后恰能绕P 点做圆周运动的半径为r ,运动到最
高点的速率为V ,由机械能守恒定律得:
()2122
mg l r mv -= 在最高点,由向心力公式有:2v mg m r =,25r l =,35
OP l = 【例5】如图5—69所示,长为l 不可伸长的细绳一端系于O 点,一端
系一质量为m 的物体,物体自与水平夹角300(绳拉直)由静止释放,
问物体到达O 点正下方处的动能是多少?
错解:由机械能守恒定律:mg1·5l=½mv 2, 所以最低点动能为
1.5mgl
分析:小球运动过程是:先由A 点自由下落至B .自B 点做圆周运
动,就在B 处绳使其速度改变的瞬间小球的动能减少,下面我们通过运算来说明这个问题.
正确解法: v B =gl 2,其方向竖直向下,将该速度分解如图5一70所
示
v 2=vcos300=gl 2cos300
由B 至C 的过程中机械能守恒 ½mv 22十mg0.5l=½mv 2C
由此得½mv 2C =5mgl/4
答案:5mgl/4 点评:通过例5、例6两题,人们会有这种想法:为什么例 5中在速度改变瞬间(B 点)有能量损失,而例 6中就没有能量损失,这其中原因是什么呢?仔细考虑可知:例6中绳的作用力与速度垂直,所以只改变了速度的方向而没有改变速度的大小,而例5中虽然速度大小发生了变化(v 2<v B ).由动量定理可知,沿半径方向绳的拉力T 产生的冲量使沿绳方向的动量发生了变化,即TΔt =mv 1,因此该情况就有能量损失,也就不可用机械能守恒定律.
【例6】如图所示,在一根长为L 的轻杆上的B 点和末端C 各固定一个
质量为m 的小球,杆可以在竖直面上绕定点A 转动,BC=L/3,现将杆拉到
水平位置从静止释放,求末端小球C 摆到最低点时速度的大小和这一过程
中BC 端对C 球所做的功。
(杆的质量和摩擦不计)
解析:B 、C 两球系统在下摆的过程中只有重力做功,系统机械能守恒。
22111232B C mgL mgL mv mg L mv +=+⨯+; 由于B 、C 角速度相同,23
B C v v = 解得:3013
C gL v = 对于C 球,由动能定理得21
0,2BC c W mgL mv +=-解得杆BC 段对C 球做功213
BC W mgL =
2、机械能守恒定律的灵活运用
【例7】如图所示,一对杂技演员(都视为质点)乘秋千(秋
千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到
最低点B 时,女演员在极短时间内将男演员沿水平方向推出,
然后自已刚好能回到高处A 。
求男演员落地点C 与O 点的水
平距离s 。
已知男演员质量m 1,和女演员质量m 2之比m 1m 2
=2,秋千的质量不计,秋千的摆长为R , C 点比O 点低5R 。
解:设分离前男女演员在秋千最低点B 的速度为v 0,由机械能守恒定律
(m 1+m 2)gR=½ (m 1+m 2)v 02 设刚分离时男演员速度的大小为v 1,方向与v 0相同;女演员速度的大小为v 2,方向与v 0相反,由动量守恒,
(m 1+m 2)v 0=m 1v 1-m 2v 2
分离后,男演员做平抛运动,设男演员从被推出到落在C 点所需的
时间为t ,根据题给条件,由运动学规律4R=12
gt 2 s=v 1t 根据题给条件,女演员刚好回到A 点,由机械能守恒定律,m 2gR=12
m 2v 22 已知m 1/m 2=2,由以上各式可得 s=8R
【例8】如图5 -4 -5所示,长度相同的三根轻杆构成一个正三角形支架,在A 处固定质量为2m 的小球,B 处固定质量为m 的小球.支架悬挂在0点,可绕过O 点并与支架所在平面相垂直的固定轴转动.开始时OB 与地面相垂直,放手后开始运动,在不计任何阻力的情况下,下列说法正确的是
A. A 球到达最低点时速度为零
B. A 球机械能减少量等于B 球机械能增加量
C. B 球向左摆动所能达到的最高位置应高于A 球开始运动时的高度
D.当支架从左向右回摆时,A 球一定能回到起始高度
解析:因A 处小球质量大,所处的位置高,图中三角形框架处于不稳定状态,释放后支架就会向左摆动.摆动过程中只有小球受的重力做功,故系统的机械能守恒,选项B 正确,D 选项也正确.A 球到达最低点时,若设支架边长是L. A 球下落的高度便是L/2,有2mg·(L/2)的重力势能转化为支架的动能,因而此时A 球速度不为零,选项A 错.当
A 球到达最低点时有向左运动的速度,还要继续左摆,
B 球仍要继续上升,
因此B 球能达到的最高位置比A 球的最高位置要高,C 选项也正确.。