2017-2018学年广东省佛山市三水区八年级(上)期末数学试卷
- 格式:doc
- 大小:104.55 KB
- 文档页数:6
= 八年级数学上学期期末考试试题一、选择题(本大题共 8 小题,每小题 2 分,共 16 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项填写第 3 页相应答题栏内,在卷Ⅰ上答题无效)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是A .B .C .D .2.在-0.101001, 7 , 1 ,- ,0.2121121112…中,无理数的个数是 4 2A .1 个B .2 个C .3 个D .4 个3.下列调查中,适宜采用普查方式的是A .了解一批圆珠笔的寿命B .检查一枚用于发射卫星的运载火箭的各零部件C .考察人们保护海洋的意识D .了解全国九年级学生的身高现状4.下列四组数据中,“不能”作为直角三角形的三边长的是A .3,4,6B .5,12,13C .6,8,10D . 2 , 2 ,25.若点 A (﹣3,y 1),B (2,y 2),C (3,y 3)是函数 y=﹣x+2 图象上的点,则A .y 2<y 3<y 1B .y 1<y 2<y 3C .y 1<y 3<y 2D .y 1>y 2>y 3 6.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB 的依据是A .SASB .ASAC .SSSD .AASBA(第 6 题)(第 7 题) (第 8 题)7.如图,直线 y=﹣x+c 与直线 y=ax+b 的交点坐标为(3,﹣1),关于 x 的不等式﹣x+c≥ax+b 的解集为A .x≥﹣1B .x≤﹣1C .x≥3D .x≤38.如图,正方形格中的每个小正方形边长都是 1.已知 A 、B 是两格点,若△ABC 为等腰三角形,且 △SABC 1.5,则满足条件的格点 C 有A .1 个B .2 个C .3 个D .4 个, 二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.请将答案填写第 3 页相应答题栏内,在卷Ⅰ上答题无效)9. 81 的算术平方根是 ▲ .10.某市在一次扶贫助残活动中,共捐款 3185800 元,将 3185800 用科学记数法表示为 ▲ (精确到万位). 11.己知点 P 的坐标为(2,-3),若点 Q 与点 P 关于 y 轴对称,则点 Q 的坐标为 ▲ . 12.某市决定从桂花、菊花、杜鹃花中随机选取一种作为市花,选到杜鹃花的概率是 ▲ . 13.等腰三角形两边长分别为 4 和 8,则这个等腰三角形的周长为 ▲ . 14.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形 A ,B ,C ,D 的面积和是 49cm 2,则其中最大的正方形 S 的边长为 ▲ cm . (第 14 题) (第 16 题) 15.若点 A 的坐标(x ,y )满足条件(x ﹣3)2+|y+2|=0,则点 A 在第 ▲ 象限. 16. 如图,在等边△ABC 中,D 、E 分别是 AB 、AC 上的点,且 AD=CE ,则∠BCD+∠CBE = ▲ 度. 17.已知直线 a ∥b ,且 a 与 b 之间的距离为 4,点 A 到直线 a 的距离为 2,点 B 到直线 b 的距离为 3 AB= 2 30 .试 在直线 a 上找一点 M ,在直线 b 上找一点 N ,满足 MN ⊥a 且 AM+MN+NB 的长度和最短,则此时 AM+NB=▲ . 18.如图,点 A 、B 的坐标分别为(0,3)、(4,6),点 P 为 x 轴上的一个动点,若点 B 关于直线 AP 的对称 点 B′ 恰好落在坐标轴上,则点 B′ 的坐标为 ▲ . (第 17 题) (第 18 题)2016-2017 学年度第一学期期末调研测试八年级数学答题卷卷Ⅱ-20三题号一二192021222324252627总分得分一、选择题答题栏(每小题2分,共16分)题号12345678选项二、填空题答题栏(每小题2分,共20分)9.10.11.12.13.14.15.16.17.18.三、解答题(本大题共有9小题,共64分,解答时在试卷相应的位置上写出必要的文字说明、证明过程或演算步骤.)19.(本小题满分5分)计算:|3﹣π|+(4)+(7-1)+3-64.20.(本小题满分6分)求下面各式中的x:⑴2x2=50;⑵(x+1)3=—8.21.(本小题满分7分)“春节”是我国的传统佳节,民间历来有吃“汤圆”的习俗.某食品厂为了解市民对去年销量较好的肉馅(A)、豆沙馅(B)、菜馅(C)、三丁馅(D)四种不同口味汤圆的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚根据以上信息回答:⑴本次参加抽样调查的居民人数是__________人;⑵将图①②补充完整;(直接补填在图中)⑶求图②中表示“A”的圆心角的度数;⑷若居民区有8000人,请估计爱吃D汤圆的人数.不完整).请22.(本小题满分7分)已知:如图:AB∥CD,AB=CD,AD、BC相交于点O,BE∥CF,BE、CF分别交AD于点E、F,求证:⑴OA=OD;⑵BE=CF.23.(本小题满分7分)已知:如图,方格纸中格点A,B的坐标分别为(﹣1,3),(﹣3,2).⑴请在方格内画出平面直角坐标系;⑵已知点A与点C关于y轴对称,点B与点D关于x轴对称,请描出点C、D的位置,并求出直线CD的函数表达式.24.(本小题满分7分)已知:如图,在△ABC中,∠ACB=90o,AC=BC,,D是AB的中点,点E在AC上,点F在BC上,且AE=CF.⑴求证:DE=DF,DE⊥DF;⑵若AC=2,,求四边形DECF面积.AECDFB25.(本小题满分8分)某学校利用寒假组织340名师生进行社会实践活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.⑴请你帮助学校设计所有可行的租车方案;⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?26.(本小题满分8分)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系.小明发现,利用轴对称做一个变化,在B C上截取CA′=CA,连接DA′,得到一对全等的三角形,从而将问题解决(如图2).请回答:..........⑴BC和AC、AD之间的数量关系并证明.⑵参考上述思考问题的方法,解决下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.求AB的长.27.(本小题满分9分)一辆快车和一辆慢车分别从甲、乙两地同时出发匀速相向而行,快车到达乙地后,原路原速返回甲地.图1表示两车行驶过程中离甲地的路程y(km)与行驶时间x(h)的函数图象.⑴直接写出快慢两车的速度;⑵在行驶过程中,慢车出发多长时间,两车相遇?⑶若两车之间的距离为s km,在图2的直角坐标系中画出s(km)与x(h)的函数图象.在△ABO 与△CDO 中, ⎨∠AOB = ∠DOC ,⎪ A B = CD在△EBA 和△FCD 中, ⎨∠AEB = ∠DFC ,⎪ A B = CD数学上学期期末考试试题答案一、选择题 ACBA DCDB二、填空题9. 9 10. 3.19×106 11.(-2,-3) 12. 1 3 13. 20 14.7 15.四 16. 60 17. 8 18.(﹣4,0)、(0,﹣2)、(0,8)三、解答题19.解:原式=π -3+4+1-4…………………4 分 =π -2. …………………5 分20.解:(1)原方程可化为:x 2=25…………………1 分开方得:x=5 或 x=﹣5; …………………3 分(2)开立方得:x+1=—2, …………………2 分解得:x=—3. …………………3 分21. 解:(1)本次参加抽样调查的居民的人数是:60÷10%=600(人); …………………1 分(2) 如图所示…………………4 分(一个 1 分)(3)360°×30%=108°.图②中表示“A”的圆心角的度数 108° (5)(4)8000×40%=3200(人).即爱吃 D 汤圆的人数约为 3200 人.…………7 分22.证明:(1)∵AB∥CD,∴∠A=∠D,⎧∠A = ∠D⎪⎩∴△ABO≌△CDO,分∴AO=CO; …………………3 分(2)∵AB∥CD,∴∠A=∠D,∵BE∥CF,∴∠BEO=∠CFO,∴∠AEB=∠DFC,⎧∠A = ∠D⎪⎩ (第 22 题)∴△ABE≌△DCF(AAS ).∴EB=CF. (7)23. 解:(1)如图所示;…………………2 分 分k = ⎩- 3k + b = -2 2 ABC ;…………………6 分 △+S = = ⎩16x + 20(10 - x) ≥ 170 (2)如图所示,由图可知,C (1,3),D (﹣3,﹣2),作图 C 、D 点…………………4 分设直线 CD 的解析式为 y=kx+b (k≠0),⎧ ⎧k + b = 3 ⎪ 则 ⎨ ,解得 ⎨ ⎪b = ⎪⎩5 4 74,故直线 CD 的解析式为 y = 5 7 x + .………7 分 4 424.⑴∵AC=BC,∠ACB=90o , ∴∠A=∠B=45o∵CD 是 AB 边中线∴AD=CD, ∠DCB=45o∴∠A=∠DCB又∵AE=CF ∴△AED≌△CFD ∴DE=DF, ∠ADE=∠CDF, …………………3 分 ∵AC=BC,CD 是 AB 边中线 ∴CD⊥AB ∴∠CDA=90o ∴∠EDF=90o ∴DE⊥DF. …………………5 分 ⑵由⑴得△AED≌△CFD∴四边形 DECF 面积=S CED CFD S △CED +S △AED △=S ACD1S又∵AC=2, ∴△ABC 面积=2∴四边形 DECF 面积=1. …………………7 分25.解:(1)设甲车租 x 辆,则乙车租(10-x )辆,根据题意,得⎧40x + 30(10 - x) ≥ 340 ⎨解之得 4 ≤ x ≤ 7.5…………………2 分∵x 是整数∴x=4、5、6、7∴所有可行的租车方案共有四种:①甲车 4 辆、乙车 6 辆;②甲车 5 辆、乙车 5 辆;③甲车 6 辆、乙车 4 辆;④甲车 7 辆、乙车 3 辆.…………………4 分(2)设租车的总费用为 y 元,则 y =2000x +1800(10-x ),即 y =200x +18000……6 分在△ADC 和△A′DC 中, ⎨∠ACD = ∠A 'CD , ⎪CD = CD 在△AEC 和△ADC 中, ⎨∠DAC = ∠EAC , ⎪ A C = AC ∵k=200>0,∴y 随 x 的增大而增大∵x=4、5、6、7∴x=4 时,y 有最小值为 18800 元,即租用甲车 4 辆、乙车 6 辆,费用最省.………8 分26. 解:(1)BC=AC+AD ;………………1 分证明:∵CD 平分∠ACB, ∴∠ACD=∠A′CD,⎧CA ' = CA ⎪ ⎩∴△ADC≌△A′DC(SAS );………………2 分∴DA′=DA,∠CA′D=∠A=60°,∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵∠CA′D=∠B+∠BDA′,∴∠BDA′=30°=∠B,∴DA′=BA′, ∴BA′=AD,∴BC=CA′+BA′=AC+AD;………………4 分⑵如图,在 AB 上截取 AE=AD ,连接 CE ,如图 3 所示:∵AC 平分∠BAD,∴∠DAC=∠EAC.⎧CA ' = CA ⎪ ⎩∴△ADC≌△AEC(SAS ),………………5 分∴AE=AD=9,CE=CD=10=BC ,过点 C 作 CF⊥AB 于点 F ,∴EF=BF,设 EF=BF=x .在 Rt△CFB 中,∠CFB=90°,由勾股定理得 CF 2=CB 2﹣BF 2=102﹣x 2,在 Rt△CFA 中,∠CFA=90°,由勾股定理得 CF 2=AC 2﹣AF 2=172﹣(9+x)2.∴102﹣x 2=172﹣(9+x)2,解得:x=6,………………7 分∴AB=AE+EF+FB=9+6+6=21,∴AB 的长为 21.………………8 分27. 解:(1)由题意,得,A 、B 两地距离之间的距离为 2250km ,2250=10k , ⎨ , ⎨ 2 20k + b = 0 30k + b = 0 1 1⎩ ⎩ 解得:k=225, ⎨⎧k = -225 , ⎨ 2 ⎩b = 4500 ⎩b = 2250快车的速度为:2250÷10=225km/h,慢车的速度为:2250÷30=75km/h; ………………2 分(2)设 OA 的解析式为 y=kx ,AB 的解析式为 y 1=k 1x+b 1,CD 的解析式为 y 2=k 2x+b 2,由题意,得⎧10k + b = 2250 ⎧b = 22501 12 2, 1 12⎧k = -75,∴y=225x,y 1=﹣225x+4500,y 2=﹣75x+2250 ………………5 分当 225x=﹣75x+2250 时,x=7.5.当﹣225x+4500=﹣75x+2250 时,解得:x=15.答:慢车出发 7.5 小时或 15 小时时,两车相遇;………………7 分(3)由题意,得7.5 小时时两车相遇,10 时时,两车相距 2.5(225+75)=750km ,15 时时两车相遇,20 时时两车相距 750km ,20 时时两车相距为 0,由这些关键点画出图象即可.……………9 分八年级数学上学期期末考试试题一、选择题(本大题共10小题,每小题3分,共30分)1.若一个三角形的两边长分别为3和7,则第三边长可能是()A.6B.3C.2D.112.要使分式x+1有意义,则x的取值应满足(x-2)A.x=-1B.x≠-1C.x=2D.x≠23.下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+14.下列图形中不是轴对称图形的是()C.(3m2)3=9m6D.2a3⋅a4=2a7A.B.C.D.5.已知一个多边形的内角和是1080°,则这个多边形的边数是()A.6B.7C.8D.96.把多项式x2+ax+b分解因式得(x+1)(x-3),则a,b的值分别是()A.a=2,b=3B.a=-2,b=-3A D C.a=-2,b=3D.a=2,b=-3E△7.如图,在AFD和△CEB中,点A、E、F、C在同一直线上,∠B=∠D,FAD=BC,AD∥BC,若AE=6,则CF=()B第7题图C A.4B.8C.3D.68.用换元法解方程2x2-24x x2-1-=3时,设=y,则原方程可化为()x x2-1xA.y114y4--3=0B.2y--3=0C.2y--3=0D.--3=0xkb1 24y4y y2yB A9.如图,已知AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若A P=4,则AD=()A.8B.6C.4D.2CPD10.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,第9题图则∠B的度数为()A.45°B.40°C.36°D.30°二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a2-4b2=.AB D第10题图C12.分式方程23=的解为.x-3xA△13.如图,在ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.△14.如图,在ABC中,∠A=40°,点O是∠ABC和∠ACB角平分线的交点,则∠BOC=.115.计算:(-3)2016⋅(-)2017=.3B D第13题图AC16.若113+=,ab=2,那么a-b的值为.a b2O三、解答题(一)(本大题共3小题,每小题6分,共18分)B C 17.化简:(x+5)(x-1)+(x-2)2.第14题图1a218.先化简,再求值:(1+)⋅a a2-1,其中a=2017.△19.如图,已知在Rt ABC中,∠C=90°,∠CAB的平分线交BC于点E,EF⊥AB于点F.求证:AC=AF.AFC E第19题图B四、解答题(二)(本大题共3小题,每小题7分,共21分)20.已知:x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.21.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.AEB DC F第21题图22.“新鲜水果店”在批发市场用3000元购进一批葡萄进行销售,前两天以高于进价40%的价格共卖出150千克.因出现高温天气,葡萄不易保鲜,为减少损失,第三天该店老板果断地将剩余葡萄以低于进价20%的价格全部售出,前后一共获利750元.求该水果店老板购进葡萄多少千克?五、解答题(三)(本大题共3小题,每小题9分,共27分)△23.如图,已知ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM⊥AE于点M,连结BE.(1)请判断线段AD、BE之间的数量关系,并说明理由;CE(2)求证:AM=CM+BE.MDA B第23题图24.阅读下列材料:对于任意的正实数a,b,总有a+b≥2ab成立(当且仅当a=b时,等号成立),这个不等式称为“基本不等式”.利用“基本不等式”可求一些代数式的最小值.例如:若x>0,求式子x+1x的最小值.解:∵x>0,∴x+11≥2x⋅=21=2,x x∴x+1x的最小值为2.解答下列问题:9x2-2x+5(1)若x>0,求x+的最小值;(2)已知x>1,求的最小值.x x-125.如图①,点A、B分别在射线OM,ON上,且∠MON为钝角,现以线段OA、OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP和△OBQ,点C、D分别是OA、OB的中点,且四边形CODE是平行四边形.(△1)求证:PCE≌△EDQ;(△2)如图②,延长PC,QD交于点R.若∠MON=150°,求证:A BR为等边三角形.MAC EPO DB NQ第25题图①R MA P CEO D B N第25题图②Q18.解:原式= a + 1 ⋅ a = a + 1 ⋅ ∴CE=EF,------------------------------------------------------------------------- 2分⎧CE = FE ,----------------------------------------------------------------------- 4分⎩ AE = AE 数学上学期期末考试试题答案一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)1.A ;2.D ;3.D ;4.B ;5.C ;6.B ;7.D ;8.C ;9.A ;10.C .二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)11. (a + 2b )(a - 2b ) ;12. x = 9 ;13.20;14.110°;15. - 1 ;16. ± 1 .3三、解答题(一)(本大题共 3 小题,每小题 6 分,共 18 分)17.解:原式 = x 2 + 4x - 5 + x 2 - 4x + 4 ------------------------------------4 分= 2x 2 - 1 .-------------------------------------------------------6 分2a a 2 - 1------------------------------------------------------1分a 2 a (a + 1)(a -1) ---------------------------------------------2分= a ,----------------------------------------------------------4分 a -1当 a = 2017 时,原式= 2017 = 2017 .------------------------------------6分2017 - 1201619.证明:∵AE 是∠BAC 的平分线,EC⊥AC,EF⊥A B ,AFCEB第 19 题图在Rt△ACE 与Rt△AFE 中,⎨∴Rt△ACE≌Rt△AFE(HL ), ------------------------------------------------5分∴AC =AF .------------------------------------------------------------------------6 分四、解答题(二)(本大题共 3 小题,每小题 7 分,共 21 分)20.解:∵ x = 1 - 2 , y = 1 + 2 ,∴ x - y = (1 - 2) - (1 + 2) = -2 2 ,---------------------------------------1分x ⋅ y = (1 - 2) (1 + 2) = -1 ,-----------------------------------------------2分∴ x 2 + y 2 - xy - 2 x + 2 y = ( x - y)2 + 2 x y - xy - 2( x - y) ----------------4分= ( x - y)2 + xy - 2( x - y) -------------------------5分MC∴∠CD M=45°,-----------------------------------------------------------------------5分∴x+9≥2x⋅----------------------------------------------------------------------2分=(-22)2-1-2⨯(-22)------------------------6分=42+7.------------------------------------------7分△21.解:(1)∵ABC是等边三角形,∴∠B=60°,-----------------------1分∵DE∥AB,∴∠EDC=∠B=60°,------------------------------------------------2分∵EF⊥DE,∴∠DEF=90°,A∴∠F=90°﹣∠EDC=30°.----------------------------------------------------------3分(2)∵∠ACB=60°,∠EDC=60°,∴∠DE C=60°,E∴△EDC是等边三角形,-----------------------------------------------------------4分B D F ∴ED=DC=2,--------------------------------------------------------------------------5分第21题图∵∠DEF=90°,∠F=30°,∴DF=2DE=4.------------------------------------------------------------------------7分22.解:设水果店老板购进葡萄x千克,根据题意得:---------------------1分30003000⨯40%⨯150-⨯20%⨯(x-150)=750x x-------------------------------3分解得:x=200,-----------------------------------------------------------------------5分经检验x=200是原方程的解,-----------------------------------------------------6分答:该水果店老板购进葡萄200千克.------------------------------------------7分五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(1)解:AD=BE,理由如下:-----------------------------------------------1分∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,-------------------------------------------------------------------2分C∴△ACD≌△BCE,------------------------------------------------------------------3分E∴AD=BE.----------------------------------------------------------------------------4分(△2)证明:∵DCE为等腰直角三角形,∠DCE=90°,DA第23题图∵CM⊥AE,∴∠DC M=45°,------------------------------------------------------6分∴∠CD M=∠DC M=45°,------------------------------------------------------------7分∴CM=DM,---------------------------------------------------------------------------8分∵A M=AD+DM,AD=BE,∴A M=CM+BE.----------------------------------------------------------------------9分24.解:(1)∵x>0,9x xB∴ x - 2 x + 5 = x - 2 x + 1 + 4x 2 - 2 x + 5 ⎨∠PCE = ∠EDQ , ⎪CE = DQ = 2 9 = 6 ,------------------------------------------------------------------3 分∴ x + 9 的最小值为 6.----------------------------------------------------4 分x(2)∵ x > 1 ,∴ x - 1 > 0 ,2 2 x - 1 x - 1 =( x - 1)2 + 4 -----------------------------------------------5 分x - 1= ( x - 1) +4 x - 1--------------------------------------------6 分≥ 2 ( x - 1)(4) ------------------------------------------7 分 x - 1= 2 4 = 4 ,-----------------------------------------------8 分∴ 的最小值为 4.--------------------------------------------9 分 x - 1△25.(1)证明:∵OAP 是等腰直角三角形,且点C 是OA 的中点,∴ P △C A 和△PCO 都是等腰直角三角形, M∴ PC = AC = OC ,∠PCO =90°,ACE同理: QD = OD = BD ,∠QDO=90°,-------------------------------1分∵四边形CODE 是平行四边形,∴ CE = OD , ED = OC ,P O第 25 题图①DQBN∴ED=PC,QD=CE ,----------------------------------------------------2分∵CE ∥ON ,DE ∥OM ,∴∠ACE=∠AOD,∠BDE =∠AOD,∴∠ACE=∠BDE,∴∠OCE=∠ODE,-------------------------------------------------------3分∴∠OCE+∠PCO =∠ODE+∠QDO,即∠PC E=∠EDQ,-------------------------------------------------------4分M在△PCE 与△EDQ 中,R⎧PC = ED ⎪⎩ACPOEDB N第 25 题图②∴△PCE≌△EDQ.------------------------------------------------------5分(2)连结RO ,-----------------------------------------------------------6分∵ OAP 和 OBQ 均为等腰直角三角形,点C 、D 分别是OA 、OB 的中点△∴PR 与QR 分别是OA ,OB 的垂直平分线,∴AR=OR=BR ,-----------------------------------------------------------7分Q∴∠ARC=∠ORC,∠OR D=∠BR D,--------------------------------8分∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形.-----------------------------------------------9分7.不等式组⎨的解集在数轴上可表示为()x≤5A.1000B. C. D.八年级数学上学期期末考试试题一、选择题(本大题共12小题,每小题3分,满分36分;在每小题给出的四个选项中,其中只有一是正确的,多选或漏选均不得分.)1.要使分式2x+1A.x≠1有意义,则x的取值范围是()B.x>1C.x<1D.x≠-12.下列各式中,正确的是()A.9=±3B.-9=-3C.-9=3D.±9=±33.已知a<b,则下列结论不一定正确的是()A.2a<3a B.a+2<b+2 C.若c>0,则4.下列根式中,不能与3合并的是()b a> D.-3a>-3bc cA.11B. C.3323 D.125.下列各式中属于最简分式的是()2x21A. B.a+b C. D.x2x+16.下列命题中,为真命题的是()2x-2x-1A.对顶角相等C.若a2=b2,则a=bB.同位角相等D.同旁内角相等,两直线平行⎧x>-2⎩8.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E,已知∠BAE=10°,则∠C的度数为()AA.30ºB.40°C.50ºD.60°DB E C第8题图9.甲队修路1000m与乙队修路800m所用天数相同,已知甲队比乙队每天多修20m,设甲队每天修路x m.依题意,下面所列方程正确的是()800100080010008001000800====x x-20x x+20x-20x x+20xA.x≤-1.10.若二次根式3x+1在实数范围内有意义,则x的取值范围是()11B.x≥-C.x≠-D.x≥033311.不等式(1-a)x﹥2变形后得到x<21-a成立,则a的取值()A.a>0 C.a<0 C.a>1 D.a<112.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为()A.44°B.66°C.96°D.92°二、填空题(本大题共6小题,每小题3分,满分18分)第12题图13.16的算术平方根是__.14.不等式2x+6>3x+4的正整数解是__.15.H7N9禽流感病毒的直径大约是0.000000078米,用科学记数法表示为__.16.设2=m,3=n,则150=(结果用m,n表示).△17.如图,ABC中,AC=6,BC=4,AB的垂直平分线DE交AB于点D,交边AC于点E,则BCE的周长为△__.18.如图,在△ABC中,AC=BC,D是BC边上一点,连接AD,若AB=AD=DC,则∠B=__.三、解答题(本大题共8小题,满分66分,解答应写出必要的文字说明,演算步骤或推理过程)第171题图119.(本题满分6分)计算:(3)0+()-1+2⨯3-(-3)228第18题图20.(本题满分6分)计算:(3-2)2+(5+3)(5-3)21.(本题满分8分)解方程:3x2-=1 x-11-x22.(本题满分8分)如图,已知△ABC.(△1)用尺规作图的方法分别作出ABC的角平分线BE和CF,且BE和CF交于点O.(保留作图痕迹,不要求写出作法);(2)在(1)中,如果∠ABC=40°,,∠ACB=60°,求∠BOC的度数.AB C1a2-123.(本题满分8分)先化简,再求值:(1+)÷,其中a=3.a a224.(本题满分10分△)如图,在ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N,(△1)若CMN的周长为21cm,求AB的长;(2)若∠MCN=50°,求∠ACB的度数.CD EA M N第24题图B25.(本题满分10分)某班为了奖励在学校体育运动会中表现突出的同学,班主任派生活委员小明到文具店为获奖的同学买奖品,小明发现,如果买1本笔记本和3支钢笔,则需要19元;如果买2本笔记本和5支钢笔,则需要33元.(1)求购买每本笔记本和每支钢笔各多少元?(2)班主任给小明的班费只有110元,要奖励24名同学每人一件奖品,则小明至少要购买多少本笔记本?26.(本题满分10分)如图①,在△ABC中,AC=BC,点D为BC的中点,DE⊥AB,垂足为点E,过点B作BG∥AC交DE 的延长线于点G.(1)求证:DB=BG;(2)当∠ACB=90°时,如图②,连接AD、CG,求证:AD⊥CG。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【答案】B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、既是轴对称图形,也是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.3【答案】B【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【详解】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选:B .【点睛】本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y 轴的交点来判断各个函数k ,b 的值.3.已知分式方程312(1)(2)x k x x x +=++-+的解为非负数,求k 的取值范围( ) A .5k ≥B .1k ≥-C .5k ≥且6k ≠D .1k ≥-且0k ≠【答案】D【分析】先把分式方程转化为整式方程求出用含有k 的代数式表示的x ,根据x 的取值求k 的范围.【详解】解:分式方程转化为整式方程得,(3)(1)k (1)(2)x x x x +-=+-+解得:k 1x =+解为非负数,则k+10≥,∴k -1≥又∵x≠1且x≠-2,∴k+11k+1-2≠≠,∴k -1≥ ,且k 0≠故选D【点睛】本题考查了分式方程的解,解答本题的关键是先把分式方程转化为整式方程,求出方程的解,再按要求列不等式,解不等式. 4.方程组23x y a x y +=⎧⎨+=⎩的解为2x y b =⎧⎨=⎩则a ,b 的值分别为( ) A .1,2B .5,1C .2,1D .2,3 【答案】B【解析】把2x y b =⎧⎨=⎩代入方程组23x y a x y +=⎧⎨+=⎩得 423b a b +⎧⎨+⎩== 解得51a b ⎧⎨⎩==故选B.5.若直角三角形两直角边长分别为5和12,则斜边的长为( )A .17B .7C .14D .13【答案】D【分析】利用勾股定理求出斜边即可.【详解】由勾股定理可得:斜边=22+=,51213故选:D.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.6.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是轴对称图形的()A.B.C.D.【答案】A【分析】根据轴对称图形的定义即可判断.【详解】A、是轴对称图形,符合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意;故选:A.【点睛】本题考查轴对称图形,解题的关键是理解轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.7.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等【答案】C【解析】试题分析:三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.解:这样做的道理是三角形具有稳定性.故选C.8.某文化用品商店分两批购进同一种学生用品,已知第二批购进的数量是第一批购进数量的3倍,两批购进的单价和所用的资金如下表:则求第一批购进的单价可列方程为()A.2000630034x x=⨯+B.6300200034x x=⨯+C.6300200043x x=+D.200063004x x=+【答案】B【分析】先根据“购进的数量=所用资金÷单价”得到第一批和第二批购进学生用品的数量,再根据“第二批购进的数量是第一批购进数量的3倍”即得答案.【详解】解:第一批购进的学生用品数量为2000x,第二批购进的学生用品数量为63004x+,根据题意列方程得:6300200034x x=⨯+.故选:B.【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.9.下列长度的三条线段,能组成三角形的是()A.3、1、4 B.3、5、9 C.5、6、7 D.3、6、10【答案】C【分析】根据三角形的三边关系进行分析判断.【详解】A、1+3=4,不能组成三角形;B、3+5=8<9,不能组成三角形;C、5+6=11>7,能够组成三角形;D、3+6=9<10,不能组成三角形.故选:C.【点睛】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.10.如图,将一张平行四边形纸片撕开并向两边水平拉伸,若拉开的距离为lcm,AB=2cm,∠B=60°,则拉开部分的面积(即阴影面积)是()A.1cm2B.32cm2C32D.32【答案】C【分析】可设拉开后平行四边形的长为a,拉开前平行四边形的面积为b,则a−b=1cm,根据三角函数的知识可求出平行四边形的高,接下来结合平行四边形的面积公式计算即可.【详解】解:由平行四边形的一边AB=2cm,∠B=60°,可知平行四边形的高为:h=2sinB= 3cm.设拉开后平行四边形的长为acm,拉开前平行四边形的长为bcm,则a−b=1cm,则拉开部分的面积为:33故选C.【点睛】本题主要考查平行四边形的性质,解答本题的关键是采用大面积减小面积的方法进行不规则图形面积的计算.二、填空题11.三角形三个内角的度数之比是1:2:3,它的最大边长是6cm,则它最短边长为________.【答案】3cm【分析】先根据三角形三个内角之比为1:2:3求出各角的度数判断出三角形的形状,再根据含30度角的直角三角形的性质求解.【详解】解:∵三角形三个内角之比为1:2:3,∴设三角形最小的内角为x,则另外两个内角分别为2x,3x,∴x+2x+3x=180°,∴x=30°,3x=90°,∴此三角形是直角三角形.∴它的最小的边长,即30度角所对的直角边长为:12×6=3cm.故答案为:3cm.【点睛】本题考查的是含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半,解答此题的关键是根据三角形三个内角度数的比值判断出三角形的形状.12.如图,在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为_____.【答案】1【分析】首先根据题意可得MN 是AB 的垂直平分线,由线段垂直平分线的性质可得AD=BD ,再根据△ADC 的周长为10可得AC+BC=10,又由条件AB=7可得△ABC 的周长.【详解】解:∵在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .∴MN 是AB 的垂直平分线,∴AD=BD ,∵△ADC 的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC 的周长为:AC+BC+AB=10+7=1.故答案为1.13.十二边形的内角和度数为_________.【答案】1800°【分析】根据n 边形的内角和是(n ﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【详解】解:十二边形的内角和为:(n ﹣2)•180°=(12﹣2)×180°=1800°.故答案为1800°.【点睛】本题考查了多边形的内角和的知识,解决本题的关键是正确运用多边形的内角和公式,要求同学们熟练掌握.14.16的平方根是 .【答案】±1.【详解】由(±1)2=16,可得16的平方根是±1.15.已知点()1,2A a --与点()2,B b -关于y 轴对称,则b a =_______. 【答案】19【分析】平面直角坐标系中任意一点P(x ,y),关于y 轴的对称点的坐标是(−x ,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数可得出a 、b 的值,即可得出答案.【详解】解:∵点()1,2A a --与点()2,B b -关于y 轴对称,∴12a -=,2b =-,解得:3a =,2b =-, ∴2139-==b a , 故答案为:19. 【点睛】 本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,难度适中.16.等腰三角形的一个外角为100°,则它的底角是______.【答案】80°或50°【分析】等腰三角形的一个外角等于100°,则等腰三角形的一个内角为80°,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.【详解】∵等腰三角形的一个外角等于100°,∴等腰三角形的一个内角为80°,当80°为顶角时,其他两角都为50°、50°,当80°为底角时,其他两角为80°、20°,所以等腰三角形的底角可以是50°,也可以是80°.答案为:80°或50°.【点睛】本题考查等腰三角形的性质,当已知角没有明确是顶角还是底角的时候,分类讨论是关键.17.代数式3-______,此时x=______.【答案】2 ±1.≥0,即最小值是0,据此即可确定原式的最大值.【详解】∵≥0,∴当x=±1有最小值0,则当x=±1,2有最大值是2.故答案为:2,±1.【点睛】0是关键.三、解答题18.图①是一个长为2m ,宽为2n 的长方形纸片,将长方形纸片沿图中虚线剪成四个形状和大小完全相同的小长方形,然后拼成图②所示的一个大正方形.(1)用两种不同的方法表示图②中小正方形(阴影部分)的面积:方法一:S=小正方形;方法二:S=小正方形.(2)(m+n)2,(m−n) 2,mn这三个代数式之间的等量关系为___(3)应用(2)中发现的关系式解决问题:若x+y=9,xy=14,求x−y的值.【答案】(1)(m+n)2−4mn,(m−n)2;(2)(m+n)2−4mn=(m−n)2;(3)±5.【分析】(1)观察图形可确定:方法一,大正方形的面积为(m+n)2,四个小长方形的面积为4mn,中间阴影部分的面积为S=(m+n)2-4mn;方法二,图2中阴影部分为正方形,其边长为m-n,所以其面积为(m-n)2.(2)观察图形可确定,大正方形的面积减去四个小长方形的面积等于中间阴影部分的面积,即(m+n)2-4mn=(m-n)2.(3)根据(2)的关系式代入计算即可求解.【详解】(1)方法一:S小正方形=(m+n) 2−4mn.方法二:S小正方形=(m−n) 2.(2)(m+n)2,(m−n)2,mn这三个代数式之间的等量关系为(m+n)2−4mn=(m−n)2.(3)∵x+y=9,xy=14,∴x−y=()24x y xy±+-=±5.故答案为(m+n)2−4mn,(m−n) 2;(m+n)2−4mn=(m−n)2,±5.【点睛】此题考查完全平方公式的几何背景,解题关键在于掌握计算公式.19.解二元一次方程组32929 x yx y-=⎧⎨+=⎩【答案】92x=,94y=.【分析】利用加减消元法求解可得.【详解】32929x yx y-=⎧⎨+=⎩①②,①+②,得418x=,92x ∴=, 把92x =代入②,得9292y +=, 解得94y =, 所以原方程的解为9294x y ⎧=⎪⎪⎨⎪=⎪⎩. 【点睛】本题主要考查解二元一次方程组,熟练掌握解二元一次方程组的两种消元方法是解题的关键. 20.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y (元)是行李质量x (kg )的一次函数,这个函数的图象如图所示.(1)求y 关于x 的函数表达式;(2)求旅客最多可免费携带行李的质量.【答案】(1)()12105y x x =->(2)10kg 【分析】(1)根据(30,4)、(40,6)利用待定系数法,即可求出当行李的质量x 超过规定时,y 与x 之间的函数表达式;(2)令y =0,求出x 值,此题得解.【详解】解:(1)设y 与x 的函数表达式为y =kx +b ,由题意可得:304406k b k b +=⎧⎨+=⎩解得:152k b ⎧=⎪⎨⎪=-⎩∴125y x =-(x >10); (2)当y =0,12=05x -, ∴x =10,∴旅客最多可免费携带行李的质量为10kg .【点睛】本题主要考查求一次函数解析式,熟练掌握利用待定系数法求解函数表达式是解题的关键.21.计算:1)2++-②4(1)3(1)2223x y yx y--=--⎧⎪⎨+=⎪⎩【答案】①3;②23xy=⎧⎨=⎩【分析】①根据二次根式的混合运算法则计算;②利用加减消元法求解.1)2++-()312-+=322+=3;②整理得:453212x yx y①②-=⎧⎨+=⎩,①×2+②得:11x=22,解得:x=2,代入①中,解得:y=3,∴方程组的解为:23xy=⎧⎨=⎩.【点睛】本题考查了二次根式的混合运算以及二元一次方程组,解题的关键是掌握运算法则和加减消元法.22.如图,在正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)ABC 的顶点A,C坐标分别是(a,5),(﹣1,b).(1)求a,b的值;(2)在图中作出直角坐标系;(3)在图中作出△ABC关于y轴对称的图形△A'B'C'.【答案】(1)a=﹣4,b=3;(2)如图所示,见解析;(3)△A'B'C'如图所示,见解析.【分析】(1)根据点A的纵坐标和点C的横坐标即可画出直角坐标系,即可判定a,b的值;(2)根据点A的纵坐标和点C的横坐标即可画出直角坐标系;(3)根据轴对称的性质,先找出各点的对称点,然后连接即可.【详解】(1)由题意平面直角坐标系如图所示,可得:a=﹣4,b=3(2)如图所示:(3)△A'B'C'如图所示:【点睛】此题主要考查平面直角坐标系的确定以及轴对称图形的画法,熟练掌握,即可解题.23.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并证明.【答案】(1)∠BPC =122°;(2)∠BEC =2a ;(3)∠BQC =90°﹣12∠A ,证明见解析 【分析】(1)根据三角形的内角和化为角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠1表示出∠2,再利用∠E 与∠1表示出∠2,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC 与∠ECB ,然后再根据三角形的内角和定理列式整理即可得解.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠,1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122=︒+=︒,故答案为:122︒;(2)CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论:1902BQC A ∠=︒-∠.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.24.化简(1)32422a b c bc c ab a ⎛⎫⎛⎫⎛⎫⋅÷ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (2)22224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭【答案】(1)833ab c-;(2)6x+【分析】(1)原式先计算乘方运算,再计算乘除运算即可得到结果;(2)原式括号中两项通分后利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】解:(1)原式634483224433a b c a ac a b b c b c=⋅⋅=--;(2)原式2(2)(2)(2)(2)2(2)(2)2426(2)(2)x x x x x xx x x x x x x x+--+-=⋅=+--=+-+=+ +-.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.25.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.【答案】(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP(SAS),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE ,∴∠BAC+∠CAD=∠DAE+∠CAD ,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ;(2)如图2,∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ,∴BD=CE ,①正确,∠ADB=∠AEC ,记AD 与CE 的交点为G ,∵∠AGE=∠DGO ,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE ,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB 上取一点F ,使OF=OC ,∴△OCF 是等边三角形,∴CF=OC ,∠OFC=∠OCF=60°=∠ACB ,∴∠BCF=∠ACO ,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF,要使OC=OE,则有OC=12 CE,∵BD=CE,∴CF=OF=12 BD,∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若20.2a =-,22b =-,212c -⎛⎫=- ⎪⎝⎭,012d ⎛⎫=- ⎪⎝⎭,则它们的大小关系是( ) A .b a d c <<<B .a b d c <<<C .a d c b <<<D .c d a b <<<【答案】A 【分析】先按法则把a ,c ,b ,d 计算结果,比较这些数的大小,再按从小到大的顺序,把a ,c ,b ,d 排序即可.【详解】20.2a =-=-0.04,22=-4b =-,221==41-212c -⎛⎫ ⎛⎫=- ⎪⎪⎝⎭⎝⎭,012d ⎛⎫=- ⎪⎝⎭=1, -4<-0.04<1<4,b<a<d<c .故选择:A .【点睛】本题考查乘方的运算,掌握乘方的性质,能根据运算的结果比较大小,并按要求排序是解决问题的关键. 2.下列真命题中,逆命题是假命题的是( )A .等腰三角形的两底角相等B .全等三角形的三组对应边分别相等C .若a=b ,则a 2=b 2D .若a 2>b 2,则|a|>|b| 【答案】C【解析】题设成立,结论也成立的命题是真命题.A.根据等腰三角形判定可判断;B.由全等三角形判定可判断;C.举反例即可;D.根据非负数性质,用列举法可证.【详解】由“有两个角相等的三角形是等腰三角形”,可判断A 是真命题;因为“三边对应相等的两个三角形全等”,所以B 是真命题;如()2222=-,但22≠-,所以C 是假命题;根据不等式性质,若|a|>|b|,则a 2>b 2.所以是真命题.故正确选项为C.【点睛】此题考核知识点:命题.要判断命题是真命题,必须题设成立,结论也成立.相关的性质必须熟悉.举反例也是一种常见方法.3.在长为10cm ,7cm ,5cm ,3cm 的四根木条,选其中三根组成三角形,则能组成三角形的个数为( ) A .1B .2C .3D .4 【答案】B【分析】根据任意两边之和大于第三边判断能否构成三角形.【详解】依题意,有以下四种可能:(1)选其中10cm ,7cm ,5cm 三条线段符合三角形的成形条件,能组成三角形(2)选其中10cm ,7cm ,3cm 三条线段不符合三角形的成形条件,不能组成三角形(3)选其中10cm ,5cm ,3cm 三条线段不符合三角形的成形条件,不能组成三角形(4) 选其中7cm ,5cm ,3cm 三条线段符合三角形的成形条件,能组成三角形综上,能组成三角形的个数为2个故选:B .【点睛】本题考查了三角形的三边关系定理,熟记三边关系定理是解题关键.4.下列因式分解正确的是( )A .228(2)8x x x x --=--B .4221(1)(1)a a a -=+-C .241(41)(41)x x x -=+-D .22244(2)x xy y x y -+-=--【答案】D【分析】分别把各选项分解因式得到结果,逐一判断即可.【详解】解:A. 228(4)(+2)--=-x x x x ,故本选项不符合题意; B. 42221(1)(1)=(1)(+1)(1)-=+-+-a a a a a a ,故本选项不符合题意;C. 241(21)(21)-=+-x x x ,故本选项不符合题意;D. 22244(2)x xy y x y -+-=--,故本选项符合题意;故选:D【点睛】此题考查了因式分解-十字相乘法,以及提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.5. “高高兴兴上学,平平安安回家”,交通安全与我们每一位同学都息息相关,下列四个交通标志中,属于轴对称图形的是( )A .B .C .D .【答案】D【分析】将一个图形一部分沿一条直线对折,能与另一部分完全重合,则这个图形叫轴对称图形,据此判断即可求解.【详解】解:根据轴对称图形的定义,只有D 选项图形是轴对称图形.故选:D【点睛】本题考查了轴对称图形的概念,熟知轴对称图形定义是解题关键.6.等腰△ABC 中,AB=AC ,∠A 的平分线交BC 于点D ,有下列结论:①AD ⊥BC ;②BD=DC ;③∠B=∠C ;④∠BAD=∠CAD ,其中正确的结论个数是( ).A .4个B .3个C .2个D .1个【答案】A【分析】证明△≌△ABD ACD ,利用三角形全等的性质,得出正确的结论 【详解】,==AB AC BAD CAD AD ADABD ACD===︒⊥∵∠∠,∴△≌△∴∠ADC=∠ADB 90,AD BC,BD=DC,∠B ∠C ,∠BAD=∠CAD结论①②③④成立,故选A【点睛】本题考查了全等三角形的判定定理(SAS ),证明目标三角形全等,从而得出正确的结论7.如图,△ABC 的面积为8cm 2 , AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .2cm 2B .3cm 2C .4cm 2D .5cm 2【答案】C 【分析】延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可求得△PBC 的面积.【详解】延长AP 交BC 于E .∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP =∠EBP ,∠APB =∠BPE =90°.在△APB 和△EPB 中,∵APB EPB BP BP ABP EBP ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APB ≌△EPB (ASA ),∴S △APB =S △EPB ,AP =PE ,∴△APC和△CPE 等底同高,∴S △APC =S △PCE ,∴S △PBC =S △PBE +S △PCE 12=S △ABC =4cm 1. 故选C .【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S △PBC =S △PBE +S △PCE 12=S △ABC .8.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 【答案】A 【分析】x 的18即18x ,不超过1是小于或等于1的数,由此列出式子即可. 【详解】“x 的18与x 的和不超过1”用不等式表示为18x+x ≤1. 故选A .【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.9.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系 如图所示,给出以下结论:①a =8;②b =92;③c =1.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③【答案】A 【详解】解:∵乙出发时甲行了2秒,相距8m ,∴甲的速度为8/2=4m/ s .∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s .∵a 秒后甲乙相遇,∴a =8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m ,∴b =500-408=92 m . 因此②正确. ∵甲走到终点一共需耗时500/4=125 s ,,∴c =125-2=1 s . 因此③正确.终上所述,①②③结论皆正确.故选A .10.已知x 2-ax+16可以写成一个完全平方式,则a 可为( )A .4B .8C .±4D .±8【答案】D【分析】完全平方公式是两数的平方和加减两数积的2倍,注意符合条件的a 值有两个.【详解】解:∵x 2-ax+16可以写成一个完全平方式,∴2162a⎛⎫-=⎪⎝⎭,解得:8a=±.故选:D.【点睛】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.二、填空题11.已知点M(a,1)与点N(﹣2,b)关于y轴对称,则a﹣b=____.【答案】1.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后计算即可得解.【详解】∵点M(a,1)与点N(-2,b)关于y轴对称,∴a=2,b=1,∴a-b=2-1=1.故答案为:1.【点睛】此题考查关于x轴、y轴对称的点的坐标,解题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.12.若关于x的方程111m xx x----=0有增根,则m的值是______.【答案】2【解析】去分母得,m-1-x=0.∵方程有增根,∴x=1, ∴m-1-1=0, ∴m=2.13.如果一个三角形的两边长分别是2cm和7cm,且第三边为奇数,则三角形的周长是___cm. 【答案】16【分析】根据三角形的三边关系定理求出第三边的长,即可得出结论.【详解】∵7﹣2<第三边<7+2,∴5<第三边<1.∵第三边为奇数,∴第三边=7,所以三角形的周长是2+7+7=16(cm).故答案为16cm.【点睛】首先根据题意求出第三边,然后再求出周长.14.将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是_____.【答案】60° 【解析】∵∠1+∠3=90°,∠1=30°,∴∠3=60°.∵直尺的两边互相平行,∴∠2=∠3=60°.故答案为60°.15.对于实数p ,q , 我们用符号min {p , q }表示p ,q 两数中较小的数,如min {1,2}=1,若min {2x+1, 1}=x , 则x=___.【答案】x=-1或x=1【分析】根据题意,对2x +1和1的大小分类讨论,再根据题意分别列出方程即可求出结论.【详解】解:当2x+1<1,即x <0时,min {2x+1, 1}=2x+1∴2x+1=x解得:x=-1;当2x+1>1,即x >0时,min {2x+1, 1}=1∴x=1;综上所述:x=-1或x=1故答案为:x=-1或x=1.【点睛】此题考查的是一元一次方程的应用,掌握题意和分类讨论的数学思想是解决此题的关键.16.已知函数2y x =与k y x=的图像的一个交点坐标是(1,2),则它们的图像的另一个交点的坐标是____. 【答案】(-1,-2)【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【详解】∵函数2y x =与k y x=的图像都是中心对称图形, ∴函数2y x =与k y x=的图像的一个交点坐标是(1,2)关于原点对称的点是(-1,-2), ∴它们的图像的另一个交点的坐标是(-1,-2).故答案是:(-1,-2).【点睛】本题主要考查了反比例函数图象的中心对称性.关于原点对称的两个点的横、纵坐标分别互为相反数. 17.质检员小李从一批鸡腿中抽查了7只鸡腿,它们的质量如下(单位:g ):74,79,72,75,76,75,73,这组数据的极差是_____.【答案】7【分析】极差就是这组数据中的最大值与最小值的差.【详解】74,79,72,75,76,75,73,这组数据的极差是:79-72=7故答案为:7【点睛】本题考查了极差的定义,掌握极差的定义是解题的关键.三、解答题18.某县为落实“精准扶贫惠民政策",计划将某村的居民自来水管道进行改造该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定时间的1.5倍;若由甲、乙两队先合作施工15天,则余下的工程由甲队单独完成还需5天这项工程的规定时间是多少天?【答案】30天【分析】设这项工程的规定时间是x 天,则甲队单独施工需要x 天完工,乙队单独施工需要1.5x 天完工,根据甲队完成的工作量+乙队完成的工作量=总工作量(单位1),即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设这项工程的规定时间是x 天,则甲队单独施工需要x 天完工,乙队单独施工需要1.5x 天完工, 依题意,得:1551511.5x x++=, 解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.19.一次函数y=kx+b .当x=﹣3时,y=0;当x=0时,y=﹣4,求k 与b 的值.【答案】k=–43,b=–1; 【分析】将已知两对x 与y 的值代入一次函数解析式即可求出k 与b 的值.【详解】将x=–3,y=0;x=0,y=–1分别代入一次函数解析式得:304k b b -+=⎧⎨=-⎩, 解得434k b ⎧=-⎪⎨⎪=-⎩,即k=–43,b=–1. 【点睛】本题考查的是一次函数,熟练掌握待定系数法是解题的关键.20.解不等式组251331148x x x x ⎧+>-⎪⎪⎨⎪-<-⎪⎩,并求出它的整数解的和. 【答案】1【分析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数解即可.【详解】解不等式2513x x +>-得:125x >-, 解不等式31148x x -<-得:72x <, 此不等式组的解集为12752x -<<, 故它的整数解为:-2,-1,0,1,2,1,它的整数解的和为1.【点睛】本题主要考查解一元一次不等式组及其整数解,注意各个不等式的解集的公共部分就是这个不等式组的解集.但本题是要求整数解,所以要找出在这范围内的整数.21.如图,直线MN 分别交AB 和CD 于点E 、F ,点Q 在PM 上,EPM FQM ∠=∠ ,且AEP CFQ ∠=∠ .求证://AB CD .。
2017—2018学年度第一学期期末调研考试八年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,42.在下列运算中,计算正确的是A.(x5)2=x7B.(x-y)2=x2-y2C.x12÷x3=x9D.x3+x3=x63.数学课上,同学们在练习本上画钝角三角形ABC的高BE时,有一部分学生画出下列四种图形,其中错误的个数为A.1个B.2个C.3个D.4个4.下列轴对称图形中,对称轴条数是四条的图形是A.B.C.D.5.下列关于分式的判断,正确的是A.当x=2时,12xx+-的值为零B.无论x为何值,231x+的值总为正数C .无论x 为何值,31x +不可能得整数值 D .当x≠3时,3x x -有意义6.如图,已知AB=AC ,AD=AE ,若要得到“△ABD ≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是A .BD=CEB .∠ABD=∠ACEC .∠BAD=∠CAED .∠BAC=∠DAE 7.若把分式2x yxy+中的x 和y 都扩大3倍,且x+y≠0,那么分式的值 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 8.若x=-2,y=12,则y (x+y )+(x+y )(x -y )-x 2的值等于 A .-2 B .12C .1D .-19.如图,在△ABC 中,DE 是AC 的垂直平分线,AC=6cm ,且△ABD 的周长为13cm ,则△ABC 的周长为A .13cmB .19cmC .10cmD .16cm10.观察等式(2a ﹣1)a+2=1,其中a 的取值可能是A .﹣2B .1或﹣2C .0或1D .1或﹣2或0 11.下列计算中正确的是A .22155b a a b ab -⨯=-- B .32x y x y ya b a b a b+--=+++ C .m m n m n n m n ÷⨯= D .1224171649xy xy a xy a -⎛⎫⎛⎫÷=⎪ ⎪⎝⎭⎝⎭12.如图,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,若∠F=40°,∠C=20°,则∠FBA 的度数为A .50°B .60°C .70°D .80°13.若y -x=-1,xy=2,则代数式-12x 3y+x 2y 2-12xy 3的值是 A .2 B .-2 C .1 D .-114.图1是一个长为 2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是A .a 2-b 2B .(a -b )2C .(a+b )2D .ab15.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是A.(0,3)B.(1,2)C.(0,2)D.(4,1)16.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是A.①②④B.①②③C.②③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.一个多边形的每一个外角都为36°,则这个多边形是边形.18.若x2+2(m-3)x+16是一个完全平方式,那么m应为.19.对于实数a、,b,定义运算⊗如下:a⊗b=()(),0,0bba ab aa ab a-⎧>≠⎪⎨≤≠⎪⎩,例如:2⊗4=2-4=116,计算[4⊗2] =,[2⊗2]×[3⊗2]=.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题满分8分)如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.21.(本题满分9分)先化简,再求值:2214411a aa a a-+⎛⎫-÷⎪--⎝⎭,其中-2<a≤2,请选择一个a的合适整数代入求值.22.(本题满分9分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予证明(结论中不得含有未标识的字母);(2)求证:DC⊥BE.23.(本题满分9分)先阅读以下材料,然后解答问题.将一个多项式分组后,可提公因式或运用公式继续分解的方法是因式分解中的分组分解法,一般的分组分解法有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+b(x+y)=(x+y)(a+b)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x2-y2-x-y;(2)分解因式:9m2-4x2+4xy-y2;24.(本题满分10分)如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)若DE=6cm,求点D到BC的距离;(3)当∠ABD=35°,∠DAC=2∠ABD时,①求∠BAC的度数;②证明:AC=AD.25.(本题满分11分)随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km的丙市参加14:00召开的会议,如果他买到当日9:20从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?26.(本题满分12分)如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).(1)当运动时间为t秒时,BQ的长为厘米,BP的长为厘米;(用含t 的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)二、(本大题有3个小题,共10分.17~18小题个3分;19小题有2个空,每空2分) 17.十;18.-1或7;19.16,.三、(本大题有7小题,共68分)20.解:(1)如图所示:△A1B1C1为所求作的三角形;……………………….……4分(2)如图,……………………………………………………………………..…..……7分点P的坐标为:(0,1).………………………………………………………...………8分21.解:原式=……………………………………………………….2分=……………………………………………………………………………4分=,………………………………………………………………………………………6分当a=-1时,…………………………………………………………………….…………8分原式=.……………………………………………..……………………………9分22.(1)解:△BAE≌△CAD,证明如下:……………………………………………1分∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°.……………………………..……………2分∠BAE=∠DAC=90°+∠CAE,………………………………………………………...…4分在△BAE和△DAC中∴△BAE≌△CAD(SAS).………………………………………………………………6分(2)证明:∵△ABC,△DAE是等腰直角三角形,∴∠B=45°,∠BCA=45°,……………………………………………………………..…7分∵△BAE≌△CAD.∴∠DCA=∠B=45°.………………………………………………………………………8分∴∠BCD=∠BCA+∠DCA=90°,∴DC⊥BE.…………………………………………………………………………………9分23.解:(1)原式=(x2-y2)-(x+y)…………………………………………………2分=(x+y)(x-y)-(x+y)…………………………….……………………………….…3分=(x+y)(x-y-1);……………………………………………….………………………4分(2)原式=9m2-(4x2-4xy+y2)……………………………………………………….6分=(3m)2-(2x-y)2…………………………………………………………………….8分=(3m+2x-y)(3m-2x+y). ……………………………………………………….……9分24.(1)证明:∵AB=AD,∴∠ADB=∠ABD…………………………………………………….………..……………1分又∵BD平分∠ABC,即∠ABD=∠DBC,∴∠ADB =∠DBC,…………………………………………………………..……………2分∴AD∥BC;…………………………………………………………………………………3分(2)解:作DF⊥BC交BC的延长线于F.∵BD平分∠ABC,DE⊥AB,DF⊥BC,∴DF=DE=6cm;即点D到BC的距离为6cm. ……………………………………………………..……5分(3)①解:∵BD平分∠ABC,∴∠ABC=2∠ABD=70°,…………………………………………………………..….…6分∵AD∥BC,∴∠ACB=∠DAC=70°,……………………………………………………………….…7分∴∠BAC=180°-∠ABC-∠ACB=180°-70°-70°=40°.……………………………8分②证明:∵∠ABC=70°,∠ACB=70°,∴∠ABC=∠ACB,∴AB=AC,…………………………………………………………………………………9分又∵AB=AD,∴AC=AD.………………………………………………………………………………..10分25.解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意得,……………..……………………………………………………..…………1分-=8,…………………………………………..………………….……4分解得:x=96,……………..………………5分经检验,x=96是原分式方程的解,且符合题意,……………..………………………6分则2.5x=240,答:高铁列车的平均时速为240千米/小时;………………………………..…………7分(2)780÷240=3.25,则坐车共需要3.25+1=4.25(小时),……………………………………..…………..…9分从9:20到13:40,共计4小时,………………………………...…………………10分因为4小时>4.25小时,所以王先生能在开会之前到达.………………………………………………..………11分26.解:(1)t;(5-t);………………………..………………….…………..………2分(2)∵△ABC是等边三角形,∴∠B=60°.①当∠PQB=90°时,∵∠B=60°,∴∠BPQ=30°,∴PB=2BQ,得5-t=2t,解得,t=,………………………………………………………………………………4分②当∠BPQ=90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,得t=2(5-t),解得,t=,………………………………………………………………...…………6分∴当t的值为或时,△PBQ为直角三角形;…………………………..………7分(3)∠CMQ不变,∠CMQ=60°理由如下:………………………………….……8分∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由题意可知:AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS),…………………………………………………..………10分∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,∴∠CMQ不会变化,总为60°.………………………..……………………………12分。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知13a a +=,则221a a +的值为 A .5B .6C .7D .8 【答案】C【分析】根据完全平方公式的变形即可求解.【详解】∵13a a += ∴219a a ⎛⎫+= ⎪⎝⎭ 即22129a a ++= ∴221a a +=7, 故选C.【点睛】此题主要考查完全平方公式的运用,解题的关键是熟知完全平方公式的变形及运用.2.不等式3≥2x -1的解集在数轴上表示正确的为( )A .B .C .D .【答案】C 【解析】先解出不等式,再根据不等式解集的表示方法即可判断.【详解】解不等式3≥2x -1得x ≤2,在数轴上表示为:故选C.【点睛】此题主要考查不等式的解集,解题的关键是熟知不等式的解法及表示方法.3.下列分式的约分中,正确的是( )A .2bc ac--=-2b a B .22x y x -=1-y C .2121a a a --+=11a- D .22()xy x x y --=-x x y 【答案】C【分析】分别根据分式的基本性质进行化简得出即可.【详解】A .2bc ac --=2b a ,此选项约分错误; B .22x y x-不能约分,此选项错误; C .2121a a a --+=21(1)a a --=11a-,此选项正确; D .22()xy x x y --=()2()x y x y x --=-x y x,此选项错误; 故选:C .【点睛】本题考查了分式的约分,在约分时要注意约掉的是分子分母的公因式.4.--种饮料有大、中、小3种包装,一个中瓶比2个小瓶便宜2角,一个大瓶比一个中瓶加上一个小瓶贵4角,若大、中、小各买1瓶,需要9元6角.设小瓶单价是x 角,大瓶的单价是y 角,可列方程组为( ) A .39832x y y x +=⎧⎨-=⎩ B .39832x y y x +=⎧⎨+=⎩ C .29834x y y x +=⎧⎨-=⎩D .39822x y x y -=⎧⎨+=⎩【答案】A 【分析】设设小瓶单价为x 角,大瓶为y 角,根据题意列出二元一次方程组,求出方程组的解即可.【详解】解:设小瓶单价为x 角,大瓶为y 角,则中瓶单价为(2x-2)角,可列方程为:39832x y y x +=⎧⎨-=⎩, 故选A.【点睛】本题考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.5.以下列各组数为边长,能组成一个三角形的是( )A .3,4,5B .2,2,5C .1,2,3D .10,20,40【答案】A【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A 、3+4>5,能组成三角形;B 、2+2<5,不能组成三角形;C 、1+2=3,不能组成三角形;D 、10+20<40,不能组成三角形.故选:A .【点睛】此题主要考查三角形的三边关系,解题的关键是熟知三角形任意两边之和大于第三边,任意两边之差小于第三边.6.下列图形中,不是轴对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A .是轴对称图形,故本选项不合题意;B .是轴对称图形,故本选项不合题意;C .不是轴对称图形,故本选项符合题意;D .是轴对称图形,故本选项不合题意.故选:C .【点睛】此题考查轴对称图形的概念,解题关键在于寻找对称轴,图形两部分折叠后可重合.7.已知AOB ∠,求作射线OC ,使OC 平分AOB ∠作法的合理顺序是( )①作射线OC ,②在OA 和OB 上分别截取OD ,OE ,使OD OE =,③分别以D ,E 为圆心,大于12DE 的长为半径作弧,AOB ∠在内,两弧交于C .A .①②③B .②①③C .②③①D .③②① 【答案】C【分析】根据角平分线的作法排序即可得到答案.【详解】解:角平分线的作法是:在OA 和OB 上分别截取OD ,OE ,使OD OE =,分别以,D E 为圆心,大于12DE 的长为半径作弧, 在AOB ∠内,两弧交于C ,作射线OC ,故其顺序为②③①.故选:C .【点睛】本题考查尺规作图-角平分线,掌握角平分线的作图依据是解题的关键.8.如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A .△ACE ≌△BCDB .△BGC ≌△AFC C .△DCG ≌△ECFD .△ADB ≌△CEA 【答案】D 【详解】试题分析:△ABC 和△CDE 是等边三角形BC=AC ,CE=CD ,60BCA ACD ECD ACD ︒∠+∠=∠+∠=60BCA ECD ︒∠=∠=即在△BCD 和△ACE 中CD CE ACE BCD BC AC =⎧⎪∠=∠⎨⎪=⎩△BCD ≌△ACE故A 项成立;在△BGC 和△AFC 中60ACB ACD AC BC CAE CBD ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩△BGC ≌△AFCB 项成立;△BCD ≌△ACE,在△DCG 和△ECF 中60ACD DCE CE CD CDB CEA ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩△DCG ≌△ECFC 项成立D 项不成立.考点:全等三角形的判定定理.9.有一个长方形内部剪掉了一个小长方形,它们的尺寸如图所示,则余下的部分(阴影部分)的面积( )A .4a 2B .4a 2﹣abC .4a 2+abD .4a 2﹣ab ﹣2b 2【答案】B 【分析】根据阴影部分面积=大长方形的面积-小长方形的面积,列出算式,再根据整式的混合运算顺序和运算法则计算可得.【详解】解:余下的部分的面积为:(2a+b )(2a-b )-b (a-b )=4a 2-b 2-ab+b 2=4a 2-ab ,故选B .【点睛】本题主要考查整式的混合运算,解题的关键是结合图形列出面积的代数式,并熟练掌握整式的混合运算顺序和运算法则.10.下列二次根式中,可以与2合并的是( ).A .4B .2aC .29D .12 【答案】C2是同类二次根式,即可合并.【详解】解:A 42=2合并,故A 不符合题意;B 2a 2合并,故B 不符合题意;C 229=, 2合并,故C 符合题意;D 1223=, 2合并,故D 不符合题意;故答案为:C.【点睛】本题考查同类二次根式,解题的关键是熟练运用同类二次根式的概念.二、填空题11. “x 的3倍减去y 的差是正数”用不等式表示为_________.【答案】30x y ->【分析】根据题意列出不等式即可得解.【详解】根据“x 的3倍减去y 的差是正数”列式得30x y ->,故答案为:30x y ->.【点睛】本题主要考查了不等式的表示,熟练掌握不等式的文字语言及数字表达式是解决本题的关键.12.如图,点A ,C ,D ,E 在Rt △MON 的边上,∠MON=90°,AE ⊥AB 且AE=AB ,BC ⊥CD 且BC=CD ,BH ⊥ON 于点H ,DF ⊥ON 于点F ,OM=12,OE=6,BH=3,DF=4,FN=8,图中阴影部分的面积为________.【答案】50【分析】易证△AEO ≌△BAH ,△BCH ≌△CDF 即可求得AO=BH ,AH=EO ,CH=DF ,BH=CF ,即可求得梯形DEOF 的面积和△AEO ,△ABH ,△CGH ,△CDF 的面积,即可解题.【详解】∵∠EAO+∠BAH=90°,∠EAO+∠AEO=90°,∴∠BAH=∠AEO ,∵在△AEO 和△BAH 中90AEO BAH O BHA AE AB ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△AEO ≌△BAH (AAS ),同理△BCH ≌△CDF (AAS ),∴AO=BG=3,AH=EO=6,CH=DF=4,BH=CF=3,∵梯形DEOF 的面积=12(EF+DH )•FH=80, S △AEO =S △ABH =12AF•AE=9, S △BCH =S △CDF =12CH•DH=6, ∴图中实线所围成的图形的面积S=80-2×9-2×6=50,故选:B .【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEO ≌△BAH ,△BCH ≌△CDF 是解题的关键.13.如图,在平行四边形ABCD 中,10,8,AB m AD m AC BC ==⊥,则平行四边形ABCD 的面积为____________.【答案】48m 1【分析】由平行四边形的性质可得BC=AD=8m ,然后利用勾股定理求出AC ,根据底乘高即可得出面积.【详解】∵四边形ABCD 为平行四边形∴BC=AD=8m∵AC ⊥BC∴△ABC 为直角三角形∴平行四边形ABCD 的面积=BC AC=86=48⋅⨯m 1故答案为:48m 1.【点睛】本题考查了平行四边形的性质与勾股定理,题目较简单,根据平行四边形的性质找到直角三角形的边长是解题的关键.14.若4a =2,4b =3,则42a+b 的值为_____.【答案】1【分析】根据幂的乘方以及同底数幂的乘法法则计算即可.【详解】解:∵4a =2,4b =3,∴42a+b=(4a )2•4b=22×3=4×3=1.故答案为:1.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟记幂的运算法则是解答本题的关键. 15.写出一个能说明命题:“若22a b >,则a b >”是假命题的反例:__________.【答案】2,1a b =-=(注:答案不唯一)【分析】根据假命题的判断方法,只要找到满足题设条件22a b >,而不满足题设结论a b >的a ,b 值即可.【详解】当2,1a b =-=时,222(2)4,1a b =-==根据有理数的大小比较法则可知:41,21>-<则此时满足22a b >,但不满足a b >因此,“若22a b >,则a b >”是假命题故答案为:2,1a b =-=.(注:答案不唯一)【点睛】本题考查了假命题的证明方法,掌握反例中题设与结论的特点是解题关键.16.若多项式2212x kxy xy ++-中不含xy 项,则k 为______. 【答案】12- 【分析】根据题意可得:2k+1=1,求解即可. 【详解】由题意得:2k+1=1,解得:k 12=-. 故答案为12-. 【点睛】本题考查了多项式,关键是正确理解题意,掌握不含哪一项,就是让它的系数为1.17.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.【答案】105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.三、解答题18.已知:在△ABC 中,∠BAC =90°,AB =AC ,点D 为射线BC 上一动点,连结AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)当点D 在线段BC 上时(与点B ,C 不重合),如图1,求证:CF =BD ;(2)当点D 运动到线段BC 的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.【答案】(1)见解析;(2)仍然成立,理由见解析【分析】(1)要证明CF =BD ,只要证明△BAD ≌△CAF 即可,根据等腰三角形的性质和正方形的性质可以证明△BAD ≌△CAF ,从而可以证明结论成立;(2)首先判断CF =BD 仍然成立,然后根据题目中的条件,同(1)中的证明方法一样,本题得以解决.【详解】(1)证明:∵四边形ADEF 是正方形,∴AD =AF ,∠DAF =90°,∴∠DAC+∠CAF =90°,∵∠BAC =90°,∴∠DAC+∠BAD =90°,∴∠BAD =∠CAF ,在△BAD 和△CAF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAF (SAS ),∴BD =CF ,即CF =BD ;(2)当点D 运动到线段BC 的延长线上时,如图2,第(1)问中的结论仍然成立.理由:∵∠BAC =∠DAF =90°,∴∠BAC+∠CAD =∠DAF+∠CAD ,∴∠BAD =∠CAF ,在△BAD 和△CAF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAF (SAS ),∴BD =CF ,即CF=BD.【点睛】本题考查了正方形的性质、等腰三角形的性质和全等三角形的判定与性质,此题难度适中,注意利用公共角转化角相等作为证明全等的条件.19.问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON 的数量关系,并说明理由.探究展示:小宇同学展示出如下正确的解法:解:OM=ON,证明如下:连接CO,则CO是AB边上中线,∵CA=CB,∴CO是∠ACB的角平分线.(依据1)∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)反思交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:依据2:(2)你有与小宇不同的思考方法吗?请写出你的证明过程.拓展延伸:(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD 的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.【答案】(1)等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合);角平分线上的点到角的两边距离相等;(2)见解析;(3)见解析【解析】(1)根据等腰三角形的性质和角平分线性质得出即可;(2)证△OMA ≌△ONB (AAS ),即可得出答案;(3)求出矩形DMCN ,得出DM=CN ,△MOC ≌△NOB (SAS ),推出OM=ON ,∠MOC=∠NOB ,得出∠MOC-∠CON=∠NOB-∠CON ,求出∠MON=∠BOC=90°,即可得出答案.【详解】(1)解:依据1为:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合),依据2为:角平分线上的点到角的两边距离相等.(2)证明:∵CA=CB ,∴∠A=∠B ,∵O 是AB 的中点,∴OA=OB .∵DF ⊥AC ,DE ⊥BC ,∴∠AMO=∠BNO=90°,∵在△OMA 和△ONB 中{A BOA OB AMO BNO∠∠∠∠===,∴△OMA ≌△ONB (AAS ),∴OM=ON .(3)解:OM=ON ,OM ⊥ON .理由如下:如图2,连接OC ,∵∠ACB=∠DNB ,∠B=∠B ,∴△BCA ∽△BND , ∴AC BC DN BN=, ∵AC=BC ,∴DN=NB .∵∠ACB=90°,∴∠NCM=90°=∠DNC ,∴MC ∥DN ,又∵DF ⊥AC ,∴∠DMC=90°,即∠DMC=∠MCN=∠DNC=90°,∴四边形DMCN 是矩形,∴DN=MC ,∵∠B=45°,∠DNB=90°,∴∠3=∠B=45°,∴DN=NB ,∴MC=NB ,∵∠ACB=90°,O 为AB 中点,AC=BC ,∴∠1=∠2=45°=∠B ,OC=OB (斜边中线等于斜边一半),在△MOC 和△NOB 中{1OC OBB CM BN∠∠===,∴△MOC ≌△NOB (SAS ),∴OM=ON ,∠MOC=∠NOB ,∴∠MOC-∠CON=∠NOB-∠CON ,即∠MON=∠BOC=90°,∴OM ⊥ON .考点:全等三角形的判定与性质;角平分线的性质;等腰三角形的性质;矩形的判定与性质. 20.如图,在等腰Rt ABC ∆中,AB AC =,8BC =,D 是BC 边上的中点,点B ,F 分别是边AB ,AC 上的动点,点E 从顶点B 沿BA 方向作匀速运动,点F 从从顶点A 沿AC 方向同时出发,且它们的运动速度相同,连接DE ,DF .(1)求证:BDE ADF ∆≅∆.(2)判断线段DE 与DF 的位置及数量关系,并说明理由.(3)在运动过程中,BDE ∆与CDF ∆的面积之和是否为定值?若是,请求出这个定值;若不是,请说明理由.【答案】(1)证明见解析;(2)DE ⊥DF ,DE=DF ,证明见解析;(3)△BDE 与△CDF 的面积之和始终是一个定值,这个定值为1.【解析】(1)由题意根据全等三角形的判定运用SAS ,求证BDE ADF ∆≅∆即可;(2)根据全等三角形的性质结合中点和垂线定义,进行等量替换即可得出线段DE 与DF 的位置及数量关系;(3)由题意根据全等三角形的性质得出S △BDE +S △CDF =S △ADF +S △CDF =S △ADC , 进而分析即可得知BDE ∆与CDF ∆的面积之和.【详解】解:(1)∵AB=AC ,D 是BC 边上的中点,∴AD 是BC 边上的高又∵∠BAC=90°,∴∠ABD=∠DAF=∠BAD=45°,∴BD=AD又由题意可知BE=AF ,∴△BDE ≌△ADF(SAS).(2)∵DE ⊥DF ,DE=DF,理由如下:∵△BDE ≌△ADF ,∴DE=DF ,∠BDE=∠ADF∵AB=AC ,D 是BC 边上的中点,∴AD ⊥BC ,∠BDE+∠ADE=90°,∴∠ADE+∠ADF=90°,DE ⊥DF.(3)在运动过程中,△BDE 与△CDF 的面积之和始终是一个定值∵AB=AC ,D 是BC 边上的中点,∠BAC=90°,∴AD=BD=BC=4又∵△BDE ≌△ADFS △BDE +S △CDF =S △ADF +S △CDF =S △ADC又∵S △ADC =S △ABC =12.BC .AD=1 ∵点E ,F 在运动过程中,△ADC 的面积不变,∴△BDE 与△CDF 的面积之和始终是一个定值,这个定值为1.【点睛】本题考查全等三角形的综合问题,熟练掌握全等三角形的性质与判定是解题的关键.21.在如图所示的直角坐标系中,(1)描出点32A-(,)、()25B -,、00O (,),并用线段顺次连接点A 、B 、O ,得ABO ∆;(2)在直角坐标系内画出ABO ∆关于y 轴对称的11A B O ∆;(3)分别写出点1A 、点1B 的坐标.【答案】(1)见详解;(2)见详解;(3)点1(3,2)A 、点1(2,5)B【分析】(1)根据A ,B 坐标的特点在第二象限找到A,B 的位置,O 为坐标原点,然后顺次连接,,A B O 即可;(2)根据关于y 轴对称的点的特点:横坐标互为相反数,纵坐标不变,找到相应的点11,A B ,顺次连接11,,A B O 即可;(3)根据关于y 轴对称的点的特点:横坐标互为相反数,纵坐标不变即可写出点1A 、点1B 的坐标.【详解】(1)如图(2)如图(3)根据关于y 轴对称的点的特点:横坐标互为相反数,纵坐标不变即可得点1(3,2)A 、点1(2,5)B【点睛】本题主要考查画轴对称图形,掌握关于y 轴对称的点的特点是解题的关键.22.如图,已知线段AB ,根据以下作图过程:(1)分别以点A 、点B 为圆心,大于AB 长的12为半径作弧,两弧相交于C 、D 两点; (2)过C 、D 两点作直线CD .求证:直线CD 是线段AB 的垂直平分线.【答案】见解析【分析】连接AC 、BC 、AD 、BD ,根据SSS 证明△ACD ≌BCD ,从而得到∠ACO =∠BCO 、∠ADO =∠BDO ,再根据SAS 证明△AOC ≌BOC ,△AOD ≌△BOD ,从而得到AO =BO ,OC ⊥AB ,OC ⊥AB ,再得出结论.【详解】连接AC 、BC 、AD 、BD ,如图所示:∵分别以点A 、点B 为圆心,大于AB 长的12为半径作弧,两弧相交于C 、D 两点, ∴AC=BC ,AD=BD ,在△ACD 和△BCD 中AC BC CD CD AD BD =⎧⎪=⎨⎪=⎩,∴△ACD ≌△BCD ,∴∠ACO =∠BCO 、∠ADO =∠BDO ,在△AOC 和△BOC 中,AC BC ACO BCO OC OC =⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌BOC ,∴OA =OB ,∠COA =∠COB =90º,∴OC 垂直平分AB ,同理可证△AOD ≌△BOD ,OC 垂直平分AB ,∴直线CD 是线段AB 的垂直平分线.【点睛】考查了全等三角形的判定和性质,解题关键是证明△ACD ≌BCD ,从而得到∠ACO =∠BCO 、∠ADO =∠BDO ,再根据SAS 证明△AOC ≌BOC ,再得到OC 垂直平分AB .23.图中折线ABC 表示从甲地向乙地打长途电话时所需付的电话费y (元)与通话时间t (分钟)之间的关系图象.(1)从图象知,通话2分钟需付的电话费是 元;(2)当t≥3时求出该图象的解析式(写出求解过程);(3)通话7分钟需付的电话费是多少元?【答案】(1)2.4(2) 1.5 2.1y x =-(3)8.4【分析】(1)直接观察图像,即可得出t=2时,y=2.4,即通话2分钟需付的电话费是2.4元;(2)通过观察图像,t≥3时,y 与t 之间的关系是一次函数,由图像得知B 、C 两点坐标,设解析式,代入即可得解;(3)把t=7直接代入(2)中求得的函数解析式,即可得出y=8.4,即通话7分钟需付的电话费是8.4元.【详解】解:(2)由图得B (3,2.4),C (5,5.4)设直线BC 的表达式为(0)y kx b k =+≠,3 2.45 5.4k b k b +=⎧⎨+=⎩解得 1.52.1k b =⎧⎨=-⎩∴直线BC 的表达式为 1.5 2.1y x =-.(3)把x=7代入 1.5 2.1y x =-解得y=8.4【点睛】此题主要考查一次函数图像的性质和解析式的求解,熟练运用即可得解.24.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C 是线段AB 所在平面内任意一点,分别以AC 、BC 为边,在AB 同侧作等边三角形ACE 和BCD ,联结AD 、BE 交于点P .(1)如图1,当点C 在线段AB 上移动时,线段AD 与BE 的数量关系是: .(2)如图2,当点C 在直线AB 外,且∠ACB <120°,上面的结论是否还成立?若成立请证明,不成立说明理由.(3)在(2)的条件下,∠APE 的大小是否随着∠ACB 的大小的变化而发生变化,若变化,写出变化规律,若不变,请求出∠APE 的度数.【答案】(1)AD=BE .(2)成立,见解析;(3)∠APE=60°.【分析】(1)直接写出答案即可.(2)证明△ECB ≌△ACD 即可.(3)由(2)得到∠CEB=∠CAD ,此为解题的关键性结论,借助内角和定理即可解决问题.【详解】解:(1)∵△ACE 、△CBD 均为等边三角形,∴AC=EC ,CD=CB ,∠ACE=∠BCD ,∴∠ACD=∠ECB ;在△ACD 与△ECB 中,AC EC ACD ECB CD CB =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△ECB (SAS ),∴AD=BE ,故答案为AD=BE .(2)AD=BE 成立.证明:∵△ACE 和△BCD 是等边三角形∴EC=AC ,BC=DC ,∠ACE=∠BCD=60°,∴∠ACE+∠ACB=∠BCD+∠ACB ,即∠ECB=∠ACD ;在△ECB 和△ACD 中,EC AC ECB ACD BC DC =⎧⎪∠=∠⎨⎪=⎩,∴△ECB ≌△ACD (SAS ),∴BE=AD .(3))∠APE 不随着∠ACB 的大小发生变化,始终是60°.如图2,设BE 与AC 交于Q ,由(2)可知△ECB ≌△ACD ,∴∠BEC=∠DAC又∵∠AQP=∠EQC ,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180°∴∠APQ=∠ECQ=60°,即∠APE=60°.考点:全等三角形的判定与性质;等边三角形的性质.25.如图1,在Rt △ABC 中,∠C =90°,AC =BC ,点D ,E 分别在边AC ,BC 上,CD =CE ,连接AE ,点F ,H ,G 分别为DE ,AE ,AB 的中点连接FH ,HG(1)观察猜想图1中,线段FH 与GH 的数量关系是 ,位置关系是(2)探究证明:把△CDE 绕点C 顺时针方向旋转到图2的位置,连接AD ,AE ,BE 判断△FHG 的形状,并说明理由(3)拓展延伸:把△CDE绕点C在平面内自由旋转,若CD=4,AC=8,请直接写出△FHG面积的最大值【答案】(1)FH=GH,FH⊥HG;(2)△FGP是等腰直角三角形,理由见解析;(3)2【分析】(1)直接利用三角形的中位线定理得出FH=GH,再借助三角形的外角的性质即可得出∠FHG=90°,即可得出结论;(2)由题意可证△CAD≌△CBE,可得∠CAD=∠CBE,AD=BE,根据三角形中位线定理,可证HG=HF,HF∥AD,HG∥BE,根据角的数量关系可求∠GHF=90°,即可证△FGH是等腰直角三角形;(3)由题意可得S△HGF最大=12HG2,HG最大时,△FGH面积最大,点D在AC的延长线上,即可求出△FGH面积的最大值.【详解】解:(1)∵AC=BC,CD=CE,∴AD=BE,∵点F是DE的中点,点H是AE的中点,∴FH=12 AD,∵点G是AB的中点,点H是AE的中点,∴GH=12 BE,∴FH=GH,∵点F是DE的中点,点H是AE的中点,∴FH∥AD,∴∠FHE=∠CAE∵点G是AB的中点,点H是AE的中点,∴GH∥BE,∴∠AGH=∠B,∵∠C=90°,AC=BC,∴∠BAC=∠B=45°,∵∠EGH=∠B+∠BAE,∴∠FHG=∠FHE+∠EHG=∠CAE+∠B+∠BAE=∠B+∠BAC=90°,∴FH⊥HG,故答案为:FH=GH,FH⊥HG;(2)△FGP是等腰直角三角形理由:由旋转知,∠ACD=∠BCE,∵AC=BC,CD=CE,∴△CAD≌△CBE(SAS),∴∠CAD=∠CBE,AD=BE,由三角形的中位线得,HG=12BE,HF=12AD,∴HG=HF,∴△FGH是等腰三角形,由三角形的中位线得,HG∥BE,∴∠AGH=∠ABE,由三角形的中位线得,HF∥AD,∴∠FHE=∠DAE,∵∠EHG=∠BAE+∠AGH=∠BAE+∠ABE,∴∠GHF=∠FHE+∠EHG=∠DAE+∠BAE+∠ABE=∠BAD+∠ABE=∠BAC+∠CAD+∠ABC﹣∠CBE=∠CBA+∠CAB,∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∴∠GHF=90°,∴△FGH是等腰直角三角形;(3)由(2)知,△FGH是等腰直角三角形,HG=HF=12 AD,∵S△HGF=12HG2,∴HG最大时,△FGH面积最大,∴点D在AC的延长线上,∵CD=4,AC=8∴AD=AC+CD=12,∴HG=12×12=1.∴S△PGF最大=12HG2=2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,三角形的中位线定理,判断出HG⊥FH是解本题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°【答案】C 【分析】根据等边对等角可得∠B =∠ACB =50°,再根据三角形内角和计算出∠A 的度数,然后根据三角形内角与外角的关系可得∠BPC >∠A , 再因为∠B =50°,所以∠BPC <180°-50°=130°进而可得答案.【详解】∵AB =AC ,∠B =50°,∴∠B =∠ACB =50°,∴∠A =180°-50°×2=80°,∵∠BPC =∠A +∠ACP ,∴∠BPC >∠A ,∴∠BPC >80°.∵∠B =50°,∴∠BPC <180°-50°=130°,则∠BPC 的值可能是100°.故选C.【点睛】此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.2.已知α,β是方程2201910x x ++=的两个根,则代数式()()221202112021ααββ++++的值是( ) A .4B .3C .2D .1【答案】A 【分析】根据题意得到2201910αα++=,2201910ββ++=,1c aαβ==,把它们代入代数式去求解.【详解】解:∵α、β是方程2201910x x ++=的根,∴2201910αα++=,2201910ββ++=,1c aαβ==, ()()221202112021ααββ++++()()22120192120192αααβββ=++++++()()0202αβ=++4αβ=4=.故选:A .【点睛】本题考查一元二次方程根与系数的关系,解题的关键是抓住一元二次方程根的意义和根与系数的关系. 3.满足下列条件的△ABC 不是直角三角形的是( )A .AC =1,BC AB =2B .AC :BC :AB =3:4:5 C .∠A :∠B :∠C =1:2:3D .∠A :∠B :∠C =3:4:5 【答案】D【分析】根据勾股定理的逆定理可判定即可.【详解】解:A 、∵12+)2=4,22=4,∴12+2=22,∴AC =1,BC ,AB =2满足△ABC 是直角三角形;B 、∵32+42=25,52=25,∴32+42=52,∴AC :BC :AB =3:4:5满足△ABC 是直角三角形;C 、∵∠A :∠B :∠C =1:2:3,∠A+∠B+∠C =180°,∴∠C =3123++×180°=90°, ∴∠A :∠B :∠C =1:2:3满足△ABC 是直角三角形;D 、∵∠A :∠B :∠C =3:4:5,∠A+∠B+∠C =180°,∴∠C =5345++×180°=75°, ∴∠A :∠B :∠C =3:4:5,△ABC 不是直角三角形.故选:D .【点睛】本题主要考查直角三角形的判定,解题关键是掌握直角三角形的判定方法.4x 的取值范围( )A .x≥2B .x≤2C .x >2D .x <2【答案】A【分析】二次根式有意义,被开方数为非负数,即x-2≥0,解不等式求x 的取值范围. 【详解】∵2x -在实数范围内有意义,∴x−2≥0,解得x≥2.故答案选A.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.5.在平面直角坐标系xOy 中,点()2,3P -关于x 轴对称的点为( ) A .()2,3- B .()2,3--C .()23D .()23-, 【答案】B【分析】直接利用关于x 轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案. 【详解】点P (−2,3)关于x 轴对称的点的坐标为(−2,−3).故选:B .【点睛】此题主要考查了关于x 轴对称点的性质,正确记忆横纵坐标的关系是解题关键.6.如图,等腰三角形ABC 底边BC 的长为4 cm ,面积为12 cm 2,腰AB 的垂直平分线EF 交AB 于点E ,交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一点,则△BDM 的周长最小值为( )A .5 cmB .6 cmC .8 cmD .10 cm【答案】C 【分析】连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AB 的垂直平分线可知,点B 关于直线EF 的对称点为点A ,故AD 的长为BM +MD 的最小值,由此即可得出结论.【详解】如图,连接AD .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC =12BC•AD=12×4×AD=12,解得:AD=6(cm ).∵EF 是线段AB 的垂直平分线,∴点B 关于直线EF 的对称点为点A ,∴AD 的长为BM +MD 的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+12BC=6+12×4=6+2=8(cm).故选C.【点睛】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.7.下列各组数值是二元一次方程x﹣3y=4的解的是()A.11xy=⎧⎨=-⎩B.21xy=⎧⎨=⎩C.12xy=-⎧⎨=-⎩D.41xy=⎧⎨=-⎩【答案】A【解析】试题分析:A、将x=1,y=-1代入方程左边得:x-3y=1+3=4,右边为4,本选项正确;B、将x=2,y=1代入方程左边得:x-3y=2-3=-1,右边为4,本选项错误;C、将x=-1,y=-2代入方程左边得:x-3y=-1+6=5,右边为4,本选项错误;D、将x=4,y=-1代入方程左边得:x-3y=4+3=7,右边为4,本选项错误.故选A考点:二元一次方程的解.8.4的算术平方根是()A.±4 B.4 C.±2 D.2【答案】D【分析】如果一个正数x的平方等于a,即x2=a(x>0),那么这个正数x 叫做a的算术平方根.【详解】解:4的算术平方根是2.故选D.【点睛】本题考查了算术平方根的定义,熟练掌握相关定义是解题关键.9.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能...是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360,则说明能够进行平面镶嵌;反之则不能.【详解】解:因为用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,所以小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形. 故选:C【点睛】用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案. 10.若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( ) A .68m <<B .67≤<mC .67m ≤≤D .67m <≤ 【答案】D【分析】首先确定不等式组的解集,先利用含m 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m 的不等式,从而求出m 的范围. 【详解】解不等式0721x m x -<⎧⎨-≤⎩①②,由①式得,x m <,由②式得3x ≥,即故m 的取值范围是67m <≤,故选D .【点睛】本题考查不等式组的整数解问题,利用数轴就能直观的理解题意,列出关于m 的不等式组,再借助数轴做出正确的取舍.二、填空题11.当x 时,分式43x x +-有意义. 【答案】3≠【分析】根据分式有意义的条件:分母不等于0即可求解.【详解】根据题意得:x ﹣1≠0,解得:x ≠1.故答案为:≠1.【点睛】本题考查了分式有意义的条件,是一个基础题目.12.已知关于x 的分式方程211x k x x -=--的解为正数,则k 的取值范围为________. 【答案】k >﹣2且k≠﹣1【分析】先解分式方程,然后根据分式方程解的情况列出不等式即可求出结论. 【详解】解:211x k x x-=--()21--=-x x k解得:x=2+k∵关于x 的分式方程211x k x x-=--的解为正数, ∴010x x >⎧⎨-≠⎩∴20210k k +>⎧⎨+-≠⎩解得:k >﹣2且k≠﹣1故答案为:k >﹣2且k≠﹣1.【点睛】此题考查的是根据分式方程根的情况求参数的取值范围,掌握分式方程的解法和增根的定义是解决此题的关键.13.已知x 、y 满足方程组521x y x y +=⎧⎨-=⎩,则代数式x y -=______. 【答案】-1 【分析】先利用加减消元法解方程,521x y x y +=⎧⎨-=⎩①②,把①+②得到3x=6,解得x=2,然后把x=2代入①可求出y ,最后把x 、y 的值都代入x-y 中进行计算即可;【详解】解:521x y x y +=⎧⎨-=⎩①②, 把①+②得:3x=6,解得x=2,把x=2代入①得2+y=5,解得y=3,∴方程组的解为23x y =⎧⎨=⎩, ∴231x y -=-=-;故答案为:-1;【点睛】本题主要考查了解二元一次方程组,掌握解二元一次方程组是解题的关键.14.过多边形的一个顶点可以作9条对角线,那么这个多边形的内角和比外角和大_____.【答案】1440°【分析】从多边形一个顶点可作9条对角线,则这个多边形的边数是12,n边形的内角和可以表示成(n ﹣2)•180°,代入公式就可以求出内角和.再根据多边形外角和等于360°列式计算即可.【详解】解:∵过多边形的一个顶点共有9条对角线,故该多边形边数为12,∴内角和是(12﹣2)•180°=1800°,∴这个多边形的内角和比外角和大了:1800°﹣360°=1440°.故答案为:1440°【点睛】本题主要考查了多边形的对角线、内角和公式.外角和公式,是需要熟记的内容,比较简单.15.如下图,在△ABC中,∠B=90°,∠BAC=40°,AD=DC,则∠BCD的度数为______.【答案】10°【分析】由余角的性质,得到∠ACB=50°,由AD=DC,得∠ACD=40°,即可求出∠BCD的度数.【详解】解:在△ABC中,∠B=90°,∠BAC=40°,∴∠ACB=50°,∵AD=DC,∴∠ACD=∠A=40°,∴∠BCD=50°-40°=10°;故答案为:10°.【点睛】本题考查了等边对等角求角度,余角的性质解题的关键是熟练掌握等边对等角的性质和余角的性质进行解题.16.如图,△ABC是等边三角形,D,E是BC上的两点,且BD=CE,连接AD、AE,将△AEC沿AC翻折,得到△AMC,连接EM交AC于点N,连接DM.以下判断:①AD=AE,②△ABD≌△DCM,③△ADM是等边三角形,④CN=12EC中,正确的是_____.。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图①是一直角三角形纸片,∠A=30°,BC=4 cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将图②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.83cm B.23cm C.22cm D.3 cm【答案】A【解析】因为在直角三角形中, ∠A=30°,BC=4,故∠CBA=60°,根据折叠的性质得:90,?30,DC B ACB DBA CBD∠∠∠∠︒'====︒故C BD60,CDB∠∠'==︒得:DB=83603BCsin︒==,60ADC∠='︒,根据折叠的性质得:1302C DE ADE ADC∠∠∠===''︒, 90,EDB EDC BDC∠∠∠=+='︒'故△EDB为直角三角形,又因为30DBA∠=︒,故DE=DBtan30°=83383⨯=cm,故答案选A.2.如图,直角坐标系中四边形的面积是()A.4 B.5.5 C.4.5 D.5【答案】C【解析】过A点作x轴的垂线,垂足为E,将不规则四边形分割为两个直角三角形和一个直角梯形求其面积即可.【详解】解:过A点作x轴的垂线,垂足为E,直角坐标系中四边形的面积为:1×1÷2+1×2÷2+(1+2)×2÷2=0.1+1+3=4.1.故选:C .【点睛】本题主要考查了点的坐标的意义以及与图形相结合的具体运用.割补法是求面积问题的常用方法. 3.一组数据:0,1,2,2,3,4,若增加一个数据2,则下列统计量中,发生改变的是( )A .方差B .众数C .中位数D .平均数【答案】A【分析】依据平均数、中位数、众数、方差的定义和公式求解即可. 【详解】解:A 、原来数据的方差=16[(0-2)2+(1-2)2+2×(2-2)2+(3-2)2+(4-2)2]=53, 添加数字2后的方差=17 [(0-2)2+(1-2)2+3×(2-2)2+(3-2)2+(4-2)2]=107,故方差发生了改变; B 、原来数据的众数是2,添加数字2后众数仍为2,故B 与要求不符;C 、原来数据的中位数是2,添加数字2后中位数仍为2,故C 与要求不符;D 、原来数据的平均数是2,添加数字2后平均数仍为2,故D 与要求不符;故选A.【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.4.一个等腰三角形的两边长分别为3、7,则它的周长为( )A .17B .13或17C .13D .10【答案】A【分析】题目中没有明确底和腰,故要先进行分类讨论,再结合三角形三边关系定理分析即可解答.【详解】∵①当3为腰、7为底时,三角形的三边分别为3、3、7,此时不满足三角形三边关系定理舍去;②当3为底、7为腰时,三角形的三边分别为3、7、7,此时满足三角形三边关系定理.∴等腰三角形的周长是:37717++=故选:A【点睛】本题考查了等腰三角形的性质以及三角形三边关系定理.解题的关键是熟练掌握三角形三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边.5.下列各点位于平面直角坐标系内第二象限的是( )A .(3,1)-B .(3,0)-C .(3,1)-D .(0,1) 【答案】A【分析】根据所给点的横纵坐标的符号可得所在象限.第二象限点特点(-,+)【详解】解:A 、(3,1)-,在第二象限,故此选项正确;B 、(3,0)-,在x 轴上,故此选项错误;C 、(3,1)-,在第四象限,故此选项错误;D 、(0,1),在y 轴上,故此选项错误;故选A .【点睛】本题主要考查象限内点的符号特点,掌握每个象限点特点是解决此题的关键.6.如图,ABC 中,DE 是AC 的垂直平分线,5AE =,ABD △的周长为16,则ABC 的周长为( )A .18B .21C .24D .26【答案】D 【分析】先根据垂直平分线的性质可得1,2AD CD AE CE AC ===,再根据三角形的周长公式即可得. 【详解】DE 是AC 的垂直平分线 1,2AD CD AE CE AC ∴=== ABD ∆的周长为16ABD C AB BD AD ∆=++=,5AE =ABC ∆∴的周长为ABC C AB BC AC ∆=++()2AB BD CD AE =+++2AB BD AD AE =+++2ABD C AE ∆=+162526=+⨯=故选:D .【点睛】本题考查了垂直平分线的性质,是一道基础题,熟记垂直平分线的性质是解题关键.7.点()()124,,2,y y -都在直线y x k =-+上,则1y 与2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .不能比较【答案】A【分析】先根据直线的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【详解】解:∵直线y x k =-+中,-1<0,∴y 随x 的增大而减小.∵-4<1,∴y 1>y 1.故选:A .【点睛】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b :当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.8.下列计算,正确的是( )A .a 2﹣a=aB .a 2•a 3=a 6C .a 9÷a 3=a 3D .(a 3)2=a 6【答案】D【解析】A 、a 2-a ,不能合并,故A 错误;B 、a 2•a 3=a 5,故B 错误;C 、a 9÷a 3=a 6,故C 错误;D 、(a 3)2=a 6,故D 正确,故选D .9.如图,在△ABC 中,∠BAC =90°,AD 是△ABC 的高,若∠B =20°,则∠DAC =( )A .90°B .20°C .45°D .70°【答案】B 【分析】先根据高线和三角形的内角和定理得:90,90DAC BAD BAD B ∠+∠=︒∠+∠=︒,再由余角的性质可得结论.【详解】90BAC ∠=︒90DAC BAD ∴∠+∠=︒∵AD 是△ABC 的高90ADB BAD B ∴∠=∠+∠=︒20DAC B ∴∠=∠=︒故选:B .【点睛】本题考查了直角三角形两锐角互余、三角形的内角和定理等知识点,熟记三角形的相关概念是解题关键.10.如图,图形中x 的值为( )A .60B .75C .80D .95【答案】A 【分析】根据三角形内角和定理列出方程即可求出结论.【详解】解:由图可知:x +x +15+x -15=180解得:x=60故选A .【点睛】此题考查的是三角形内角和定理的应用,掌握三角形内角和定理是解决此题的关键.二、填空题11.因式分解24ax a -= .【答案】(2)(2)a x x +-.【详解】试题分析:原式=2(4)(2)(2)a x a x x -=+-.故答案为(2)(2)a x x +-.考点:提公因式法与公式法的综合运用.12.如图,在△ABC 中,BF ⊥AC 于点F ,AD ⊥BC 于点D ,BF 与AD 相交于点E .若AD=BD ,BC=8cm ,DC=3cm .则 AE= _______________cm .【答案】1.【分析】易证∠CAD=∠CBF ,即可求证△ACD ≌△BED ,可得DE=CD ,即可求得AE 的长,即可解题.【详解】解:∵BF ⊥AC 于F ,AD ⊥BC 于D ,∴∠CAD+∠C=90°,∠CBF+∠C=90°,∴∠CAD=∠CBF ,∵在△ACD 和△BED 中,90CAD CBF AD BDADC BDE ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩∴△ACD ≌△BED ,(ASA )∴DE=CD ,∴AE=AD-DE=BD-CD=BC-CD-CD=1;故答案为1.【点睛】本题考查了全等三角形的判定和性质,本题中求证△ACD ≌△BED 是解题的关键.13.若等腰三角形顶角为70°,则底角为_____.【答案】55°【分析】等腰三角形的两个底角相等,三角形的内角和是180°,则一个底角度数=(180°−顶角度数)÷1.【详解】等腰三角形顶角为70°,则底角为(180°−70°)÷1=110°÷1=55°.故答案为 55°.【点睛】解决本题的关键是明确等腰三角形的两个底角相等,三角形的内角和是180°.14.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_______.【答案】1【解析】试题分析:根据定义,α=1000,β=500,则根据三角形内角和等于1800,可得另一角为1,因此,这个“特征三角形”的最小内角的度数为1.15.如图,在平面直角坐标系xOy 中,A (2,1)、B (4,1)、C (1,3).若△ABC 与△ABD 全等,则点D 坐标为_____.【答案】(1,﹣1),(5,3)或(5,﹣1).【解析】试题分析:首先画出平面直角坐标系,然后根据三角形全等的性质进行求解.考点:三角形全等的应用.16.在平面直角坐标系中,Rt ABC ∆的顶点B 在原点O ,直角边BC ,在x 轴的正半轴上,90ACB ︒∠=,点A 的坐标为(3,点D 是BC 上一个动点(不与B,C 重合),过点D 作DE BC ⊥交AB 边于点E,将ABC ∠沿直线DE 翻折,点B 落在x 轴上的F 处.(1)ABC∠的度数是_____________;(2)当AEF∆为直角三角形时,点E的坐标是________________.【答案】30°(13223)【分析】(1)根据∠ACB=90°以及点A的坐标,得到AC和BC的长,再利用特殊角的三角函数值求解即可;(2)根据直角三角形的定义可分三种情况考虑:①当∠AEF=90°时,②当∠AEF=90°时,③当∠EAF=90°时,三种情况分别求解.【详解】解:(1)∵∠ACB=90°,点A的坐标为(3,∴3BC=3,∴tan∠ABC=ACBC=33,∴∠ABC=30°,故答案为:30°;(2)△AEF为直角三角形分三种情况:①当∠AEF=90°时,∵∠OED=∠FED,且∠OED+∠FED+∠AEF=180°,∴∠OED=45°.∵∠ACB=90°,点A的坐标为(3,∴tan∠3ABC=30°.∵ED⊥x轴,∴∠OED=90°-∠ABC=60°.45°≠60°,此种情况不可能出现;②当∠AFE=90°时,∵∠OED=∠FED=60°,∴∠AEF=60°,∵∠AFE=90°,∴∠EAF=90°-∠AEF=30°.∵∠BAC=90°-∠ABC=60°,∴∠FAC=∠BAC-∠EAF=60°-30°=30°.∵∴CF=AC•tan ∠FAC=1,∴OF=OC-FC=3-1=2,∴OD=1,∴DE=tan ∠ABC ×∴点E 的坐标为(1,3); ③当∠EAF=90°时,∵∠BAC=60°,∴∠CAF=∠EAF-∠EAC=90°-60°=30°,∵∴CF=AC•tan ∠FAC=1,∴OF=OC+CF=3+1=4,∴OD=2,∴DE=tan ∠ABC ×∴点E 的坐标为(2);综上知:若△AEF 为直角三角形.点E 的坐标为(1,3)或(2,3).故答案为:(1,3)或(2,3). 【点睛】 本题考查了一次函数图象与几何变换、角的计算以及解直角三角形,解题的关键是根据角的计算以及解直角三角形找出CF 的长度.本题属于中档题,难度不大,但在解决该类题型时,部分同学往往会落掉2种情况,因此在平常教学中应多加对学生引导,培养他们考虑问题的全面性.17.如图,等腰三角形ABC 中,,AB AC MN =是AB 的垂直平分线,MN 交AC 于D ,BD 恰好是ABC ∠的平分线,则A ∠=_____【答案】36︒【分析】设A ∠=x,根据垂直平分线的性质得到ABD A x ∠=∠=,根据角平分线的性质得到DBC ABD A x ∠=∠=∠=,由AB AC =得到2C ABC x ∠=∠=,再根据三角形内角和列方程求出x 即可.【详解】设A ∠=x,∵MN 是AB 的垂直平分线,∴ABD A x ∠=∠=,∵BD 恰好是ABC ∠的平分线∴DBC ABD A x ∠=∠=∠=,∵AB AC =∴2C ABC x ∠=∠=,∵180C ABC A ∠+∠+∠=︒即22180x x x ++=︒解得x=36︒故答案为:36︒.【点睛】此题主要考查三角形角度求解,解题的关键是熟知等腰三角形、垂直平分线及角平分线的性质.三、解答题18.湘西自治州风景优美,物产丰富,一外地游客到某特产专营店,准备购买精加工的豆腐乳和猕猴桃果汁两种盒装特产.若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元.(1)请分别求出每盒豆腐乳和每盒猕猴桃果汁的价格;(2)该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需多少元?【答案】(1)每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元;(2)共需210元.【解析】试题分析:(1)设每盒豆腐乳x 元,每盒猕猴桃果汁y 元,根据若购买3盒豆腐乳和2盒猕猴桃果汁共需180元;购买1盒豆腐乳和3盒猕猴桃果汁共需165元,列出方程组,求解即可;(2)将(1)中的每盒豆腐乳和每盒猕猴桃果汁的价格代入解得即可.试题解析:(1)设每盒豆腐乳x 元,每盒猕猴桃果汁y 元,可得:32180{3165x y x y +=+=, 解得:30{45x y ==, 答:每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元;(2)把每盒豆腐乳和每盒猕猴桃果汁的价格分别为30元,45元代入,可得:4×30+2×45=210(元),答:该游客购买了4盒豆腐乳和2盒猕猴桃果汁,共需210元.考点:二元一次方程组的应用.19.某校为奖励该校在南山区第二届学生技能大赛中表现突出的20名同学,派李老师为这些同学购买奖品,要求每人一件,李老师到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求笔记本和钢笔的单价分别为多少元?(2)售货员提示,购买笔记本没有优惠:买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x (x >10)支钢笔,所需费用为y 元,请你求出y 与x 之间的函数关系式; (3)在(2)的条件下,如果买同一种奖品,请你帮忙计算说明,买哪种奖品费用更低.【答案】(1)笔记本,钢笔单价分别为14元,15元;(2)y=-2x+310;(3)买钢笔费用低.【解析】(1)设笔记本,钢笔单价分别为x ,y 元列方程组求解;(2)若买x (x >10)支钢笔,则买(20-x )本笔记本,根据单价可写出y 与x 之间的函数关系式; (3)分别计算购买20本笔记本和20支钢笔的费用,比较即可.【详解】(1)设笔记本,钢笔单价分别为x ,y 元,根据题意得4286357x y x y +=⎧⎨+=⎩解得x=14,y=15,答:笔记本,钢笔单价分别为14元,15元;(2)y=14(20-x )+15×10+15×0.8(x-10)=-2x+310;(3)买20本笔记本费用:20×14=280元;买20支钢笔费用:10×15+10×15×0.8=270元,所以买钢笔费用低.【点睛】本题考查一次函数相关知识.正确列出表达式是解答关键.20.先化简再求值:211122x x x -⎛⎫÷- ⎪++⎝⎭,其中x =13【答案】化简的结果是1x -;23-. 【分析】先计算括号里的减法,将21x -进行因式分解,再将除法运算化为乘法运算,约分得到最简结果,将x 的值代入计算即可求出值. 【详解】解:211122x x x -⎛⎫÷- ⎪++⎝⎭=(1)(1)122x x x x x -++÷++=(1)(1)221x x x x x -++⋅++=1x -, 当x =13时,原式= 113-= 23- 【点睛】此题考查了分式的化简求值,以及解分式方程,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.21.解不等式组并写出不等式组的整数解.121132x x x -≤⎧⎪++⎨≤⎪⎩ 【答案】不等式组的解集是 13x -≤≤,整数解是1,0,1,2,3-.【分析】首先解两个一元一次不等式,然后求两个不等式解集的公共部分,最后写出不等式组的整数解. 【详解】解:121132x x x -≤⎧⎪⎨++≤⎪⎩①②, 解不等式①得:3x ≤解不等式②得:1x ≥-∴不等式组的解集是:13x -≤≤;∴不等式组的整数解是:10123-,,,,.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.如图所示,在ABC 中,,AB AC AD =和BE 是高,它们相交于点H ,且AE BE =.(1)求证:BCE AHE ≌.(2)求证:2AH CD =.【答案】 (1)证明见详解;(2)证明见详解.【分析】(1)先证C AHE ∠=∠,再结合已知条件即可证得BCE AHE ≌;(2)由BCE AHE ≌,得AH=BC,再由AD 为底边上的高,得BC=2DC,即可得出结论.【详解】(1)证明:AD BE 、是ABC 的高, .9090AEH BEC ADC ∴∠=∠-︒∠=︒,.9090CAD AHE CAD C ∴∠+∠=︒∠+∠=,.C AHE ∴∠=∠.在BCE 和AHE 中,BEC AEH BE AEC AHE ∠=∠⎧⎪=⎨⎪∠=∠⎩()BCE AHE AAS ∴∆≅∆.(2)BCE AHE ≌,=AH BC ∴.,AB AC AD =是ABC ∆的高,BD CD ∴=,2BC CD ∴=,2AH CD ∴=.【点睛】本题考查了全等三角形的判定和性质以及等腰三角形的性质,是中考常见题型,比较简单.23.如图,已知AC ⊥BC ,BD ⊥AD ,AD 与BC 交于点O ,AC=BD .求证:△OAB 是等腰三角形.【答案】见解析【分析】利用HL 定理得出△ABD ≌△BAC 即可得出∠ABC=∠BAD ,再利用等腰三角形的判定得出即可.【详解】证明:∵AC ⊥BC ,BD ⊥AD , ∴∠ADB=∠ACB=90°,在Rt △ABC 和Rt △BAD 中,AB BA AC BD =⎧⎨=⎩, ∴Rt △ABC ≌Rt △BAD (HL ),∴∠ABC=∠BAD ,∴△OAB 是等腰三角形【点睛】本题主要考查了全等三角形的判定与性质以及等腰三角形的判定,根据已知得出Rt △ABD ≌Rt △BAC 是解题关键.24.如图,在平面直角坐标系中,每个小正方形的边长为1,△ABC 的顶点均在格点上,点A 、B 、C 的坐标分别是A (﹣8,4)、B (﹣7,7)、C (﹣2,2).(1)在这个坐标系内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 关于x 轴对称;(2)判断△ABC 的形状,并说明理由.【答案】(1)见解析;(2)△ABC 是直角三角形,理由见解析【分析】(1)利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用勾股定理逆定理得出答案.【详解】解:(1)如图:△A 1B 1C 1即为所求;(2)△ABC 是直角三角形,理由:∵AB 2=12+32=10,BC 2=52+52=50,AC 2=22+62=40,∴AB 2+BC 2=AC 2,∴△ABC 是直角三角形.【点睛】本题主要考查了作图—轴对称变换,关键是利用轴对称的性质确定组成图形的关键点关于x 轴的对称点的位置.25.如图,B 、C 、E 三点在同一条直线上,//AC DE ,AC CE =,ACD B ∠=∠.(1)求证:ABC CDE ∆≅∆;(2)若55A ∠=︒,求BCD ∠的度数.【答案】(1)见解析 (2)125︒【解析】(1)首先利用AC CE =,再证明CDE B ∠=∠和ACB CED ∠=∠,因此可得ABC CDE ∆≅∆. (2)根据55A ︒∠=,由(1)可得55A E ︒∠=∠= ,BCD ∠=ACB ACD ∠+∠,利用等量替换进而计算BCD ∠的度数.【详解】(1)证明: //AC DE∴ ACD CDE ∠=∠,ACB CED ∠=∠ACD B ∠=∠B CDE ∴∠=∠AC CE =∴ ABC CDE ∆≅∆(2) 55A ∠=︒ABC CDE ∆≅∆∴ 55A E ︒∠=∠=,ACB DCE ∠=∠ACD B ∠=∠=D ∠∴ BCD ∠=ACB ACD ∠+∠=DCE D ∠+∠=180********E ︒︒︒︒-∠=-=【点睛】本题主要考查三角形的全等,这是三角形的重点,应当熟练掌握.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下面的图形中,是轴对称图形的是( )A .B .C .D .【答案】C【分析】沿着一条直线对折,两边能够完全重合的图形就是轴对称图形,根据定义判断即可.【详解】A 选项图形不是轴对称图形,不符合题意;B 选项图形不是轴对称图形,不符合题意;C 选项图形是轴对称图形,符合题意;D 选项图形不是轴对称图形,不符合题意;故选C .【点睛】本题考查轴对称图形的判断,熟记轴对称图形的定义是解题的关键.2.如图,在Rt ABC ∆中,90ACB ∠=︒,CD 是高,30A ∠=︒,2BD cm =,则AB 的长为( )A .10cmB .8cmC .6cmD .4cm【答案】B 【分析】根据同角的余角相等可得∠BCD=∠A=30°,然后根据30°所对的直角边是斜边的一半即可依次求出BC 和AB .【详解】解:∵90ACB ∠=︒,CD 是高∴∠ACB=∠ADC=90°∴∠BCD +∠ACD=∠A +∠ACD=90°∴∠BCD=∠A=30°在Rt △BCD 中,BC=2BD=4cm在Rt △ABC 中,AB=2BC=8cm故选B .【点睛】此题考查的是余角的性质和直角三角形的性质,掌握同角的余角相等和30°所对的直角边是斜边的一半是解决此题的关键.3.下列说法正确的是( )A .(﹣3)2的平方根是3B .16=±4C .1的平方根是1D .4的算术平方根是2【答案】D【解析】根据平方根和算术平方根的定义解答即可.【详解】A 、(﹣3)2的平方根是±3,故该项错误;B 、164=,故该项错误;C 、1的平方根是±1,故该项错误;D 、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.4.如图,已知12∠=∠,添加一个条件,使得ABC ADC ∆≅∆,下列条件添加错误的是( )A .B D ∠=∠ B .BC DC = C .AB AD = D .34∠=∠【答案】B 【分析】根据三角形全等的判定定理添加条件即可.【详解】若添加B D ∠=∠,则可根据“AAS”判定两三角形全等;若添加BC DC =,则有两组对应边相等,但相等的角不是夹角,不能判定两三角形全等;若添加AB AD =,则可根据“SAS”判定两三角形全等;若添加34∠=∠,则可根据“ASA”判定两三角形全等;故选:B【点睛】本题考查的是判定两个三角形全等的条件,需要注意的是,当两边对应相等,但相等的角不是夹角时,是不能判定两个三角形全等的.5.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE 等于( )A .110︒B .115︒C .120︒D .125︒【答案】A【分析】根据三角形外角的性质三角形的一个外角等于和它不相邻的两个内角的和可得∠AEB=∠A+∠C=65°,∠DFE=∠B+∠AEC ,进而可得答案.【详解】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=45°,∴∠DFE=65°+45°=110°,故选:A .【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和. 6.已知关于x 的分式方程6111m x x +=--的解是非负数,则m 的取值范圈是( ) A .5m >B .5m ≥C .5m ≥且6m ≠D .5m >或6m ≠ 【答案】C【分析】先解分式方程,再根据解是非负数可得不等式,再解不等式可得.【详解】方程两边乘以(x-1)得 61m x -=-所以5x m =-因为方程的解是非负数所以50m -≥,且51m -≠所以5m ≥且6m ≠故选:C【点睛】考核知识点:解分式方程.去分母,解分式方程,根据方程的解的情况列出不等式是关键.7.设a ,b 是实数,定义*的一种运算如下:a*b =(a+b )2,则下列结论有:①a*b =0,则a =0且b =0;②a*b =b*a;③a*(b+c )=a*b+a*c;④a*b =(﹣a )*(﹣b ).正确的有( )个.A .1B .2C .3D .4【答案】B【分析】根据新定义的运算的意义,将其转化为常见的运算,根据常见的运算的性质逐个做出判断.【详解】解:∵a*b=0,a*b=(a+b )2,∴(a+b )2=0,即:a+b=0,∴a 、b 互为相反数,因此①不符合题意,a*b=(a+b )2,b*a=(b+a )2,因此②符合题意,a*(b+c )=(a+b+c )2,a*b+a*c=(a+b )2+(a+c )2,故③不符合题意,∵a*b=(a+b )2,(-a )*(-b )=(-a-b )2,∵(a+b )2=(-a-b )2,∴a*b=(-a )*(-b ),故④符合题意,因此正确的个数有2个,故选:B .【点睛】本题考查了新定义运算,完全平方公式的特点和应用,新定义一种运算关键是转化为常见的运算进行计算即可.8.已知一个多边形的内角和是720︒,则该多边形的边数为( )A .4B .6C .8D .10【答案】B【分析】根据多边形内角和定理2180()n -⨯︒,由已知多边形内角和为720︒,代入得一元一次方程,解一次方程即可得出答案. 【详解】多边形内角和定理为2180()n -⨯︒, ∴(2)180=720n -⨯︒︒,解得6n =,所以多边形的边数为6,故选:B【点睛】利用多边形内角和定理,可以得到关于边数的一次方程式,列方程时注意度数,解简单的一次方程即可. 9.如图,在△ABC 中,∠C=90°,∠B=10°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:1.A .1B .2C .1D .4 【答案】D【详解】①根据作图的过程可知,AD是∠BAC的平分线.故①正确.②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.④∵如图,在直角△ACD中,∠2=10°,∴CD=12 AD.∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC•CD=14AC•AD.∴S△ABC=12AC•BC=12AC•A32D=34AC•AD.∴S△DAC:S△ABC13AC AD?AC AD1344::⎛⎫⎛⎫=⋅⋅=⎪ ⎪⎝⎭⎝⎭.故④正确.综上所述,正确的结论是:①②③④,,共有4个.故选D.10.如图,已知ABC∆的六个元素,其中a、b、c表示三角形三边的长,则下面甲、乙、丙、丁四个三角形中与ABC∆不一定相似的图形是()A.甲B.乙C.丙D.丁【答案】A【分析】根据相似三角形的判定方法对逐一进行判断.【详解】解:A.满足两组边成比例夹角不一定相等,与ABC∆不一定相似,故选项正确;B. 满足两组边成比例且夹角相等,与ABC ∆相似的图形相似,故选项错误;C. 满足两组角分别相等,与ABC ∆相似的图形相似,故选项错误;D. 满足两组角分别相等,与ABC ∆相似的图形相似,故选项错误 .故选A .【点睛】本题考查了相似三角形的判定方法,关键是灵活运用这些判定解决问题.二、填空题11.为保证数据安全,通常会将数据经过加密的方式进行保存,例如:将一个多项式3a a -因式分解为(1)(1)a a a -+,当20a =时,119a -=,121a +=,将得到的三个数字按照从小到大的顺序排列得到加密数据:192021,根据上述方法.当15x =时,多项式3169x x -分解因式后形成的加密数据是______.【答案】1【分析】先将多项式3169x x -分解因式,再计算当15x =时各个因式的值,然后将得到的各因式的数字按照从小到大的顺序排列即得答案.【详解】解:()()()321691694343x x x x x x x -=-=-+,当15x =时,4357x -=,4363x +=. ∴多项式3169x x -分解因式后形成的加密数据是:1.故答案为:1.【点睛】本题考查了多项式的因式分解,属于基本题型,正确理解题意、熟练掌握分解因式的方法是解答的关键.12.计算:20123π-⎛⎫--+ ⎪⎝⎭= _______. 【答案】1【分析】根据零指数幂,负整数指数幂以及绝对值的运算法则计算即可. 【详解】201298123π-⎛⎫--+ ⎪⎝⎭=-+=, 故答案为:1.【点睛】本题考查了实数的混合运算,熟练掌握运算法则是解题的关键.13.如图,等边ABC 的边长为1cm ,D 、E 分别是AB 、AC 上的点,将ADE 沿直线DE 折叠,点A 落在点F 处,且点F 在ABC 外部,则阴影部分图形的周长为__________cm .【答案】3【分析】根据折叠的性质可得DF AD =,EF AE =,则阴影部分图形的周长即可转化为等边ABC 的周长.【详解】解:由折叠性质可得DF AD =,EF AE =,所以()()=3C BD DF CE EF BC AB AC BC cm ++++=++=阴影.故答案为:3.【点睛】本题结合图形的周长考查了折叠的性质,观察图形,熟练掌握折叠的性质是解答关键.14.多项式22(5)5x --因式分解为 _________【答案】x(x-10)【分析】利用平方差公式分解因式再化简得出即可.【详解】解:()()()()22=x-5+5x-5-5=x x-5051⎡⎤⎡⎤⎣⎦⎣⎦--x 故答案为:()x x-10【点睛】此题主要考查了平方差公式分解因式,熟练应用平方差公式是解题关键.15.点P 在第四象限内,点P 到x 轴的距离是1,到y 轴的距离是2,那么点P 的坐标为_______.【答案】 (2,−1).【解析】根据点P 在第四象限可知其横坐标为正,纵坐标为负即可确定P 点坐标.【详解】∵点P 在第四象限,∴其横、纵坐标分别为正数、负数,又∵点P 到x 轴的距离为1,到y 轴的距离为2,∴点P 的横坐标为2,纵坐标为−1.故点P 的坐标为(2,−1).故答案为:(2,−1).【点睛】此题考查点的坐标,解题关键在于掌握第四象限内点的坐标特征.16.一个六边形的内角和是 ___________.【答案】720°【分析】根据多边形内角和公式即可求解.【详解】根据多边形的内角和定理可得:六边形的内角和=(6-2)×180°=720°.【点睛】本题多边形的内角和,熟记公式是关键.17.如图,在ABC 中,AB AC >,按以下步骤作图:分别以点B 和点C 为圆心,大于BC 一半长为半径作画弧,两弧相交于点M 和点N ,过点M N 、作直线交AB 于点D ,连接CD ,若10AB =,6AC =,则ADC 的周长为_____________________.【答案】1【分析】利用基本作图可以判定MN 垂直平分BC ,则DC=DB ,然后利用等线段代换得到ACD ∆的周长=AB+AC ,再把10AB =,6AC =代入计算即可.【详解】解:由作法得MN 垂直平分BC ,则DC=DB ,10616ACD C CD AC AD DB AD AC AB AC ∆=++=++=+=+=故答案为:1.【点睛】本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.三、解答题18.如图,ABC 和DBE 都是等腰直角三角形,9090ABC BA BC DBE ∠==∠=,,,BD BE =,连接,AD CE .试猜想线段AD 和CE 之间的数量关系和位置关系,并加以证明.【答案】,AD CE AD CE =⊥,证明见解析.【分析】根据已知条件利用SAS 证明△ABD ≌△CBE 即可得到,AD CE BAD BCE =∠=∠∴,延长AD 交CE 于,F AF 交BC 于G ,利用180BAD BGA ABC ∠+∠+∠=︒,BGA FGC ∠=∠,即可证得AD ⊥CE.【详解】,AD CE AD CE =⊥,证明:延长AD 交CE 于,F AF 交BC 于G ,由于ABC 和DBE 都是等腰直角三角形,,,90BA BC BD BE ABC DBE ∴==∠=∠=,ABC DBC DBE DBC ∴∠-∠=∠-∠,ABD CBE ∴∠=∠,在ABD △和CBE △中BA BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩,()ABD CBE SAS ≌,,AD CE BAD BCE =∠=∠∴.由于180BAD BGA ABC ∠+∠+∠=︒,180BCE FGC CFG ∠+∠+∠=︒,BGA FGC ∠=∠,FCG ABC ∴∠=∠,90FCG ∴∠=,AD CE ∴⊥,所以,AD CE AD CE =⊥.【点睛】此题考查等腰直角三角形的性质,旋转的性质,三角形全等的判定及性质,三角形内角和,对顶角相等. 19.解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=1.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB 的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)【答案】(1)3;(2)见解析【分析】(1)根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可得到结论.(2)作∠AOB的平分线OE,作线段MN的垂直平分线GH,GH交OE于点P,点P即为所求.【详解】(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为3.故答案为:3.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P,则点P即为所求.【点睛】本题考查了基本作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,学会利用两点之间线段最短解决最短问题.20.(1)解不等式413x x ->.(2)解不等式组3(1)5(1)21531123x x x x -≤+-⎧⎪-+⎨≥-⎪⎩. 【答案】(1)1x >;(2)133x -≤≤ 【分析】(1)直接移项解不等式即可;(2)先分别解一元一次不等式,再求交集即可.【详解】解:(1)413x x ->431x x ->1x >;(2)3(1)5(1)21531123①②-≤+-⎧⎪⎨-+≥-⎪⎩x x x x 解由①得:3x ≥-, 由②得:13x ≤, ∴原不等式组的解集为133x -≤≤. 【点睛】 本题是对一元一次不等式组的考查,熟练掌握一元一次不等式组的解法是解决本题的关键.21.齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A .十分了解;B .了解较多:C .了解较少:D .不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有_______名;(2)请补全条形图;(3)扇形图中的选项“C .了解较少”部分所占扇形的圆心角的大小为_______°;(4)若该校共有2000名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?【答案】(1)100(2)见解析(3)108︒(4)1200【解析】(1)本次被抽取的学生共3030%100÷=(名);(2)10020301040---=(名),据此补全;(3)扇形图中的选项“C .了解较少”部分所占扇形的圆心角36030%108︒⨯=︒;。
2017-2018学年广东省佛山市南海区八年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.在实数:,0,,π,中,无理数有()A. 1个B. 2个C. 3个D. 4个2.下列说法不正确的是()A. 是最简二次根式B. -1的立方根是-1C. 的算术平方根是2D. 1的平方根是±13.下列各点是在直角坐标系中第四象限的点的是()A. (-3,2)B. (5,-1)C. (3,0)D. (1,2)4.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.3环,方差分别为S=0.56,S=0.60,S=0.50,S=0.45,则成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁5.如图是我校的长方形水泥操场,如果一学生要从A角走到C角,至少走()A. 140米B. 120米C. 100米D. 90米6.如图,∠1=∠B,∠2=20°,则∠D=()A. 20°B. 22°C. 30°D. 45°7.关于函数y=-x+1,下列结论正确的是()A. 图象必经过点(1,1)B. 图象经过第一、二、三象限C. 图象与y轴的交点坐标为(0,1)D. y随x的增大而增大8.二元一次方程组的解是()A. B. C. D.9.在同一坐标系中,函数y=kx与y=3x-k的图象大致是()A. B.C. D.10.如图,∠ABC=∠ACB,AD、BD分别平分△ABC的外角∠EAC、内角∠ABC,以下结论:①AD∥BC;②∠ACB=2∠ADB;③BD⊥AC;④AC=AD.其中正确的结论有()A. ①、②B. ①、②、③C. ①、②、④D. ①、③、④二、填空题(本大题共6小题,共24.0分)11.9的平方根是______.12.已知是二元一次方程2x-y=6的一组解,那么A=______.13.若点A(-2,1)与B(a,b)关于y轴对称,则a+b=______.14.某校规定学生的数学总评成绩由三部分组成,平时成绩占成绩的20%,期中成绩占成绩的30%,期末成绩占成绩的50%,小明这学期的上述三项成绩依次是94分,90分,96分,则小明数学总评成绩是______分.15.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,若∠A=80°,则∠BOC=______.16.如图,在平面直角坐标系中有直线l:y=x和点A1(1,0),小明进行如下操作:过点A1作A1B1⊥x轴,交直线l于点B1,过点B1作A1B1⊥l,交x轴于点A2;再过A2作A2B2⊥x轴,交直线l于点B2,过点B2作A3B2⊥l,交x轴于点A3;以次类推,则B n的坐标为______.三、计算题(本大题共2小题,共15.0分)17.计算:(+)×-(+1)(-1)18.为准备学校读书节活动的奖品,团委干部小丽同学查询了学校附近甲、乙两个商店A4笔记本的价格,已知两商店的标价都是每本5元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的八折卖;乙商店的优惠条件是:从第一本开始就按标价的九折卖.设购买x本笔记本时,甲商店收费为y1(元),乙商店的收费为y2(元).(1)当x>10时,分别写出y1、y2与x的函数关系式.(2)如果小丽要买30本时,到哪个商店购买较省钱?(3)如果这次活动的奖品经费只有270元,在这两个商店里,最多可买多少本?四、解答题(本大题共7小题,共51.0分)19.已知:如图,AB∥CD,点E在AC上,∠A=115°,∠D=20°,求∠AED的度数.20.2017年12月7日晚,1180架无人机惊艳2017年广州《财富》全球论坛,为做好无人机编队灯光表演,亿航智能公司安排了技术员和志愿者共100人,负责搬运、摆放飞机和做飞前的检查,其中技术员每人负责15架,志愿者每人负责10架,恰好安排分工.求技术员、志愿者各有多少人?21.如图,在平面直角坐标系中,每个小正方形的边长为1,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(-8,4)、B(-7,7)、C(-1,2).(1)在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)判断△ABC的形状,并说明理由.22.生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的,则梯子比较稳定,如图1,AB为一长度为6米的梯子.(1)当梯子稳定摆放时,它的顶端能达到5.7米高的墙头吗?(2)如图2,若梯子底端向左滑动(3-2)米,那么梯子顶端将下滑多少米?23.为做好南海区青少年普法教育工作,某校进行“青少年普法”宣传培训后进行了一次测试,学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)①该校抽样调查的学生人数为______名;②抽样中考生分数的中位数所在等级是______;众数所在等级是______;(2)若已知该校八年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?24.如图,点D为△ABC边BC的延长线上一点.(1)若3∠A-2∠ABC=20°,∠ACD=140°,求∠A的度数;(2)若∠ABC的角平分线与∠ACD的角平分线交于点M,过点C作CP⊥BM于点P,求证:∠MCP=90°-∠A;(3)在(2)的条件下,BC=5,CM=13,BM=17,求CP的长度.25.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在y轴上运动.(1)求直线AB的函数关系式;(2)当点M的坐标为______时,AM+BM的长最小;(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.2017-2018学年广东省佛山市南海区七年级(下)期末数学试卷答案和解析【答案】1. C2. C3. B4. A5. B6. D7. B8. C9. B10. B11. -412. 1013. 0.8014. 43°15. 9016. ±19817. 解:原式=4x2-12x+9-4x2+1=-12x+10,当x=2时,原式=-24+10=-14.18. 解:原式=1+9-1+2=11.19. 解:(1)根据函数图象,可知小王从家到新华书店的路程是4000米;(2)30-20=10(分钟).所以小王在新华书店停留了10分钟;(3)小王从新华书店到商场的路程为6250-4000=2250米,所用时间为35-30=5分钟,小王从新华书店到商场的骑车速度是:2250÷5=450(米/分);20. 解:(1)如图,DE为所作,(2)∵DE垂直平分BC,∴EB=EC,∴∠ECB=∠B=25°,∴∠BEC=180°-25°-25°=130°.21. 解:(1)∵袋子中共有10个小球,其中有4个红球和6个黄球,∴摸出红球的概率为=、摸出黄球的概率为=;(2)设放入红球x个,则黄球为(8-x)个,由题意列方程得:=,解得:x=5.所以这8个球中红球和黄球的数量分别应是5个和3个.22. 证明:(1)过点O作OM∥AB,则∠1=∠EOM,∵AB∥CD,∴OM∥CD,∴∠2=∠FOM,∵OE⊥OF,∴∠EOF=90°,即∠EOM+∠FOM=90°,∴∠1+∠2=90°;(2)∵AB∥CD∴∠AEH+∠CHE=180°,∵FO平分∠CFG,EO平分∠AEH∴∠CFG=2∠2,∠AEH=2∠1,∵∠1+∠2=90°∴∠CFG+∠AEH=2∠1+2∠2=180°,∴∠CFG=∠CHE,∴FG∥EH.23. y=100-6x24. 解:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,由(1)知,△ABD≌△ACE,∴∠ACE=∠ABC=45°,∴∠BCE=∠ACB+∠ACE=90°;(3)同(1)的方法得,△ABD≌△ACE(SAS),∴∠ACE=∠ABD,∠BCE=β,∴∠ACE=ACB+∠BCE=∠ACB+β,在△ABC中,AB=AC,∠BAC=α,∠ACB=∠ABC=(180°-α)=90°-α,∴∠ABD=180°-∠ABC=90°+α,∴∠ACE=∠ACB+β=90°-α+β,∵∠ACE=∠ABD=90°+α,∴90°-α+β=90°+α,∴α=β.25. 9 -3x+36【解析】1. 解:∵x2+x3不能合并,故选项A错误,∵x2•x3=x5,故选项B错误,∵x6÷x3=x3,故选项C正确,∵(-x3)2=x6,故选项D错误,故选:C.根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.本题考查合并同类项、同底数幂的乘除法、幂的乘方,解答本题的关键是明确它们各自的计算方法.2. 解:A、不是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选:C.根据轴对称图形的概念判断即可.本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3. 解:180°-150°=30°,那么这个角的余角的度数是90°-30°=60°.故选B.本题根据互余和互补的概念计算即可.本题考查互余和互补的概念,和为90度的两个角互为余角,和为180度的两个角互为补角.4. 解:A、三条中线的交于一点,这一点是三角形的重心;B、三条角平分线的交于一点,这一点是三角形的内心;C、三边垂直平分线的交于一点,这一点是三角形的外心;D、三条高所在直线的交于一点,这一点是三角形的垂心.根据三角形的重心的画法矩形判断.本题考查了三角形重心的概念,明确重心的画法是解题的关键.5. 解:图象应分三个阶段,第一阶段:匀速跑步到公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园停留了一段时间,这一阶段离家的距离不随时间的变化而改变.故D 错误;第三阶段:沿原路匀速步行回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度小于于第一阶段的速度,则C错误.故选:B.根据在每段中,离家的距离随时间的变化情况即可进行判断.本题考查了函数的图象,理解每阶段中,离家的距离与时间的关系,根据图象的斜率判断运动的速度是解决本题的关键.6. 解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,∴a∥b,∴∠3=∠6=100°,∴∠4=100°.故选:D.首先证明a∥b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.此题主要考查了平行线的判定与性质,关键是掌握两直线平行同位角相等.7. 解:根据给出的七巧板拼成的一个机器人,可知图形中有5个等腰直角三角形,1个平行四边形,1个正方形.通过观察可知两个最大的等腰直角三角形和两个最小的等腰直角三角形分别全等,因此全等的三角形共有2对.故选:B.根据七巧板的组成部分,结合图形即可作出判断.本题考查了三角形全等的判定方法,题目比较容易,考查识别图形的全等.8. 解:A、加∠ADB=∠ADC,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA),是正确选法;B、加∠B=∠C∵∠1=∠2,AD=AD,∠B=∠C,∴△ABD≌△ACD(AAS),是正确选法;C、加DB=DC,满足SSA,不能得出△ABD≌△ACD,是错误选法;D、加AB=AC,∵∠1=∠2,AD=AD,AB=AC,∴△ABD≌△ACD(SAS),是正确选法.故选:C.先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.9. 解:①“明天下雨的概率是90%”表示明天下雨的可能性很大,此说法正确;②“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上,此说法错误;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖,此说法错误;④“抛一枚硬币正面朝上的概率为”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在附近,此说法正确.分别利用概率的意义分析得出答案.此题主要考查了概率的意义,正确理解概率的意义是解题关键.10. 解:如图作EH⊥AD于H.∵EA平分∠BAD,EB⊥BA,EH⊥AD,∴BE=EH,同法可证:EH=EC,∴EB=EC,故②正确,∵∠B=∠EHA=90°,AE=AE,EB=EH,∴Rt△EAB≌Rt△EAH(HL),∴AH=AB,∠AEB=∠AEH,同理可证:△EDH≌△EDC(HL),∴DH=DC,∠DEH=∠DEC,∴AD=AH+DH=AB+CD,∠AED=(∠BEH+∠CEH)=90°,故①④正确,∵DE>EH,EH=BE,∴DE>BE,故③错误,故选:B.如图作EH⊥AD于H.利用角平分线的性质定理,证明三角形全等即可解决问题;本题考查全等三角形的判定和性质、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.11. 解:原式=(-0.25)2017×42017×4=(-0.25×4)2017×4=-4.故答案为:-4.直接利用积的乘方运算法则将原式变形得出答案.此题主要考查了积的乘方运算,正确将原式变形是解题关键.12. 解:①2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,综上所述,它的周长是10.故答案为:10.分2是腰长与底边两种情况讨论求解.本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系进行判定.13. 解:观察表格得到这种玉米种子发芽的频率稳定在0.801附近,0.801≈0.80,则这种玉米种子发芽的概率是0.80,故答案为:0.80.观察表格得到这种玉米种子发芽的频率稳定在0.801附近,即可估计出这种玉米种子发芽的概率.此题考查了利用频率估计概率,从表格中的数据确定出这种玉米种子发芽的频率是解本题的关键.14. 解:∵a∥b,∴∠3=∠1=47°,∵AD⊥b,∴∠2=90°-∠3=90°-47°=43°,故答案为:43°根据两直线平行,同位角相等求出∠3,再根据直角三角形两锐角互余解答.本题考查了平行线的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.15. 解:在△OCF与△ODG中,,∴△OCF≌△ODG(AAS),∴CF=DG=40,∴小明离地面的高度是50+40=90,故答案为:90.根据全等三角形的判定和性质即可得到结论.本题考查了全等三角形的应用,熟练正确全等三角形的判定和性质定理是解题的关键.16. 解:设原三位数的百位数字为x,十位数字为y,个位数字为z,根据题意得:(100z+10y+x)-(100x+10y+z)=99(z-x).∵差的个位数字为8,∴z-x=±2,∴99(z-x)=±198.故答案为:±198.设原三位数的百位数字为x,十位数字为y,个位数字为z,根据个位和百位交换后的数与与原三位数的差的个位数字是8,可得出z-x=±2,进而即可得出两个数的差,此题得解.本题考查了列代数式以及代数式求值,根据两个数的差的个位数字是8,找出两个数的差是解题的关键.17. 原式利用完全平方公式,以及平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.18. 直接利用负指数幂的性质和零指数幂的性质分别化简进而得出答案.此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.19. (1)根据函数图象,可知小王从家到新华书店的路程是4000米;(2)由函数图象可知,20~30分钟的路程没变,所以小王在新华书店停留了10分钟;(3)小王从新华书店到商场的路程为6250-4000=2250米,所用时间为35-30=5分钟,根据速度=路程÷时间,即可解答.本题主要考查了函数图象的读图能力,要理解横纵坐标表示的含义以及小王的运动过程是解题的关键.20. (1)利用基本作图作BC的垂直平分线;(2)根据线段垂直平分线的性质得EB=CE,再根据等腰三角形的性质得到∠ECB的度数,然后根据三角形内角和计算∠BEC的度数.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).21. (1)直接利用概率公式计算即可求出摸出的球是红球和黄球的概率;(2)设放入红球x个,则黄球为(8-x)个,由摸出两种球的概率相同建立方程,解方程即可求出8个球中红球和黄球的数量分别是多少.本题考查的是求随机事件的概率,解决这类题目要注意具体情况具体对待.用到的知识点为:可能性等于所求情况数与总情况数之比.22. (1)过点O作OM∥AB,根据平行线的性质得出∠1=∠EOM,求出OM∥CD,根据平行线的性质得出∠2=∠FOM,即可得出答案;(2)根据平行线的性质得出∠AEH+∠CHE=180°,根据角平分线定义得出∠CFG=2∠2,∠AEH=2∠1,根据∠1+∠2=90°求出∠CFG+∠AEH=2∠1+2∠2=180°,求出∠CFG=∠CHE,根据平行线的判定得出即可.本题考查了平行线的性质和判定,角平分线定义等知识点,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.23. 解:(1)由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少6L,所以y=100-6x,故答案为:y=100-6x.(2)当y=46时,100-6x=46,解得:x=9,即汽车行驶了9小时;(3)∵700÷100=7(小时),7×6=42(L),36L<42L,∴在中途不加油的情况下不能从高速公路起点开到高速公路终点.(1)由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少6L,据此可得x 与y的关系式;(2)求汽车油箱中剩余油量为46L,则汽车行使了多少小时即是求当y=46时x的值;(4)先求出汽车以100km/h的速度在一条全长700公里的高速公路上匀速行驶需要的时间,乘以6求出用油量,再与36L比较大小即可判断.本题主要考查了函数关系式,由表格中数据求函数解析式可以根据等量关系列出或者利用待定系数法去求,理清汽车以100km/h的速度在一条全长700公里的高速公路上匀速行驶需要的时间7小时,是第四个问题的突破点.24. (1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;(2)先求出∠ABC=∠ACB=45°,借助(1)的结论,即可得出结论;(3)同(1)的方法得出△ABD≌△ACE,判断出∠ACE=∠ACB+β,再用等腰三角形的性质和三角形内角和定理,得出∠ACB=90°-α,即可得出结论.此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形的性质,三角形的内角和定理,判断出,△ABD≌△ACE(SAS),是解本题的关键.25. 解:(1)①当x=6时,点P在BC上,y=×AD×BA=9,②当9≤x<12时,点P在CD上,y=•AD•DP=×6×(12-x)=-3x+36,故答案为9,-3x+36.(2)分两种情况,①当P在AB上时,如图2,当y=3时,3=3x,x=1,②当P在CD上时,如图3,则AB+BC+CP=t,∴PD=3+3+6-t=12-t,∴y=PD•AD=×6×(12-t)=3(12-t),当y=3时,3=3(12-t),t=11,综上所述,当y=3时,x的值是1秒或11秒;(3)存在,如图,延长AB至A′,使AB=A′B,连接A′D,交BC于P,连接AP,此时△APD的周长最小∴AA′=AB+BA′=3+3=6,∴AD=AA′=6,∴△A′AD是等腰直角三角形,∴∠A′=45°,∵∠ABC=90°,∴BP是AA′的中垂线,∴AP=PA′,∴∠A′=∠BAP=45°,∴∠APD=∠A′+∠BAP=90°.(1)首先判断点P的位置,根据三角形的面积公式计算即可;(2)由图2知,当y=3时有两种情况,画图进行讨论即可;(3)作A关于直线BC的对称点A′,连接A′D与BC交于点P,根据两边之和大于第三边可知A′D最小,即△APD的周长最小,求出∠APD=∠A′+∠BAP=90°.本题是四边形的综合题,考查了矩形、轴对称的性质,此题动点运动路线与三角形面积和函数图象相结合,理解函数图象的实际意义是本题的关键,根据图象的变化特征确定其点p的位置,从而得出结论.。
一、选择题(每题4分,共20分)1. 下列各数中,是负数的是()A. -3B. 0C. 3D. -2.52. 若a < b,则下列不等式中正确的是()A. a - 2 < b - 2B. a + 2 > b + 2C. a / 2 > b / 2D. a 2 < b 23. 在直角坐标系中,点P(-1,2)关于x轴的对称点是()A. (-1,-2)B. (1,2)C. (-1,2)D. (1,-2)4. 若一个数的平方根是±3,则这个数是()A. 9B. 36C. 81D. 165. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3x^2C. y = 3/xD. y = 3x二、填空题(每题4分,共20分)6. 0.3的平方根是______。
7. 若a + b = 10,a - b = 2,则a = ______,b = ______。
8. 在△ABC中,∠A = 60°,∠B = 45°,则∠C = ______。
9. 下列式子中,可以分解因式的是______。
10. 若x^2 - 5x + 6 = 0,则x的值是______。
三、解答题(每题10分,共30分)11. (1)计算:3^2 - 2 3 + 1。
(2)化简:4a^2 - 9b^2。
12. (1)已知:a + b = 7,a - b = 3,求a和b的值。
(2)已知:x^2 - 5x + 6 = 0,求x的值。
13. (1)在△ABC中,∠A = 60°,∠B = 45°,∠C = 75°,求sinA、cosB、tanC的值。
(2)已知:点P(-2,3)关于直线y = x的对称点是点Q,求点Q的坐标。
四、应用题(每题15分,共30分)14. 小明骑自行车从家出发,先向东走了5千米,然后向北走了3千米,最后又向东走了2千米,此时他距离家的距离是多少?15. 一块长方形菜地的长是120米,宽是80米,围成这个菜地需要多少米的篱笆?答案:一、选择题1. A2. A3. A4. A5. C二、填空题6. ±√37. a = 5,b = 28. 75°9. 4a^2 - 9b^210. x = 2 或 x = 3三、解答题11. (1)4(2)4a^2 - 9b^2 = (2a + 3b)(2a - 3b)12. (1)a = 5,b = 2(2)x = 2 或 x = 313. (1)sinA = √3/2,cosB = √2/2,tanC = √3(2)点Q的坐标是(3,-2)四、应用题14. 小明距离家的距离是√(5^2 + 3^2 + 2^2) = √(25 + 9 + 4) = √38 ≈ 6.16千米。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在平面直角坐标系中,O 为坐标原点,点N 在x 轴正半轴上,点1A ,2A ,3A ……在射线ON 上,点1B ,2B ,3B ……在射线OM 上,30MON ∠=,112A B A ∠,223A B A ∠,334A B A ∠……均为等边三角形,依此类推,若11OA =,则点2020B 的横坐标是( )A .201723⨯B .201823⨯C .201923⨯D .202023⨯【答案】B 【分析】根据等边三角形的性质和30MON ∠=以及外角的性质,可求得1290OB A ∠=︒,可求得2122OA OA ==,122B A =由勾股定理得13OB =,再结合30的直角三角形的性质,可得点1B 横坐1333322-==⨯,利用中位线性质,以此类推,可得2B 的横坐标为032⨯,3B 的横坐标为132⨯……,所以n B 的横坐标为232n -⨯,即得2020B .【详解】30MON ∠=,112A B A ∆为等边三角形,由三角形外角的性质,1290OB A ∴∠=︒,2122OA OA ==11OA =,由勾股定理得13OB ∴=1B 的纵坐标为32, 由30的直角三角形的性质,可得1B ∴13333222-==⨯, 以此类推2B 的横坐标为032⨯,3B 的横坐标为132⨯……,所以n B 的横坐标为232n -⨯,2020B ∴横坐标为201823⨯.故选:B .【点睛】考查了图形的规律,等边三角形的性质,30的直角三角形的性质,外角性质,勾股定理,熟练掌握这些性质内容,综合应用能力很关键,以及类比推理的思想比较重要.2.下列能作为多边形内角和的是()A.312340︒B.211200︒C.200220︒D.222120︒【答案】D【分析】用以上数字分别除以180,判断商是否为整数,即可得出答案.【详解】A:312340°÷180°≈1735.2,故A错误;B:211200°÷180°≈1173.3,故B错误;C:200220°÷180°≈1112.3,故C错误;D:222120°÷180°=1234,故D正确;故答案选择D.【点睛】本题考查的是多边形的内角和公式:(n-2)×180°,其中n为多边形的边数.3.如图,在4×4方格中,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出()A.7个B.6个C.4个D.3个【答案】A【分析】分别以A、B为圆心,AB长为半径画弧,圆弧经过的格点即为第三个顶点的位置,作AB的垂直平分线,如果经过格点,则这样的点也满足条件,由上述作法即可求得答案.【详解】如图所示,分别以A、B为圆心,AB长为半径画弧,则圆弧经过的格点C1、C2、C3、C4、C5、C6、C7即为第三个顶点的位置;作线段AB的垂直平分线,垂直平分线未经过格点,故以AB为一边,第三个顶点也在格点上的等腰三角形可以作出7个,故选A.【点睛】本题考查了等腰三角形的判定,关键是根据题意画出符合条件的等腰三角形.4.如图所示在ABC ∆中,AB 边上的高线画法正确的是( )A .B .C .D .【答案】B【分析】直接利用高线的概念得出答案.【详解】在ABC ∆中,AB 边上的高线画法正确的是B ,故选B .【点睛】此题主要考查了三角形高线的作法,正确把握相关定义是解题关键.5.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .8【答案】C【分析】根据三角形三边关系可得5﹣3<a <5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a <5+3,即2<a <8,由此可得,符合条件的只有选项C ,故选C .【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a <5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.6.如图,∠ACB=900,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm ,则BE=( )A .1cmB .0.8cmC .4.2cmD .1.5cm 【答案】B【详解】解:90ACB ∠=,90BCE ACE ∴∠+∠=,∵BE ⊥CE ,AD ⊥CE ,90E ADC ∴∠=∠=,90CAD ACE ∠+∠=,∴∠BCE=∠CAD ,在△ACD 和△CBE 中,90BCE CAD E ADC AC BC ∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∴△ACD ≌△CBE(AAS),∴AD=CE=2.5cm ,BE=CD ,∵CD=CE−DE=2.5−1.7=0.8cm ,∴BE=0.8cm.故选B.7.如图,“士”所在位置的坐标为()12--,,“相”所在位置的坐标为()22-,,那么“炮”所在位置的坐标为( )A .()21-,B .()31-,C .()21-,D .()31-,【答案】B 【分析】由士和相的坐标推得坐标原点所在的位置,即可得出“炮“所在的位置坐标.【详解】解:根据“士”所在位置的坐标为(−1,−2),“相”所在位置的坐标为(2,−2)可建立如图所示坐标系,∴“炮”所在位置为(−3,1),故选:B .本题考查了坐标确定位置的知识,解答本题的关键是要建立合适的坐标系.8.已知a ,b ,c 是△ABC 的三条边,满足下列条件的△ABC 中,不是直角三角形的是( ) A .222b c a =-B .∠A :∠B :∠C=3:4:5C .∠C=∠A-∠BD .a :b :c=5:12:13【答案】B【分析】解答此题时根据直角三角形的判定方法,当一个角是直角时,或两边的平方和等于第三条边的平方,也可得出它是直角三角形,分别判定即可.【详解】解:A 、∵b 2=c 2-a 2,∴c 2=b 2+a 2,∴△ABC 是直角三角形故本选项不符合题意;B 、∵∠A+∠B+∠C=180°,∠A :∠B :∠C=3:4:5,∴最大角∠C=512×180°=75°,此三角形不是直角三角形,本选项符合题意; C 、∵∠C=∠A-∠B ,∴∠C+∠B=∠A ,∴∠A=90°,∴△ABC 是直角三角形,故本选项不符合题意;D 、∵a :b :c=12:13:5,∴a 2+c 2=b 2,∴△ABC 是直角三角形,故本选项不符合题意;故选:B .【点睛】本题考查了直角三角形的判定方法、勾股定理的逆定理和三角形的内角和定理,能理解勾股定理的逆定理的内容是解此题的关键.9.若ABC ∆≌DEF ∆,则根据图中提供的信息,可得出x 的值为( )A .30B .27C .35D .40【分析】在△ABC 中利用三角形内角和可求得∠A=70°,则可得∠A 和∠D 对应,则EF=BC ,可得到答案.【详解】∵∠B=50°,∠C=60°,∴∠A=70°,∵△ABC ≌△DEF ,∴∠A 和∠D 对应,∴EF=BC=30,∴x=30,故选:A .【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应边、对应角相等是解题的关键.10.如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN ,使从A 到B 的路径AMNB 最短的是(假定河的两岸是平行直线,桥要与河岸垂直)( )A .B .C .D .【答案】D【分析】过A 作河岸的垂线AH ,在直线AH 上取点I ,使AI 等于河宽,连接BI 即可得出N ,作出MN ⊥a 即可得到M ,连接AM 即可.【详解】解:根据河的两岸是平行直线,桥要与河岸垂直可知,只要AM +BN 最短就符合题意,即过A 作河岸a 的垂线AH ,垂足为H ,在直线AH 上取点I ,使AI 等于河宽.连结IB 交河岸b 于N ,作MN 垂直于河岸交河岸a 于M 点,连接AM .故选D .【点睛】本题考查了最短路线问题以及三角形三边关系定理的应用,关键是找出M 、N 的位置.二、填空题11.如图,在Rt ABC △中,90C ∠=︒,边AB 的垂直平分线DE 交BC 于点D ,AD 平分BAC ∠,则B ∠=_______︒.【答案】30【分析】根据垂直平分线的性质和角平分线的定义得出EAD B CAD ∠=∠=∠,然后利用直角三角形两锐角互余即可求出答案.【详解】DE 垂直平分AB ,∴AD BD = ,EAD B ∴∠=∠.∵AD 平分BAC ∠,EAD CAD ∴∠=∠,EAD B CAD ∴∠=∠=∠.90C ∠=︒,90BAC B ∴∠+∠=︒,390B ∴∠=︒ ,30B ∴∠=︒.故答案为:1.【点睛】本题主要考查垂直平分线的性质,角平分线的定义和直角三角形两锐角互余,掌握垂直平分线的性质和角平分线的定义是解题的关键.12.已知 12,3a b ab -=-=22222a b ab a b ab +-++ 的值等于______. 23 ()()223,a b a b ab --+ 代入求值即可. 详解:12,3a b ab -=-=原式()()223,a b a b ab =--+()(221223,3=--+⨯ 221,=+2 3.=2 3.点睛:考查二次根式的化简求值,对所求式子进行变形是解题的关键.13.实数94的平方根是____________. 【答案】32± 【分析】直接利用平方根的定义计算即可.【详解】∵±32的平方是94,∴94的平方根是±32. 故答案为±32. 【点睛】本题考查了平方根的定义:如果一个数的平方等于a ,这个数就叫做a 的平方根,也叫做a 的二次方根.注意:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根. 14.已知:23x =,45y =,则22x y -=__________. 【答案】35【分析】将45y =转化为()224225y y y ===,再把22x y -转化为222x y ,则问题可解 【详解】解:∵()224225y y y ===22232=25x x y y -= 【点睛】本题考查了同底数幂的除法和幂的乘方的逆运算,解答关键是将不同底数的幂运算转化成同底数幂进行计算.15.若27m a a a ⋅=,则m 的值为_________.【答案】1【分析】根据同底数幂相乘,底数不变,指数相加即可列出方程,求出m 的值.【详解】解:∵27m a a a ⋅=∴27m a a +=∴27m +=解得:m=1故答案为:1.【点睛】此题考查的是幂的运算性质,掌握同底数幂相乘,底数不变,指数相加是解决此题的关键.16.若3a 2﹣a ﹣2=0,则5+2a ﹣6a 2=_____.【答案】1【分析】先观察3a 2﹣a ﹣2=0,找出与代数式5+2a ﹣6a 2之间的内在联系后,代入求值.【详解】解:∵3a 2﹣a ﹣2=0,∴3a 2﹣a =2,∴5+2a ﹣6a 2=5﹣2(3a 2﹣a )=5﹣2×2=1.故答案为:1.【点睛】本题考查了整体代入法求代数式的值,以及添括号法则.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.17.如图,等腰直角三角形 ABC 中,∠BAC=90°,AB=AC ,点 M ,N 在边 BC 上,且∠MAN=45°.若 BM=1, CN=3,则 MN的长为.【答案】10.【分析】过点C 作CE ⊥BC ,垂足为点C ,截取CE ,使CE=BM .连接AE 、EN .通过证明△ABM ≌△ACE (SAS )推知全等三角形的对应边AM=AE 、对应角∠BAM=∠CAE ;然后由等腰直角三角形的性质和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN ≌△EAN (SAS ),故全等三角形的对应边MN=EN ;最后由勾股定理得到EN 2=EC 2+NC 2即MN 2=BM 2+NC 2.【详解】解:如图,过点C 作CE ⊥BC ,垂足为点C ,截取CE ,使CE=BM .连接AE 、EN .∵AB=AC ,∠BAC=90°,∴∠B=∠ACB=45°.∵CE ⊥BC ,∴∠ACE=∠B=45°.在△ABM 和△ACE 中,AB AC B ACE BM CE =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△ACE (SAS ).∴AM=AE ,∠BAM=∠CAE .∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE ,得∠MAN=∠EAN=45°.在△MAN 和△EAN 中,AM AE MAN EAN AN AN =⎧⎪∠=∠⎨⎪=⎩∴△MAN ≌△EAN (SAS ).∴MN=EN .在Rt △ENC 中,由勾股定理,得EN 2=EC 2+NC 2.∴MN 2=BM 2+NC 2.∵BM=2,CN=3,∴MN 2=22+32,∴MN=10考点:2.正方形的性质;2.全等三角形的判定与性质.三、解答题18.如图,在每个小正方形的边长均为1的方格纸中有线段AB ,其中点A 、B 均在小正方形的顶点上.(1)在方格纸中画出以BC 为底的钝角等腰三角形ABC ,且点C 在小正方形的顶点上;(2)将(1)中的△ABC 绕点C 逆时针旋转90°得到△DEC (点A 的对应点是点D ,点B 的对应点是点E ),画出△CDE ;(3)在(2)的条件下,连接BE ,请直接写出△BCE 的面积.【答案】 (1)详见解析;(2)详见解析;(3)1【分析】(1)依据BC 为等腰三角形的底边,AB 的长为5,即可得到点C 的位置,进而得出钝角等腰三角形ABC ;(2)依据△ABC 绕点C 逆时针旋转90°,即可得到△DEC ;(3)连接BE ,运用割补法即可得出△BCE 的面积.【详解】(1)如图所示,等腰三角形ABC即为所求;(2)如图所示,△DEC即为所求;(3)如图,连接BE,△BCE的面积为8×12-12×4×8×2-12×4×12=96-32-24=1.【点睛】此题考查作图-旋转,等腰三角形的性质,解题关键在于根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.19.太原市积极开展“举全市之力,创建文明城市”活动,为2020年进人全国文明城市行列莫定基础.某小区物业对面积为3600平方米的区域进行了绿化,整项工程由甲、乙两个林队先后接力完成,甲园林队每天绿化200平方米,乙园林队每天绿化160平方米,两队共用21天.求甲乙两个园林队在这项绿化工程中分别工作了多少天.【答案】甲园林队工作了6天,乙园林队工作了15天.【解析】设甲园林队工作了x天,乙园林队工作了y天,根据题意列出二元一次方程组即可求解.【详解】设甲园林队工作了x天,乙园林队工作了y天,根据题意得21 2001603600x yx y+=⎧⎨+=⎩解,得615 xy=⎧⎨=⎩,答:甲园林队工作了6天,乙园林队工作了15天.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意找到等量关系列方程.20.制文中学2019年秋季在政大商场购进了A、B两种品牌的冰鞋,购买A品牌冰鞋花费了8000元,购买B品牌冰鞋花费了6000元,且购买A品牌冰鞋的数量是购买B品牌冰鞋数量的2倍,已知购买一双B品牌冰鞋比购买一双A品牌冰鞋多花100元.(1)求购买一双A品牌,一双B品牌的冰鞋各需多少元?(2)为开展好“冰雪进校园”活动,制文中学决定再次购买两种品牌冰鞋共50双,如果这所中学这次购买A、B两种品牌冰鞋的总费用不超过13100元,那么制文中学最多购买多少双B品牌冰鞋?【答案】(1)购买一双A 品牌、一双B 品牌冰鞋各需200元、300元;(2)制文中学最多购买B 品牌冰鞋31双【分析】(1)设购买一双A 品牌冰鞋需x 元,则购买一双B 品牌冰鞋需要(x+100)元,根据题意列出方程即可解出.(2)设购买B 品牌冰鞋a 双,则购买A 品牌冰鞋(50-a)双,根据题意列出不等式解出范围即可.【详解】解(1):设购买一双A 品牌冰鞋需x 元,则购买一双B 品牌冰鞋需要(x+100)元,根据题意得, 800060002100x x =⨯+ 解得, x=200经检验x=200是原分式方程的解∴x+100=300答:购买一双A 品牌、一双B 品牌冰鞋各需200元、300元.(2)解:设购买B 品牌冰鞋a 双,则购买A 品牌冰鞋(50-a)双根据题意得,300a+200(50-a )≤13100解得, a ≤31∵ a 取整数∴ a=31答:制文中学最多购买B 品牌冰鞋31双.【点睛】本题考查分式方程的应用、不等式的应用,关键在于理解题意找到等量关系.21.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .(1)则BC =____________cm ;(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________?(3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.【答案】(1)11;(1)t=11.5s 时,13 cm ;(3)11s 或11s 或13.1s【分析】(1)由勾股定理即可得出结论;(1)由线段垂直平分线的性质得到PC= PA=t ,则PB=16-t .在Rt △BPC 中,由勾股定理可求得t 的值,判断出此时,点Q 在边AC 上,根据CQ=1t-BC 计算即可;(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分BQ=BC 、CQ=BC 和BQ=CQ 三种情况,分别得到关于t 的方程,可求得t 的值.【详解】(1)在Rt △ABC 中,BC 2222212016AC AB =-=-=(cm).故答案为:11;(1)如图,点P 在边AC 的垂直平分线上时,连接PC ,∴PC= PA=t ,PB=16-t . 在Rt △BPC 中,222BC BP CP +=,即2221216)t t +-=(, 解得:t=252. ∵Q 从B 到C 所需的时间为11÷1=6(s),252>6, ∴此时,点Q 在边AC 上,CQ=25212132⨯-=(cm);(3)分三种情况讨论:①当CQ=BQ 时,如图1所示,则∠C=∠CBQ .∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ ,∴BQ=AQ ,∴CQ=AQ=10,∴BC+CQ=11,∴t=11÷1=11(s).②当CQ=BC 时,如图1所示,则BC+CQ=14,∴t=14÷1=11(s).③当BC=BQ 时,如图3所示,过B 点作BE ⊥AC 于点E ,则BE 121648205AB BC AC ⋅⨯===, ∴CE 2222483612()55BC BE =-=-==7.1. ∵BC=BQ ,BE ⊥CQ ,∴CQ=1CE=14.4,∴BC+CQ=16.4,∴t=16.4÷1=13.1(s).综上所述:当t 为11s 或11s 或13.1s 时,△BCQ 为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.22.先化简,再求2241()2442x x x x x x -+⋅--++的值,其中x=1. 【答案】12x -,2. 【解析】试题分析:原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=2(2)241(2)2x x x x x -+-⋅-+=2(2)(2)1(2)2x x x x +-⋅-+=12x - 当x=2时,原式=2.考点:分式的化简求值.23.(1)问题背景:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点,且∠EAF =60°,请探究图中线段BE ,EF ,FD 之间的数量关系是什么?小明探究此问题的方法是:延长FD 到点G ,使DG =BE ,连结AG .先证明△ABE ≌△ADG ,得AE =AG ;再由条件可得∠EAF =∠GAF ,证明△AEF ≌△AGF ,进而可得线段BE ,EF ,FD 之间的数量关系是 . (2)拓展应用:如图2,在四边形ABCD 中,AB =AD ,∠B+∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD .问(1)中的线段BE ,EF ,FD 之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.【答案】(1)EF =BE+DF ;(2)结论EF =BE+DF 仍然成立;证明见解析.【分析】(1)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题;(2)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题.【详解】(1)EF =BE+DF ,理由如下:在△ABE 和△ADG 中,90DG BE B ADG AB AD ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD , ∴∠GAF =∠DAG+∠DAF =∠BAE+∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG+DF =BE+DF ,∴EF =BE+DF ;故答案为:EF =BE+DF .(2)结论EF =BE+DF 仍然成立;理由:延长FD 到点G .使DG =BE .连结AG ,如图2,∵∠B+∠ADC =180°,∠ADC+∠ADG =180°,∴∠B =∠ADG ,在△ABE 和△ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD , ∴∠GAF =∠DAG+∠DAF =∠BAE+∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG+DF =BE+DF ,∴EF =BE+DF .【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.24.四边形ADBC 是由等边ABC ∆和顶角为120°的等腰三角形ABD ∆拼成,将一个60°角顶点放在点D 处,60°角两边分别交直线,BC AC 于,M N ,交直线AB 于,F E 两点.(1)当,E F 都在线段AB 上时,探究,,BM AN MN 之间的数量关系,并证明你的结论;(2)当E 在边BA 的延长线上时,求证:BM AN MN -=.【答案】(1)BM+AN=MN ,证明见解析;(2)见解析;【分析】(1)把△DBM 绕点D 逆时针旋转120°得到△DAQ ,根据旋转的性质可得DM=DQ ,AQ=BM ,∠ADQ=∠BDM ,然后求出∠QDN=∠MDN ,利用“边角边”证明△MND 和△QND 全等,根据全等三角形对应边相等可得MN=QN ,再根据AQ+AN=QN 整理即可得证;(2)把△DAN 绕点D 顺时针旋转120°得到△DBP ,根据旋转的性质可得DN=DP ,AN=BP ,根据∠DAN=∠DBP=90°可知点P 在BM 上,然后求出∠MDP=60°,然后利用“边角边”证明△MND 和△MPD 全等,根据全等三角形对应边相等可得MN=MP ,从而得证;【详解】(1)证明:∵四边形ADBC 是由等边ABC ∆和顶角为120°的等腰三角形ABD ∆拼成, ∴∠CAD=∠CBD=60°+30°=90°把△DBM 绕点D 逆时针旋转120°得到△DAQ ,则DM=DQ ,AQ=BM ,∠ADQ=∠BDM ,∠CBD=∠QAD =90°∴∠CAD+∠QAD =180°∴N 、A 、Q 三点共线∵∠QDN=∠ADQ+∠ADN=∠BDM+∠ADN=∠ABD-∠MDN=120°-60°=60°,∴∠QDN=∠MDN=60°,∵在△MND 和△QND 中,DM DQ QDN MDN DN DN =⎧⎪∠=∠⎨⎪=⎩∴MN=QN ,∵QN=AQ+AN=BM+AN ,∴BM+AN=MN ;(2)MN+AN=BM .理由如下:如图,把△DAN 绕点D 顺时针旋转120°得到△DBP ,则DN=DP ,AN=BP ,∵∠DAN=∠DBP=90°,∴点P 在BM 上,∵∠MDP=∠ADB-∠ADM-∠BDP=120°-∠ADM-∠ADN=120°-∠MDN=120°-60°=60°,∴∠MDP=∠MDN=60°,∵在△MND 和△MPD 中,DN DP MDP MDN DM DM =⎧⎪∠=∠⎨⎪=⎩∴△MND ≌△MPD (SAS ),∴MN=MP ,∵BM=MP+BP ,∴MN+AN=BM ;∴MN=BM -AN ;【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质,根据等边三角形的性质,旋转变换的性质作辅助线构造全等三角形是解题的关键25.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出ABC 关于y 轴对称的111A B C △;(2)写出点111,,A B C 的坐标(直接写答案);(3)在y 轴上画出点P ,使PB+PC 最小.【答案】(1)图见解析;(2)111(3,2),(4,3),(1,1)A B C --;(3)图见解析.【分析】(1)先根据轴对称的性质分别描出点111,,A B C ,再顺次连接即可得;(2)根据点坐标关于y 轴对称的变化规律即可得;(3)先根据轴对称的性质可得1PB PC PB PC +=+,再根据两点之间线段最短即可得.【详解】(1)先根据轴对称的性质分别描出点111,,A B C ,再顺次连接即可得到111A B C △,如图所示: (2)点坐标关于y 轴对称的变化规律:横坐标变为相反数,纵坐标不变3,24,3(),(),()1,1A B C -----1113,24,(),(),(3)1,1A B C ∴--;(3)由轴对称的性质得:1PB PB =则1PB PC PB PC +=+由两点之间线段最短得:当1,,C P B 三点共线时,1PB PC +取得最小值,最小值为1CB如图,连接1CB ,与y 轴的交点P 即为所求.【点睛】本题考查了画轴对称图形、点坐标关于y 轴对称的变化规律、两点之间线段最短,熟练掌握轴对称的性质是解题关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若等腰三角形的周长为18 cm ,其中一边长为8 cm ,则该等腰三角形的底边长为( ) A .8 cmB .2 cm 或8 cmC .5cmD .8 cm 或5 cm 【答案】B【分析】由于长为8cm 的边可能是腰,也可能是底边,故应分两种情况讨论.【详解】解:由题意知,可分两种情况:①当腰长为8cm 时,则另一腰长也为8cm ,底边长为18-8×2=2(cm ),∵8-2<8<8+2即6<8<10,∴可以组成三角形∴当腰长为8cm 时,底边长为2cm ;②当底边长为8cm 时,腰长为(18-8)÷2=5(cm ),∵5-5<8<5+5,即0<8<10,∴可以组成三角形∴底边长可以是8cm .故选B .【点睛】本题考查了等腰三角形的性质和三角形的三边关系.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点也是解题的关键.2.已知两数x ,y 之和是10,且x 比y 的2倍大3,则下列所列方程组正确的值是( ) A .1023x y y x +=⎧⎨=+⎩ B .1023x y y x +=⎧⎨=-⎩ C .1023x y x y +=⎧⎨=+⎩ D .1023x y x y +=⎧⎨=-⎩【答案】C【分析】根据x ,y 之和是10,列出方程10x y +=,再由x 比y 的2倍大3,列出方程23x y =+,最后写成方程组形式即可解题.【详解】根据题意列出方程组,得:1023x y x y +=⎧⎨=+⎩故选C .【点睛】本题考查由实际问题抽象出二元一次方程组的知识,是重要考点,找到等量关系,掌握相关知识是解题关键.3.如图,AC ∥BD ,AD 与BC 相交于O ,∠A =45°,∠B =30°,那么∠AOB 等于( )A .75°B .60°C .45°D .30°【答案】A 【详解】解:三角形的外角等于与它不相邻的两个内角和,由题,∵AC ∥BD ,∴∠C=∠B=30°, ∵∠AOB 是△AOC 的一个外角,∴∠AOB=∠C+∠A= 45°+30°=75°,选A .【点睛】本题考查平行线的性质和三角形的外角.4.老大爷背了一背鸡鸭到市场出售,单价是每只鸡100元,每只鸭80元,他出售完收入了660元,那么这背鸡鸭只数可能的方案有( )A .4种B .3种C .2种D .1种【答案】C【分析】设有鸡x 只,有鸭y 只,根据收入共660元列方程,然后根据鸡鸭只数是正整数分析求解.【详解】设有鸡x 只,鸭y 只,根据题意,得 10080660x y +=,整理,得:5433x y +=, ∴3354x y -=, ∵x 、y 必须是正整数, ∴3354x -≥,且335x -必须是偶数,即x 为奇数, ∴2905x ≤≤,且x 为奇数, 则x =1,3,5,当1x =时,7y =,符合题意;当3x =时,184y =,不是整数,不符合题意,舍去. 当5x =时,2y =,符合题意.所以,这背鸡鸭只数可能的方案有2种.故选:C.【点睛】本题综合考查了二元一次方程的应用,能够根据不等式求得未知数的取值范围,从而分析得到所有的情况.5.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4B.8C.6D.10【答案】B【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.6.点P(﹣2,3)关于y轴对称点的坐标在第()象限A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】∵点P(-2,3)在第二象限,∴点P关于y轴的对称点在第一象限.故选A.7.下列命题是假命题的是()A.如果a∥b,b∥c,那么a∥c;B.锐角三角形中最大的角一定大于或等于60°;C.两条直线被第三条直线所截,内错角相等;D.三角形三个内角和等于180°.【答案】C【分析】根据平行线的性质和判定和三角形的内角对每一个选项进行判断即可.【详解】解:A、如果a∥b,b∥c,那么a∥c,是真命题,不符合题意,本选项错误;B、锐角三角形中最大的角一定大于或等于60°,是真命题,不符合题意,本选项错误;C、两条直线被第三条直线所截,若这两条直线平行,则内错角相等,故是假命题,符合题意,本选项正确;D、三角形三个内角和等于180°,真命题,不符合题意,本选项错误;故选:C.【点睛】本题考查了真假命题的判断,掌握平行线的性质和判定和三角形内角问题是解题关键.8.如图,从标有数字1,2,3.4的四个小正方形中拿走一个,成为一个轴对称图形,则应该拿走的小正方形的标号是()A.1 B.2 C.3 D.4【答案】B【分析】根据轴对称图形的概念,逐一判断选项,即可得到答案.【详解】∵拿走数字1的小正方形,不是轴对称图形,∴A错误;∵拿走数字2的小正方形,可得轴对称图形,∴B正确;∵拿走数字3的小正方形,不是轴对称图形,∴C错误;∵拿走数字4的小正方形,不是轴对称图形,∴D错误;故选B.【点睛】本题主要考查轴对称图形的概念,掌握轴对称图形的概念,是解题的关键.9.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°【答案】C【详解】分析:先根据题意确定旋转中心,然后根据旋转中心即可确定旋转角的大小.详解:如图,连接A′A,BB′,分别A′A,BB′作的中垂线,相交于点O.显然,旋转角为90°,故选C .点睛:考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.10.一次函数21y x =-+的图象与y 轴的交点坐标是( )A .(-2,0)B .(12,0)C .(0,2)D .(0,1)【答案】D【分析】令x=0,代入函数解析式,求得y 的值,即可得到答案.【详解】令x=0,代入21y x =-+得:2011y =-⨯+=,∴一次函数21y x =-+的图象与y 轴的交点坐标是:(0,1).故选D .【点睛】本题主要考查一次函数图象与y 轴的交点坐标,掌握直线与y 轴的交点坐标的特征,是解题的关键.二、填空题11.如图,如果你从P 点向西直走25米后,向左转,转动的角度为=40α°,再走25米,再向左转40度,如此重复,最终你又回到点P ,则你一共走了__________米.【答案】1.【分析】根据题意转动的角度为=40α°,结合图我们可以知道,最后形成的正多边形的一个外角是40°,利用多边形的外角和可求出是正几边形,即可求得一共走了多少米.【详解】解:360°÷40=9(边)9×25=1(米)故答案为:1【点睛】本题主要考查的是正多边形的性质以及多边形的外角和公式,掌握以上两个知识点是解题的关键. 12.当x 为______时,分式2361x x -+的值为1. 【答案】2.【分析】先根据分式的值为零的条件确定分子为零分母不为零,再求解方程和不等式即得.【详解】解:∵分式2361x x -+的值为1 ∴236010x x -=⎧⎨+≠⎩∴2x =.故答案为:2.【点睛】本题考查分式的定义,正确抓住分式值为零的条件是解题关键.13.如图所示,在Rt △ABC 中,∠A=30°,∠B=90°,AB=12,D 是斜边AC 的中点,P 是AB 上一动点,则PC +PD 的最小值为_____.【答案】12【分析】作C 关于AB 的对称点E ,连接ED ,易求∠ACE=60°,则AC=AE ,且△ACE 为等边三角形,CP+PD=DP+PE 为E 与直线AC 之间的连接线段,其最小值为E 到AC 的距离=AB=12,所以最小值为12.【详解】作C 关于AB 的对称点E ,连接ED ,∵∠B=90°,∠A=30°,∴∠ACB=60°,∵AC=AE ,∴△ACE 为等边三角形,∴CP+PD=DP+PE为E与直线AC之间的连接线段,∴最小值为C'到AC的距离=AB=12,故答案为12【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.14.新定义:[a,b]为一次函数y ax b=+(a≠0,,a、b为实数)的“关联数”.若“关联数”为[3,m-2] 的一次函数是正比例函数,则点(1-m,1+m)在第_____象限.【答案】二.【分析】根据新定义列出一次函数解析式,再根据正比例函数的定义确定m的值,进而确定坐标、确定象限.【详解】解:∵“关联数”为[3,m﹣2]的一次函数是正比例函数,∴y=3x+m﹣2是正比例函数,∴m﹣2=0,解得:m=2,则1﹣m=﹣1,1+m=3,故点(1﹣m,1+m)在第二象限.故答案为:二.【点睛】本题属于新定义和正比例函数的定义,解答的关键运用新定义和正比例函数的概念确定m的值.15.已知13xy=⎧⎨=⎩是二元一次方程组71mx nynx my+=⎧⎨-=⎩的解,则2m+n的值为_____.【答案】1【解析】解:由题意可得:3731m nn m+=⎧⎨-=⎩①②,①-②得:4m+2n=6,故2m+n =1.故答案为1.16.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.【答案】1.【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列运算正确的是( )A .23a a a ⋅=B .623a a a ÷=C .2222a a -=D .()22436a a =【答案】A【解析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【详解】解:2123•a a a a +==,A 准确; 62624a a a a -÷==,B 错误;2222a a a -=,C 错误;()22439a a =,D 错误; 故选:A .【点睛】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.2.在ABC ∆和A B C '''∆中,①AB A B ''=,②BC B C ''=,③AC A C ''=,④A A '∠=∠,⑤B B '∠=∠,⑥C C '∠=∠,则下列各组条件中使ABC ∆和A B C '''∆全等的是( )A .④⑤⑥B .①②⑥C .①③⑤D .②⑤⑥ 【答案】D【解析】根据全等三角形的判定方法对各选项分别进行判断.【详解】A. 由④⑤⑥不能判定△ABC ≌△A′B′C′;B. 由①②⑥不能判定△ABC ≌△A′B′C′;C. 由①③⑤,不能判定△ABC ≌△A′B′C′;D. 由②⑤⑥,可根据“ASA”判定△ABC ≌△A′B′C′.故选:D.【点睛】考查全等三角形的判定定理,三角形全等的判定定理有:SSS ,SAS ,ASA ,AAS,HL.3.计算232(2)3x y xy -⋅结果正确的是( )A .266x y -B .356x y -C .355x y -D .7524x y -【答案】B【分析】根据同底数幂的乘法法则计算即可.【详解】232(2)3x y xy -⋅21326x y ++=-356x y =-故选:B .【点睛】本题考查了同底数幂的乘法,熟记运算法则是解题关键.4.已知4条线段的长度分别为2,4,6,8,若三条线段可以组成一个三角形,则这四条线段可以组成三角形的个数是( )A .1个B .2个C .3个D .4个【答案】A【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【详解】解:首先任意的三个数组合可以是2,4,6或2,4,1或2,6,1或4,6,1.根据三角形的三边关系:其中4+6>1,能组成三角形.∴只能组成1个.故选:A .【点睛】考查了三角形的三边关系,解题的关键是了解三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边. 5.如图,在平面直角坐标系中,()11A ,,()11B ,-,()12C --,,()12D -,,把一条长为2019个单位长度且没有弹性的细线(线的粗细不略不计)的一端固定在点A 处,并按A B C D A -----…的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(1,0)B .(1,1)C .(-1,1)D .(-1,-2)【答案】A 【分析】根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵A (1,1),B (-1,1),C (-1,-2),D (1,-2),∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,∴绕四边形ABCD 一周的细线长度为2+3+2+3=10,2019÷10=201…9,∴细线另一端在绕四边形第202圈的第9个单位长度的位置,即细线另一端所在位置的点的坐标是(1,0).故选:A .【点睛】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.6.如果214x kx ++是完全平方式,则k 的值是( ) A .12 B .±1 C .12± D .1.【答案】B【分析】根据完全平方公式:()2222a b a ab b ±=±+,即可求出k 的值. 【详解】解:∵214x kx ++是完全平方式, ∴22222211114222x kx x kx x x x ==⎛⎫⎛⎫⎛⎫++=++±±+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴k= ±1故选B .【点睛】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键. 7.老大爷背了一背鸡鸭到市场出售,单价是每只鸡100元,每只鸭80元,他出售完收入了660元,那么这背鸡鸭只数可能的方案有( )A .4种B .3种C .2种D .1种【答案】C【分析】设有鸡x 只,有鸭y 只,根据收入共660元列方程,然后根据鸡鸭只数是正整数分析求解.【详解】设有鸡x 只,鸭y 只,根据题意,得 10080660x y +=,整理,得:5433x y +=, ∴3354x y -=, ∵x 、y 必须是正整数, ∴3354x -≥,且335x -必须是偶数,即x 为奇数,∴29 05x≤≤,且x为奇数,则x=1,3,5,当1x=时,7y=,符合题意;当3x=时,184y=,不是整数,不符合题意,舍去.当5x=时,2y=,符合题意.所以,这背鸡鸭只数可能的方案有2种.故选:C.【点睛】本题综合考查了二元一次方程的应用,能够根据不等式求得未知数的取值范围,从而分析得到所有的情况.8.如图,分别以Rt△ABC的直角边AC、BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE、AF分别交AC、BC边于H、D两点.下列结论:①AF=BE;②∠AFC=∠EBC;③∠FAE=90°;④BD=FD,其中正确结论的个数是()A.4个B.3个C.2个D.1个【答案】C【分析】由等边三角形的性质得出BC=CF,CE=AC,∠BCF=∠ACE=∠CFB=∠CBF=∠CAE=60°,∠ACB=90°,易证∠BCE=∠FCA=150°,由SAS证得△BCE≌△FCA,得出AF=BE,∠AFC=∠EBC,由∠FCA=150°,得出∠FAC<30°,则∠FAE=∠FAC+∠CAE<90°,由∠BFD<∠BFC,得出∠BFD<∠CBF,则DF>BD,即可得出结果.【详解】∵△ACE和△BCF是等边三角形,∴BC=CF,CE=AC,∠BCF=∠ACE=∠CFB=∠CBF=∠CAE=60°,∠ACB=90°,∴∠BCE=90°+60°=150°,∠FCA=60°+90°=150°,∴∠BCE=∠FCA.在△BCE和△FCA中,∵BC CFBCE FCAAC CE=⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FCA(SAS),∴AF=BE,∠AFC=∠EBC,故①、②正确;∵∠FCA=60°+90°=150°,∴∠FAC<30°.∵∠CAE=60°,∴∠FAE=∠FAC+∠CAE <90°,故③错误;∵∠BFD <∠BFC ,∴∠BFD <∠CBF ,∴DF >BD ,故④错误.故选:C .【点睛】本题考查了全等三角形的判定与性质、等边三角形的性质、三角形内角和定理、三角形三边关系等知识;熟练掌握等边三角形的性质,证明三角形全等是解题的关键.9.满足下列条件的ABC ∆中,不是直角三角形的是( )A .::1:2:3ABC ∠∠∠=B .1AC =,2BC =,AB =C .6AC =,8BC =,10AB =D .AC =BC =AB =【答案】D【分析】根据勾股定理的逆定理以及角的度数对各选项进行逐一判断即可.【详解】A 、∠A :∠B :∠C =1:2:3,可得:∠C =90 ︒,是直角三角形,错误;B 、1AC =,2BC =,AB =AC )2+(BC )2=(AB )2,∴能构成直角三角形,错误; C 、6AC =,8BC =,10AB =,可得(AC )2+(BC )2=(AB )2,∴能构成直角三角形,错误;D 、AC =BC =AB =3+4≠5,不是直角三角形,正确;故选:D .【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解答此题的关键.10.下列从左到右的变形中,属于因式分解的是( )A .(x+1)(x ﹣1)=x 2﹣1B .x 2﹣5x+6=(x ﹣2)(x ﹣3)C .m 2﹣2m ﹣3=m (m ﹣2)﹣3D .m (a+b+c )=ma+mb+mc 【答案】B【分析】根据因式分解的定义:把一个多项式写成几个因式乘积的形式,逐个判断即可.【详解】解:A 、不是因式分解,故本选不项符合题意;B 、是因式分解,故本选项符合题意;C 、不是因式分解,故本选项不符合题意;D 、不是因式分解,故本选项不符合题意;故选:B .【点睛】本题考查了因式分解的意义,解决本题的关键是熟练掌握因式分解的意义,明确因式分解的形式是几个因式乘积。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在ABC ∆中,::1:2:3A B C ∠∠∠=,则A ∠=( )A .30B .60︒C .90︒D .120︒ 【答案】A【解析】根据三角形的内角和为180°,即可解得∠A 的度数.【详解】∵三角形的内角和为180°∴180A B C ∠+∠+∠=︒∵::1:2:3A B C ∠∠∠= ∴1180306A =︒⨯=︒∠ 故答案为:A .【点睛】本题考查了三角形内角的度数问题,掌握三角形的内角之和为180°是解题的关键.2.叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为( )A .0.5×10﹣4B .5×10﹣4C .5×10﹣5D .50×10﹣3【答案】C【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定, 0.00005=5510-⨯,故选C.3.在如图所示的网格纸中,有A 、B 两个格点,试取格点C ,使得△ABC 是等腰三角形,则这样的格点C 的个数是( )A .4B .6C .8D .10【答案】C 【分析】分AB 是腰长时,根据网格结构,找出一个小正方形与A 、B 顶点相对的顶点,连接即可得到等腰三角形,AB 是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB 垂直平分线上的格点都可以作为点C ,然后相加即可得解.【详解】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选C.【点睛】本题考查等腰三角形的判定,解题的关键是掌握等腰三角形的判定,分情况讨论解决.4.在下列交通标识图案中,不是轴对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形的概念对各个选项进行判断即可.【详解】A、B、C中的图案是轴对称图形,D中的图案不是轴对称图形,故选:D.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,也可以说这个图形关于这条直线(成轴)对称.5.若分式x2x1-+的值为0,则x的值为A.﹣1 B.0 C.2 D.﹣1或2 【答案】C【分析】根据分式值为零的条件可得x﹣2=0,再解方程即可.【详解】解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,故选C.6.下列图形中,不是轴对称图形的是()A.角B.等边三角形C.平行四边形D.圆【答案】C【解析】分析:根据轴对称图形的概念求解,看图形是不是关于直线对称.解:A 、角是轴对称图形;B 、等边三角形是轴对称图形;C 、平行四边形只是中心对称图形,不是轴对称图形.D 、圆既是轴对称图形,也是中心对称图形;故选C .7.在平面直角坐标系中,已知点A (2,m )和点B (n ,-3)关于y 轴对称,则m n +的值是( ) A .-1B .1C .5D .-5 【答案】D【分析】利用“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】解:∵A (2,m )和B (n ,-3)关于y 轴对称,∴m=-3,n=-2,∴m+n=-3-2=-1.故选:D .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.8.如果分式11x +在实数范围内有意义,则x 的取值范围是( ) A .1x ≠-B .1x >-C .全体实数D .1x =-【答案】A【分析】根据分式有意义的条件即可求出答案.【详解】解:由题意可知:10x +≠, 1x ≠-,故选A .【点睛】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型. 9.活动课上, 小华将两张直角三角形纸片如图放置, 已知AC=8,O 是AC 的中点, △ABO 与△CDO 的面积之比为4:3, 则两纸片重叠部分即△OBC 的面积为()A .4B .6C .25D .27 【答案】D 【分析】先根据直角三角形的性质可求出OB 、OC 、OA 的长、以及ABO ∆的面积等于OBC ∆的面积,再根据题中两三角形的面积比可得OD 的长,然后由勾股定理可得CD 的长,最后根据三角形的面积公式可得出答案.【详解】在Rt ABC ∆中,908,A C C AB ∠=︒=,O 是AC 的中点142OB OC OA AC ∴==== ABO ∴∆的面积等于OBC ∆的面积ABO ∆与CDO ∆的面积之比为4:3OBC ∴∆与CDO ∆的面积之比为4:3又CD BD ⊥11,22O BC CD O S OB CD S OD CD ∆∆∴=⋅=⋅ ::4:3CDO OBC S S OB OD ∆∆∴==,即4:4:3OD =3OD ∴=在Rt CDO ∆中,2222437CD OC OD =-=-=11472722OBC S OB CD ∆∴=⋅=⨯⨯= 故选:D .【点睛】本题考查了直角三角形的性质(斜边上的中线等于斜边的一半)、勾股定理等知识点,根据已知的面积之比求出OD 的长是解题关键.10.若关于x 的分式方程11m x --=2的解为非负数,则m 的取值范围是( ) A .m >﹣1B .m ≥1C .m >﹣1且m ≠1D .m ≥﹣1且m ≠1 【答案】D【解析】试题分析:去分母可得:m-1=2(x-1),解得:x=,根据解为非负数可得:且x≠1,即0且x≠1,解得:m≥-1且m≠1.考点:解分式方程二、填空题11.把无理数11,5,﹣3表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是_____.111153【详解】解:由数轴知,被墨迹覆盖住的无理数在3到4之间,∵9<11<16, ∴11<4,∵4<5<9, ∴5,∵1<3<4,∴3,∴–2<3–1, 11 11.【点睛】1153的范围是解本题的关键. 12.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为_______元/千克.【答案】1.【详解】解:设售价至少应定为x 元/千克,依题可得方程x (1-5%)×80≥760,解得x≥1故答案为1.【点睛】本题考查一元一次不等式的应用.13.点()3,4P --关于x 轴的对称点1P 的坐标_______.【答案】()3,4-【分析】根据关于x 轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数即可求出点1P 的坐标.【详解】解:点()3,4P --关于x 轴的对称点1P 的坐标为()3,4-故答案为:()3,4-.【点睛】此题考查的是求关于x 轴对称点的坐标,掌握关于x 轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数是解决此题的关键.14.如图,已知一次函数y=kx+b 的图象与x 轴,y 轴分别交于点(2.0),点(0,1),有下列结论:① 关于x 的方程kx 十b=0的解为x=2:② 关于x 方程kx+b=1的解为x=0;③ 当x>2时,y<0;④当x<0时,y<1.其中正确的是______(填序号).【答案】① ② ③【分析】根据一次函数的图象与性质判断即可.【详解】①由一次函数y=kx+b 的图象与x 轴点(2.0)知,当y=0时,x=2,即方程kx+b=0的解为x=2,故此项正确;②由一次函数y=kx+b 的图象与y 轴点(0,1),当y=1时,x=0,即方程kx+b=1的解为x=0,故此项正确; ③由图象可知,x>2的点都位于x 轴的下方,即当x>2时,y<0,故此项正确;④由图象可知,位于第二象限的直线上的点的纵坐标都大于1,即当x<0时,y ﹥1,故此项错误, 所以正确的是① ② ③,故答案为:① ② ③.【点睛】本题考查了一次函数的图象与性质,涉及一次函数与一元一次方程的关系、一次函数与不等式的关系,解答的关键是会利用数形结合思想解决问题.15.如图,△ABC 申,BC 的垂直平分线DP 与∠BAC 的角平分线相交于点D ,垂足为点P ,若∠BAC=82︒,则∠BDC=____.【答案】98【解析】首先过点D 作DF ⊥AB 于E ,DF ⊥AC 于F ,易证得△DEB ≌△DFC (HL ),即可得∠BDC=∠EDF ,又由∠EAF+∠EDF=180°,即可求得答案;【详解】解:过点D 作DE ⊥AB ,交AB 延长线于点E ,DF ⊥AC 于F ,∵AD 是∠BOC 的平分线,∴DE=DF ,∵DP 是BC 的垂直平分线,∴BD=CD ,在Rt △DEB 和Rt △DFC 中,DB DC DE DF ⎧⎨⎩==, ∴Rt △DEB ≌Rt △DFC .∴∠BDE=∠CDF ,∴∠BDC=∠EDF ,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=82°,∴∠BDC=∠EDF=98°,故答案为98°.【点睛】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与转化思想的应用.16.已知x 、y 满足方程组521x y x y +=⎧⎨-=⎩,则代数式x y -=______. 【答案】-1【分析】先利用加减消元法解方程,521x y x y +=⎧⎨-=⎩①②,把①+②得到3x=6,解得x=2,然后把x=2代入①可求出y ,最后把x 、y 的值都代入x-y 中进行计算即可;【详解】解:521x y x y +=⎧⎨-=⎩①②, 把①+②得:3x=6,解得x=2,把x=2代入①得2+y=5,解得y=3,∴方程组的解为23x y =⎧⎨=⎩, ∴231x y -=-=-;故答案为:-1;【点睛】本题主要考查了解二元一次方程组,掌握解二元一次方程组是解题的关键.17的平方根是 .【答案】±1.±1.故答案为±1.三、解答题18.为参加学校艺术节闭幕演出,八年级一班欲租用男、女演出服装若干套以供演出时使用,已知4套男装和6套女装租用一天共需租金490元,6套男装和10套女装租用一天共需790元.(1)租用男装、女装一天的价格分别是多少?(2)由于演出时间错开租用高峰时段,男装、女装一天的租金分别给予9折和8折优惠,若该班演出团由5名男生和12名女生组成,求在演出当天该班租用服装实际支付的租金是多少?【答案】(1)40元,55元;(2)708元【分析】(1)设租用男装一天x 元,租用女装需要y 元,根据4套男装和6套女装租用一天共需租金490元,6套男装和10套女装租用一天共需790元列方程组求解即可;(2)根据(1)中所求的结果,按9折和8折优惠求出实际需支付租金即可.【详解】(1)设租用男装一天x 元,租用女装需要y 元,由题意得,46490610790x y x y +=⎧⎨+=⎩,解得:4055 xy=⎧⎨=⎩,答:租用男装一天40元,租用女装需要55元;(2)根据题意得:5400.912550.8708⨯⨯+⨯⨯=(元).答:演出当天租用服装实际需支付租金为708元.【点睛】本题考查了二元一次方程组的应用,关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.19.如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.【答案】见解析【解析】试题分析:(1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案.证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC,∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC,∴MNCD是平行四边形;(2)如图:连接ND,∵MNCD是平行四边形,∴MN=DC.∵N是BC的中点,∴BN=CN,∵BC=2CD,∠C=60°,∴△NCD是等边三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC,∵DN=NC=NB,∴∠DBN=∠BDN=∠DNC=30°,∴∠BDC=90°.∵tan,∴DB=DC=MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.20.(1)已知3x=2y=5z≠0,求23x y zx y z++-+的值;(2)某市政工程计划将安装的路灯交给甲、乙两家灯饰厂完成,已知甲厂生产100个路灯与乙厂生产150个路灯所用时间相同,且甲厂比乙厂每天少生产10个路灯,问甲、乙两家工厂每天各生产路灯多少个?【答案】(1)58;(2)甲工厂每天生产20个路灯,乙工厂每天生产30个路灯.【分析】(1)设3x=2y=5z=30a(a≠0),用含a的代数式表示x,y,z,进而即可求解;(2)设甲工厂每天生产x个路灯,则乙工厂每天生产(x+10)个路灯,根据“甲厂生产100个路灯与乙厂生产150个路灯所用时间相同”,列出分式方程,即可求解.【详解】(1)∵3x=2y=5z≠0,∴设3x=2y=5z=30a(a≠0),∴x=10a,y=15a,z=6a,∴231030185810156x y z a a ax y z a a a++++== -+-+;(2)设甲工厂每天生产x个路灯,则乙工厂每天生产(x+10)个路灯,依题意,得:10015010x x=+,解得:x=20,经检验,x=20是分式方程的解,且符合题意,x+10=30,答:甲工厂每天生产20个路灯,乙工厂每天生产30个路灯.【点睛】本题主要考查分式的求值以及分式方程的实际应用,解题的关键是:(1)用同一个字母表示出x,y,z;(2)根据等量关系,列出分式方程.21.图①、图②均是6×6的正方形网格,每个小正方形的顶点叫做格点,每个小正方形的边长均为1.(1)在图①中,以格点为端点,画线段MN=37.(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为2.【答案】(1)见解析;(2)见解析【分析】(1)由勾股逆定理223761=+,然后画出两直角边分别为6和1的直角三角形即.(2)作出边长为10的正方形即可.【详解】解:(1)如图,线段MN即为所求.(2)如图,正方形ABCD即为所求.【点睛】本题考查了勾股定理、正方形的判定和性质等知识,解题的关键是利用数形结合的思想解决问题. 22.平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD =∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.∠=∠+∠+∠;(3)【答案】(1)不成立.结论是∠BPD=∠B+∠D,证明见解析;(2)BPD BQD B D 360°.【分析】(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;(2)作射线QP,根据三角形的外角性质可得;(3)根据四边形的内角和以及(2)的结论求解即可.【详解】解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.作射线QP,∵∠BPE是△BPQ的外角,∠DPE是△PDQ的外角,∴∠BPE=∠B+∠BQE,∠DPE=∠D+∠DQP,∴∠BPE+∠DPE=∠B+∠D+∠BQE+∠DQP,即∠BPD=∠BQD+∠B+∠D;(3)在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,又∵∠AGB=∠CGF,∴∠AGB +∠C+∠D+∠F=360°,由(2)知,∠AGB=∠B+∠A+∠E,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点睛】本题考查的是平行线的性质,三角形的内角,三角形外角的性质,以及多边形的内角和,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.23.新华中学暑假要进行全面维修,有甲、乙两个工程队共同完成,甲队单独完成这项工程所需天数是乙队单独完成所需天数的23,若由甲队先做10天,剩下的工程再由甲、乙两队合作,再做30天可以完成. (1)求甲、乙两队单独完成这项工程各需多少秀?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,若由甲、乙两队合作,则工程预算的施工费用50万元是否够用?若不够用,需追加多少万元?【答案】(1)甲乙两队单独完成这项工程雷要60天和90天;(2)工程預算费用不够,需追要0.4万元.【分析】(1)由题意设乙队单独完成这项工程需要x 天,则甲队单独完戒这项工程需要23x 天,根据题意列出方程求解即可;(2)由题意设甲乙两队合作完成这项工程需要y 天,并根据题意解出y 的值,进而进行分析即可.【详解】解:(1)设乙队单独完成这项工程需要x 天,则甲队单独完戒这项工程需要23x 天,依题意则有111103012233x x x ⎛⎫ ⎪++⨯⨯= ⎪ ⎪⎝⎭解得90x =经检验,90x =是原分式方程的解,且符合题意22=90=6033x ⨯(天) 故甲乙两队单独完成这项工程雷要60天和90天.(2)设甲乙两队合作完成这项工程需要y 天, 则1116090y ⎛⎫+= ⎪⎝⎭解得y=36所需费用36(0.840.56)50.4⨯+=(万元)50.450∴>,∴工程預算费用不够,需追要0.4万元.【点睛】本题考查分式方程的应用,根据题意找到合适的等量关系列出方程是解决问题的关键.24.如图在△ABC 中,AB 、AC 边的垂直平分线相交于点 O ,分别交 BC 边于点 M 、N ,连接 AM ,AN .(1)若△AMN 的周长为6,求BC 的长;(2)若∠MON=30°,求∠MAN 的度数;(3)若∠MON=45°,BM=3,BC=12,求MN 的长度.【答案】(1)6;(2)120°(3)1.【分析】(1)根据垂直平分线的性质可得BM=AM,CN=AN,再根据三角形的周长即可求出BC;(2)设射线OM交AB于E,射线ON交AC于F,根据四边形的内角和,即可求出∠EAF,再根据三角形的内角和,即可求出∠B+∠C,然后根据等边对等角即可求出∠MAB+∠NAC,从而求出∠MAN;(3)设射线OM交AB于E,射线ON交AC于F,根据四边形的内角和,即可求出∠EAF,再根据三角形的内角和,即可求出∠B+∠C,然后根据等边对等角即可求出∠MAB+∠NAC,从而求出∠MAN,设MN=x,根据勾股定理列出方程求出x即可.【详解】解:(1)∵AB、AC 边的垂直平分线相交于点O,分别交BC 边于点M、N,∴BM=AM,CN=AN∵△AMN 的周长为6,∴AM+AN+MN=6∴BC=BM+MN+CN= AM+MN+AN =6;(2)设射线OM交AB于E,射线ON交AC于F,在四边形AEOF中,∠EAF=360°-∠AEO-∠AFO-∠MON=110°∴∠B+∠C=180°-∠BAC=30°∵BM=AM,CN=AN∴∠MAB=∠B,∠NAC=∠C∴∠MAB+∠NAC=30°∴∠MAN=∠EAF-(∠MAB+∠NAC)=120°;(3)设射线OM交AB于E,射线ON交AC于F,在四边形AEOF中,∠EAF=360°-∠AEO-∠AFO-∠MON=131°∴∠B+∠C=180°-∠BAC=41°∵BM=AM=3,CN=AN∴∠MAB=∠B,∠NAC=∠C∴∠MAB+∠NAC=41°∴∠MAN=∠EAF-(∠MAB+∠NAC)=90°设MN=x,则AN =CN=BC-BM-MN=9-x在Rt△AMN中,MN2=AM2+AN2即x2=32+(9-x)2解得:x=1即MN=1【点睛】此题考查的是垂直平分线的性质、等腰三角形的性质和勾股定理,掌握垂直平分线的性质、等边对等角和用勾股定理解直角三角形是解决此题的关键.25.如图,在△ABC中,BA=BC,CD和BE是△ABC的两条高,∠BCD=45°,BE与CD交于点H.(1)求证:△BDH≌△CDA;(2)求证:BH=2AE.【答案】(1)见解析;(2)见解析.【分析】(1)依据BE是△ABC的高,可得∠BEA=∠BEC=90°,进而得到△BAE≌△BCE(ASA);(2)根据全等三角形的性质得到BH=AC,根据直角三角形的性质得到AC=2AE,BH=2AE,即可得到结论.【详解】(1)∵∠BDC=90°,∠BCD=45°,∴∠CBD=45°,BD=CD,∵∠BDH=∠CEH=90°,∠BHD=∠CHE,∴∠DBH =∠DCA ,在△BDH 与△CDA 中,BDH CDA BD CDDBH DCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BDH ≌△CDA (ASA );(2)∵△BDH ≌△CDA ,∴BH =AC ,∵由题意知,△ABC 是等腰三角形∴AC =2AE ,∴BH =2AE .【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC 中,∠B =30°,BC 的垂直平分线交AB 于E ,垂足为D ,如果 ED =5,则EC 的长为( )A .5B .8C .9D .10【答案】D 【分析】先根据线段垂直平分线的性质得出BE=CE,故可得出∠B=∠DCE,再由直角三角形的性质即可得出结论.【详解】∵在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于E ,ED=5,∴BE=CE,∠B=∠DCE=30°,在Rt△CDE 中,∵∠DCE=30°,ED=5,∴CE=2DE=10.故答案选D.【点睛】本题考查垂直平分线和直角三角形的性质,熟练掌握两者性质是解决本题的关键.2.如图,AD 是BAC ∠的平分线,EF 垂直平分AD 交BC 的延长线于点F ,若65FAC ∠=︒,则B 的度数为( )A .45︒B .50︒C .65︒D .60︒【答案】C 【分析】由线段的垂直平分线性质可得AF=FD ,根据等边对等角得到∠FAD=∠FDA ,由角平分线的性质和外角性质可得结论.【详解】∵EF 垂直平分AD ,∴AF=FD ,∴∠FAD=∠FDA ,∴∠FAC+∠CAD=∠B+∠DAB .∵AD 是∠BAC 的平分线,∴∠CAD=∠DAB ,∴∠FAC=∠B=65°.故选:C .【点睛】本题考查了线段垂直平分线的性质,等腰三角形的判定与性质,角平分线的性质,三角形外角性质,灵活运用这些性质是解答本题的关键.3.对于任何整数m ,多项式()2459m +-都能( )A .被8整除B .被m 整除C .被()1m -整除D .被()21m -整除【答案】A【分析】先对多项式进行因式分解,化为多个最简因式的乘积,再找出其中有无和选项中相同的一个,即可得出答案.【详解】原式2(45)3m =+- (453)(453)m m =+++-(48)(42)m m =++8(2)(21)m m =++故可知()2459m +-中含有因式8、2m +、21m +,说明该多项式可被8、2m +、21m +整除,故A 满足,本题答案为A.【点睛】本题关键,若想让多项式被因式整除,需要将多项式化简为多个最简因式的乘积,则多项式一定可以被这几个最简因式整除.4.用科学记数法表示0.0000000052为( )A .105210-⨯B .95.210-⨯C .105.210-⨯D .115.210-⨯ 【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000000052=95.210-⨯.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.如图,四个图标分别是北京大学、人民大学、浙江大学和宁波大学的校徽的重要组成部分,其中是轴对称图形的有( )A .1个B .2个C .3个D .4个【答案】B 【解析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】北京大学和宁波大学的校徽是轴对称图形,共2个,故选B .【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.6.下面有四个图案,其中不是轴对称图形的是( )A .B .C .D . 【答案】A【分析】定义:如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.【详解】根据轴对称图形的定义可知,A 选项明显不是轴对称图形.【点睛】理解轴对称图形的定义是解题的关键.7.下列计算正确的是( )A .0(5)0-=B .235x x x +=C .2325()ab a b =D .22a ·12a a -= 【答案】D【分析】直接利用零指数幂、合并同类项、积的乘方、同底数幂的乘除、负整数指数幂的运算法则分别化简进而得出答案.【详解】A 、0(5)1-=,错误,该选项不符合题意;B 、23x x +不能合并,该选项不符合题意;C 、2362()ab a b =,错误,该选项不符合题意;D 、22a ·12a a -=,正确,该选项符合题意;故选:D .【点睛】本题主要考查了负整数指数幂,同底数幂的乘除,积的乘方,合并同类项,零指数幂,正确应用相关运算法则是解题关键.8.用科学记数法表示0.00000085正确的是( )A .8.5×107B .8.5×10-8C .8.5×10-7D .0.85×10-8【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】将0.00000085用科学记数法表示为8.5×10-1.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.9.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为( )A .(3,2)B .(﹣3,2)C .(3,﹣2)D .(﹣3,﹣2)【答案】C 【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,﹣2).故选C .10.下面是一名学生所做的4道练习题:①0(2)1-=;②()3236xy x y -=;③222()x y x y +=+,④21(3)9--=,他做对的个数是( ) A .1B .2C .3D .4【答案】B 【分析】根据零次幂、积的乘方、完全平方公式、负整数指数幂进行判断.【详解】解:①0(2)1-=,正确;②()3236xy x y -=-,错误;③222()2x y x y xy +=++,错误; ④21(3)9--=,正确. 故选B.【点睛】本题考查了整式乘法和幂的运算,正确掌握运算法则是解题关键.二、填空题11.在“童心向党,阳光下成长”的合唱比赛中,30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,则第5组的频率为________.【答案】0.1.【解析】直接利用频数÷总数=频率,进而得出答案.【详解】解:∵30个参赛队的成绩被分为5组,第1~4组的频数分别为2,10,7,8,∴第5组的频率为:(30-2-10-7-8))÷30=0.1.故答案为:0.1.【点睛】本题考查频数与频率,正确掌握频率求法是解题关键.12.已知关于x ,y 的方程组111222a b c a b c x y x y +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩的解是____________. 【答案】52m n =⎧⎨=-⎩ 【分析】变形方程组,根据整体代入的方法进行分析计算即可;【详解】方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩可变形为方程组()()111222a 2m 6b (1)c a 2m 6b (1)c n n ⎧-+--=⎪⎨-+--=⎪⎩,即是当261x m y n =-⎧⎨=--⎩代入方程组111222a b c a b c x y x y +=⎧⎨+=⎩之后的方程组,则41x y =⎧⎨=⎩也是这一方程组的解,所以26411x m y n =-=⎧⎨=--=⎩,∴52m n =⎧⎨=-⎩. 故答案是52m n =⎧⎨=-⎩.【点睛】本题主要考查了二元一次方程组的求解,准确分析计算是解题的关键.13.空调安装在墙上时,一般都采用如图所示的方法固定.这种方法应用的几何原理是:三角形具有______.【答案】稳定性【分析】钉在墙上的方法是构造三角形支架,因而应用了三角形的稳定性.【详解】这种方法应用的数学知识是:三角形的稳定性,故答案为:稳定性.【点睛】本题主要考查了三角形的稳定性,正确掌握三角形的这一性质是解题的关键.14.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB= .【答案】85°.【解析】试题分析:令A→南的方向为线段AE ,B→北的方向为线段BD ,根据题意可知,AE ,DB 是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角. 2、三角形内角和.15.一次函数21y x =-的图像不经过第__________象限.【答案】二【分析】根据k 、b 的正负即可确定一次函数y kx b =+经过或不经过的象限. 【详解】解:20,10k b =>=-<∴一次函数21y x =-的图像经过第一、三、四象限,不经过第二象限.故答案为:二【点睛】本题考查了一次函数的图像与性质,一次函数的系数是判断其图像经过象限的关键,0,0k b >>,图像经过第一、二、三象限;0,0k b ><,图像经过第一、三、四象限;0,0k b <>,图像经过第一、二、四象限;0,0k b <<,图像经过第二、三、四象限.16.如图,已知,CAE DAB ∠=∠,AC=AD .给出下列条件: ①AB=AE ;②BC=ED ;③C D ∠=∠;④ B E ∠=∠.其中能使ABC AED ∆≅∆的条件为__________ (注:把你认为正确的答案序号都填上).【答案】①③④【分析】由∠CAE=∠DAB ,得∠CAB=∠DAE ;则△CAB 和△DAE 中,已知的条件有:∠CAB=∠DAE ,CA=AD ;要判定两三角形全等,只需添加一组对应角相等或AE=AB 即可.【详解】∵∠CAE=∠DAB ,∴∠CAE+∠EAB=∠DAB+∠EAB ,即∠CAB=∠DAE ;①∵AB=AE ,∠CAB=∠DAE ,AC=AD ,∴△ABC ≌△AED (SAS ),故①正确;②∵BC=ED ,AC=AD ,而∠CAB 和∠DAE 不是相等两边的夹角,∴不能判定△ABC 和△AED 是否全等,故②错误;③∵∠C=∠D ,AC=AD ,∠CAB=∠DAE ,∴△ABC ≌△AED (ASA ),故③正确;④∵∠B=∠E ,∠CAB=∠DAE ,AC=AD ,∴△ABC ≌△AED (AAS ),故④正确.故答案为:①③④.【点睛】本题考查了全等三角形的判定;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.17.如图,等边ABC ∆中,BC 边上的高8AD =,点E 是高AD 上的一个动点,点F 是边AB 的中点,在点E 运动的过程中,存在EB EF +的最小值,则这个最小值是___________.【答案】1【分析】先连接CE ,再根据EB=EC ,将FE+EB 转化为FE+CE ,最后根据两点之间线段最短,求得CF 的长,即为FE+EB 的最小值.【详解】解:连接CE,∵等边△ABC中,AD是BC边上的中线∴AD是BC边上的高线,即AD垂直平分BC,∴EB=EC,当C、F、E三点共线时,EF+EC=EF+BE=CF,∵等边△ABC中,F是AB边的中点,∴AD=CF=1,∴EB+EF的最小值为1,故答案为:1.【点睛】本题主要考查了等边三角形的性质,熟练掌握和运用等边三角形的性质以及轴对称的性质是解决本题的关键.解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.三、解答题18.某超市用1200元购进一批甲玩具,用800元购进乙玩具,所购甲玩具件数是乙玩具件数的54,已知甲玩具的进货单价比乙玩具的进货单价多1元.要求:根据上述条件,提出相关问题,并利用所学知识进行解答.【答案】甲种玩具的进货单价为6元,乙种玩具的进货单价为5元【分析】根据题意提出问题,可以提问:甲、乙玩具的进货单价格分别是多少元?设甲进货单价为x元,则乙进货价为(1)x-元,由题意列出方程求解即可.【详解】问:甲、乙玩具的进货单价格分别是多少元?设设甲进货单价为x元,则乙进货价为(1)x-元,由题意得:1200800514x x=⨯-,解得:6x=,经检验,6x=是原方程的解,15x∴-=,答:甲种玩具的进货单价为6元,乙种玩具的进货单价为5元.故答案为:6;5.【点睛】。
2017-2018学年广东省佛山市三水区八年级(上)期末数学试卷一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.请把答题卡上对应题目所选的选项涂黑.每小题3分,共30分)
1.(3分)下列四组数据中,不能作为直角三角形的三边长是()
A.3,4,5B.3,5,7C.5,12,13D.6,8,10
2.(3分)要使二次根式有意义,下列选项中,字母x不能取的值是()A.﹣1B.0C.1D.2
3.(3分)若是关于x,y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5B.﹣1C.2D.7
4.(3分)关于一组数据:1,3,6,5,5,下列说法错误的是()
A.平均数是4B.众数是5C.中位数是6D.方差是3.2 5.(3分)如图所示,点E在AD的延长线上,下列条件中能判断AB∥CD的是()
A.∠A=∠CDE B.∠3=∠4
C.∠1=∠4D.∠C+∠CDA=180°
6.(3分)如图所示,正方形OABC的边OC在数轴上,且O为数轴的原点.以O为圆心,OB长为半径作弧与数轴交于点D,则点D表示的数为()
A.﹣1B.C.+1D.
7.(3分)关于的叙述正确的是()
A.﹣=B.=±2
C.=+D.与最接近的整数是3
8.(3分)下列命题中是真命题的是()
A.若a2=b2,则a=b B.等角的补角相等
C.同旁内角互补D.若|x|=3,则x=3
9.(3分)下列说法错误的是()
A.平行于x轴的直线上的所有点的纵坐标相同
B.平行于y轴的直线上的所有点的横坐标相同
C.(3,4)与(4,3)表示两个不同的点
D.点P(0,3)在x轴上
10.(3分)已知正比例函数y=kx的图象经过第二、四象限,则一次函数y=kx+k的图象可能是()
A.B.C.D.
二.填空题(把正确答案填写在答题卷的相应位置上,每小题4分,共24分)
11.(4分)已知函数y=x k是正比例函数,则k的值为.
12.(4分)在△ABC中,∠C=90°,AB=2,BC=1,则边AC的长为.13.(4分)小明某学期数学平时成绩70分,期中考试成绩80分,期末考试成绩90分,计算学期总评成绩方法如下:平时占30%,期中30%,期末占40%,则小明学期总评成绩是分.
14.(4分)直线y=x+2与直线y=﹣x+4的交点坐标为.
15.(4分)计算:=.
16.(4分)正方形A1B1C2C1,A2B2C3C2,A3B3C4C3,…按如图所示的方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x和x轴上,若C1的坐标为(1,0),则点B6的坐标是.
三.解答题(一)(本大题共3小题,每小题6分,共18分)
17.(6分)解方程组.
18.(6分)计算:(+1)2﹣+÷.
19.(6分)
某校向全校3000名学生发起了“书香校园”中外名著读书月活动,为了解学生在12月份的阅读情况,学校随机调查了部分学生的名著阅读数量,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,回答下列问题:
(1)本次接受随机抽样调查的学生人数为人,图①中m的值为;
(2)本次调查获取的样本数据的平均数为本,众数为本,中位数为本;
(3)根据样本数据,估计该校学生在12月份的中外名著阅读总量为本.
四.解答题(二)(本大题3小题,每小题7分,共21分)
20.(7分)如图,在△ABC中,∠BAC=120°,∠B=30°,D是底边BC上的一点,点E 在边AC上,且AD=AE,连接DE.若∠BAD=70°,求∠EDC的度数.
21.(7分)在边长为1的小正方形网格中,建立了如图的平面直角坐标系,已知△ABC的三个顶点的坐标分别是A(5,3),B(3,1),C(1,5).
(1)在坐标系中画出△ABC;
(2)△ABC各顶点的纵坐标不变,横坐标分别乘以﹣1,得到△A1B1C1,在坐标系中画出△A1B1C1;
(3)AB的长为,点A到x轴的距离为,△ABC与△A1B1C1关于轴对称.
22.(7分)如图,在△ABC中,AB=AC,AD⊥BC于D,点E是BA延长线上的一点,点F是线段BC上的一点,连接EF,交AC于G,已知∠E=∠BAD.求证:∠E=∠AGE.
五.解答题(三)(本大题3小题,每小题9分,共27分)
23.(9分)如图,△ABC是一块三角形纸片,三边的长分别为AC=6cm,BC=8cm,AB=10cm.
(1)求证:∠C=90°;
(2)现将边AC沿直线AD折叠,使它恰好落在AB上,且与AE重合,求CD的长.
24.(9分)某公司在手机网络平台推出的一种新型打车方式受到大众的欢迎.该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/千米计算,耗时费按y元/分钟计算.小聪、小明两人用该打车方式出行,按上述计价规则,他们打车行驶里程数、所用时间及支付车费如下表:
里程数(千米)时间(分钟)车费(元)
小聪3109
小明61817.4(1)求x,y的值;
(2)该公司现推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费,小强使用该方式从三水荷花世界打车到大旗头古村,总里程为23千米,耗时30分钟,求小强需支付多少车费.
25.(9分)如图,直线l1的解析式为y=﹣x﹣1,l1与x轴交于点A(﹣1,0),直线l2经过点B(4,0)和点C(2,﹣3),直线l1、l2交于点C,点P是直线l2上的动点,过P 作PD⊥x轴,交x轴于点D.
(1)求直线l2的解析表达式;
(2)连接P A,当点P运动到第一象限的什么位置时,S△ABP=S△ABC?求此时点P的坐标;
(3)当点P运动到什么位置时,线段PD=10?请求出此时点P的坐标.。