2018届中考数学复习 第四单元 不等式(组)第11课时 一元一次不等式(组)课件
- 格式:ppt
- 大小:1.71 MB
- 文档页数:34
一元一次不等式知识点1.不等式不等式的概念:用不等号),,,,(≠≤<≥>表示不等关系的式子叫做不等式。
常用的表示不等关系的语言及符号:(1)大于、比……大、超过:>; (2)小于、比……小、低于:<;(3)不大于、不超过、至多:≥; (4)不小于、不低于、至少:≤;(5)正数:0>; (6)负数:0<;(7)非负数:0≥;(8)非正数:0≤【例1】下列式子中:① 21>-;② 13-≥x ;③ 3-x ;④ vt s =;⑤ y x 243<- ⑥ 2253+=-x x ;⑦ 022≥+a ;⑧ 222c b a ≠+.是不等式的有_________________.【例2】下列语句不能用不等式表示的是( )A. 1+m 是负数B. 2a 是正数C.n m +等于xD. 1-m 是非负数【练习1】下列式子:①05>;②043>+b a ;③2=x ;④1-x ;⑤53≠+x ;⑥732≤+a ;⑦812≥+x ,其中,不等式有______________.【练习2】符号“≥”的含义是“大于或等于”,即“不小于”;符号“≤”的含义是“小于或等于”,即“不大于”.请用文字语言翻译下列不等式:(1)02≥x :____________.(2)0≤-x :_____________.知识点2.不等式的基本性质不等式性质1 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变. 即如果b a >,那么c b c a c b c a ->-+>+,不等式的性质2 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.即 如果0,>>c b a ,那么cb c a bc ac >>,.不等式的性质3 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.即 如果0,<>c b a ,那么cb c a bc ac <<,. 不等式的性质4 如果b a >,那么a b <.不等式的性质5 如果c b b a >>,,那么c a >.【例1】由13+<-b a ,可得到的结论( )A. b a <B. 13-<+b aC. 31+<-b aD. 31-<+b a【例2】如果b a >,那么下列变形错误的是( )A. b a 33->-B. b b a 2>+C.b a 2222-<-D.b a +->+-11【例3】下列判断中,正确的是( )A. 若b a <,则c b c a <B. 若b a <,则22bm am <C. 若22bm am <,则b a <D. 若b a <,则22b a <【例4】 若0<<b a ,则下列式子:① 21+<+b a ;② 1>ba ;③ ab b a <+;④ba 11<. 其中正确的有_______________. 【例5】已知关于x 的不等式()21>-x a 可化为ax -<12,试化简:21++-a a .【练习1】若b a >,则下列不等式成立的是( )A . b a 22-<-B .b m a m 22<C .21-<-b aD .21+<+b a 【练习2】已知y x >,则下列不等式不成立的是( )A .66->-y xB .y x 33>C .y x 22-<-D .6363+->+-y x【练习3】下列叙述正确的是( )A .若b a =,则b a =B .若b a >,则b a >C .若b a <,则b a <D .若b a =,则b a ±= 【练习4】有理数n m ,在数轴上的位置如图示,则下列关系式中正确的个数( )0<+n m ;0>-m n ;n m 11>;02>-n m ;0>--m n A .1个 B .2个 C .3个 D .4个【练习5】如果0>+b a ,且0>b ,那么b a b a --,,,的大小关系为( )A .b a b a -<-<<B .b a a b <-<<-C .b a b a <-<-<D .a b b a -<<-<知识点3.不等式的解集1.使不等式成立的未知数的值,叫做这个不等式的解。
专题11 用一元一次不等式(组)解决生活中的实际问题【专题综述】一元一次不等式组是在学习了一元一次不等式组的概念和解法之后,进一步探索现实世界数量关系的重要内容,是继学习了一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后续学习二元一次方程等内容的重要基础,有着承前启后的作用。
用一元一次不等式(组)解决生活中的实际问题,其主要步骤为:1、审题,设未知数;2、抓关键词,找不等关系;3、构建不等式(组)4 、解不等式(组);5、根据题意,写出合理答案。
【方法解读】一、打折问题:例1,一双运动鞋的进价是200元,标价400元,商场要获得不低于120元的利润,问:最低可以打几折?【举一反三】(湖南省娄底市)某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打().A、6折B、7折C、8折D、9折二、赛球问题:例2,甲、乙两队进行足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了12场,甲队保持不败,总得分超过26分,问:甲队至少胜了多少场?【举一反三】(江西省崇仁一中)在崇仁一中中学生篮球赛中,小方共打了10场球.他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高.如果他所参加的10场比赛的平均得分超过18分(1)用含x的代数式表示y;(2)小方在前5场比赛中,总分可达到的最大值是多少?(3)小方在第10场比赛中,得分可达到的最小值是多少?三、购买问题:例3,某种肥皂零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。
第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。
在购买的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买几块肥皂?【举一反三】某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品一律按商品价格的9.5折优惠.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,她购买商品的价格为多少元时,两个方案所付金额相同?(3)购买商品的价格______元时,采用方案一更合算.四、分苹果问题:例4,把44个苹果分给若干名学生,若每人分苹果7个,则最后1名学生分得的苹果不足3个,求学生人数。
分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。
第11课时 一元一次不等式(组)一、知识导航图一元一次不等式(组)的应用一元一次不等式(组)的解法一元一次不等式(组)解集的含义一元一次不等式(组)的概念不等式的性质一元一次不等式和一元一次不等式组二、中考课标要求三、中考知识梳理1.判断不等式是否成立判断不等式是否成立,关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数.因此,在判断不等式成立与否或由不等式变形求某些字母的范围时, 要认真观察不等式的形式与不等号方向.2.解一元一次不等式(组)解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质,不等式组解集的确定方法:若a<b,则有:(1)ab<⎧⎨<⎩的解集是x<a,即“小小取小”.(2)ab>⎧⎨>⎩的解集是x>b,即“大大取大”.(3)ab>⎧⎨<⎩的解集是a<x<b,即“大小小大取中间”.(4)ab<⎧⎨>⎩的解集是空集,即“大大小小取不了”.一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题。
3.求不等式(组)的特殊解不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集, 然后再找到相应的答案.注意应用数形结合思想.4.列不等式(组)解应用题注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题.四、中考题型例析1.判断不等式是否成立例1如图,若数轴的两点A、B表示的数分别为a、b,则下列结论正确的是( )A.12b-a>0 B.a-b>0 C.2a+b>0 D.a+b>0分析:首先由A、B两点在数轴上的位置分析出a、b的符号和绝对值的大小关系,再根据有理数法则进行选择.解:由点A、B在数轴上的位置可知:a<0,b>0,│a│>│b│.∴12b>0,-a>0.∴12b-a>0.故选A.答案:A2.在数轴上表示不等式的解集1ba例2 (2004·广州)不等式组212xx<⎧⎪⎨≥⎪⎩的解集在数轴上应表示为( )ABC D解析:在数轴上表示x<2的范围应不包括2向左,而x≥12是包括12向右,故选B.答案:B.3.求字母的取值范围例3 (2004·重庆)如果关于x的不等式(a-1)x<a+5和2x<4的解集相同,则a 的值为_____________.分析:2x<4的解集是x<2,故不等式(a-1)x<a+5的解集也是x<2,所以a-1>0,且51aa+-=2,故解得a=7,因此答案填7.答案:7. 4.解不等式组例4解不等式组3(2)45131 2x xxx x-+<⎧⎪⎨--≥+⎪⎩分析:根据解不等式的步骤,先求两个不等式的解集,然后再取其公共部分. 解:解不等式①,得x>-1.解不等式②,得x≤37 -.∴不等式组的解集是-1<x≤37 -.5.列不等式(组)解应用题例5 (2004·广州)国际能源机构(IEA)2004年1月公布的《石油市场报告》预测,2004年中国石油年耗油量将在2003年的基础上继续增加,最多可达3亿吨,将成为全球第二大石油消耗大国.已知2003年中国石油年耗油量约为2.73亿吨, 若一年按365天计,石油的平均日耗油量以桶为单位(1吨约合7.3桶),则2004年中国石油的平均日耗油量在什么范围?分析:本题特点是文字多,数据杂,综合了方程与不等式的知识,考生必须具有一定的阅读和分析能力.解本题的关键是把问题转化为不等式,故寻找不等量关系至关重要.解:设2004年中国石油的平均日耗油量为x万桶,则2004 年中国石油年耗油量为365x万桶,根据题意,得4848365103107.336510 2.73107.3x x ⎧⨯≤⨯⨯⎪⎨⨯>⨯⨯⎪⎩ 解这个不等式组,得600546x x ≤⎧⎨>⎩答:估计2004年中国石油平均日耗油量多于546万桶且不超过600万桶.基础达标验收卷一、选择题1.(2004.北京市海淀区)不等式组2010x x -<⎧⎨+>⎩ 的解集为( )A.x>-1B.x<2C.-1<x<2D.x<-1或x>2 2.(2004.四川)不等式组23182x x x>-⎧⎨-≤-⎩ 的最小整数解是( )A.-1B.0C.2D.33.(2003.黄冈)在直角坐标系中,点P(2x-6,x-5)在第四象限,则x 的取值范围是( ) A.3<x<5 B.-3<x<5 C.-5<x<3 D.-5<x<-34.(2003.徐州)如果a+b<0,且b>0,那么a 、b 、-a 、-b 的大小关系为( ) A.a<b<-a<-b B.-b<a<-a<b C.a<-b<-a<b D.a<-b<b<-a5.(2003.北京)如果关于x 的一元二次方程k 2x -6x+9=0有两个不相等的实数根, 那么k 的取值范围是( )A.k<1B.k ≠0 B.k<1且k ≠0 D.k>1 二、填空题1.(2004.天津)不等式5x-9≤3(x+1)的解集是________.2.(2004.上海)不等式组230320x x -<⎧⎨+>⎩ 的整数解是________.3.(2003.宜昌)函数 的自变量x 的取值范围是________.4.(2003.重庆)关于x 的不等式组521x x a -≥-⎧⎨->⎩无解,则a 的取值范围是_____.5.(2003.四川)已知关于x 的方程82x +(m+1)x+m-7=0有两个负数根,那么实数m 的取值范围是_________.三、解答题1.解不等式组312(1)2(1)4x xx x+≥-⎧⎨+>⎩,并把它的解集在数轴上表示出来.2.(2004.南昌)已知关于x的方程2x-2(m+1)x+2m=0,当m取什么值时,原方程没有实数根.3.(2003.南京)一个长方形足球场的长为xcm,宽为70m.如果它的周长大于350m,面积小于75602m,求x的取值范围,并判断这个球场是否可以用作国际足球比赛.(注:用于国际比赛的足球场的长在100m到110m之间,宽在64m至75m之间.)能力提高练习一、学科内综合题1.已知方程组3133x y kx y+=+⎧⎨+=⎩的解x、y,且2<k<4,则x-y的取值范围是( )A.0<x-y<12B.0<x-y<1C.-3<x-y<-1D.-1<x-y<1二、跨学科应用题.2.在一次爆破中,用1米的导火索来引爆炸药,导火索的燃烧速度为0.5cm/s, 引爆员点着导火索后,至少以每秒多少米的速度才能跑到600m或600m以外的安全区域?三、分类讨论问题3.(2002,广州)当a取什么数值时,关于未知数x的方程a2x+4x-1=0只有正实数根?四、实际应用题4.(2004.南宁)某饮料厂为了开发新产品,用A、B两种果汁原料各19kg、2kg,试制甲、乙两种新型饮料共(1)假设甲种饮料需配制xkg,请你写出满足题意的不等式组,并求出其解集.(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元, 这两种饮料的成本总额为y元,请写出y与x的函数表达式.并根据(1)的运算结果, 确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少?答案:基础达标验收卷一、1.C 2.A 3.A 4.D 5.C二、1.x≤6 2.x=0,1 3.x≥-3且x≠-1 4.a≥3 5.m>7三、1.解:由3x+1≥2(x-1),得x≥-3.由2(x+1)>4x,得x<1.∴不等式组的解集为-3≤x<1.如图所示:2.解:△=[-2(m+1)]2-4m2=4(m2+2m+1)-4m2=4(2m+1)<0,∴m<-1 2当m<-12时,原方程没有实数根.3.解:根据题意,得2(70)350 707560xx+>⎧⎨<⎩解①,得x>105,解②,得x<108.∴105<x<108,∴这个球场可以用作国际足球比赛. 能力提高练习1.B2.解:设引爆员速度为xm/s,由题意,得60010.005x≤, ∴ x≥3.答:至少以3m/s的速度才能跑到安全区域.3.解:(1)当a=0时,方程为4x-1=0,∴x=1 4(2)当a≠0时,△=42 -4(a-1)=16+4a. 令16+4a≥0,得a≥-4且a≠0时方程有两个实数根. ①设方程的两个实数根为x1、x2.∵方程只有正实数根,∴由根与系数的关系,得x1·x2=-1a>0,且x1+x2=4a->0.解之,得a<0. ②由①、②可得:当-4≤a<0时,原方程有两个正实数根. 综上讨论可知:当-4≤a≤0时,方程ax2+4x-1=0只有正实数根.另解:(1)当a ≠0时,△= 42-4a(-1)=16+4a. 令16+4a ≥0,得a ≥-4且a ≠0时方程有两个实数根. 设方程的两个实数根为x 1、x 2, 令x 12x =若a>0,2<0,不满足条件要求,舍去. 若-4≤a<0,则0此时,x 1>0且x 2>0,满足条件要求. (2)当a=0时,方程ax 2+4x-1=0有正根x=14. 由(1)、(2)得:当-4≤a ≤0时,原方程只有正实数根.4.解:(1)0.50.2(50)190.30.4(50)17.2x x x x +-≤⎧⎨+-≤⎩由①,得x ≤30,由②得x ≥28, ∴28≤x ≤30.(2)y=4x+3(50-x),即y=x+150. ∵x 越小,则y 越小.∴当x=28时,甲、乙两种饮料的成本总额最少.。
不等式(组)第11课时一元一次不等式(组)(66分)一、选择题(每题4分,共24分)1.[2014·某某]不等式3x +2>-1的解集是(C)A .x >-13B .x <-13C .x >-1D .x <-12.[2015·某某]不等式3x -1>x +1的解集在数轴上表示为(C)3.[2015·某某]在数轴上表示不等式组⎩⎪⎨⎪⎧2+x >0,2x -6≤0的解集,正确的是(A)4.[2015·某某]不等式组⎩⎪⎨⎪⎧x +2≥1,3-x ≥0的解集在数轴上表示正确的是(B)5.[2015·某某]不等式组⎩⎪⎨⎪⎧2x +1>-3,-x +3≥0的整数解的个数是(B) A .3B .5C .7D .无数个【解析】 不等式组的解集是-2<x ≤3.则整数解是:-1,0,1,2,3,共5个.6.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +3y =4-a ,x -y =3a ,其中-3≤a ≤1,给出下列结论: ①⎩⎪⎨⎪⎧x =5,y =-1是方程组的解; ②当a =-2时,x ,y 的值互为相反数;③当a =1时,方程组的解也是方程x +y =4-a 的解;④若x ≤1,则1≤y ≤4.其中正确的是(C)A .①②B .②③C .②③④D .①③④【解析】 解方程组⎩⎪⎨⎪⎧x +3y =4-a ,x -y =3a , 得⎩⎪⎨⎪⎧x =1+2a ,y =1-a . ∵-3≤a ≤1,∴-5≤x ≤3,0≤y ≤4.①⎩⎪⎨⎪⎧x =5,y =-1不符合-5≤x ≤3,0≤y ≤4,结论错误; ②当a =-2时,x =1+2a =-3,y =1-a =3,x ,y 的值互为相反数,结论正确; ③当a =1时,x +y =2+a =3,4-a =3,方程x +y =4-a ,两边相等,结论正确;④当x ≤1时,1+2a ≤1,解得a ≤0,y =1-a ≥1,已知0≤y ≤4,故当x ≤1时,1≤y ≤4,结论正确.故选C.二、填空题(每题4分,共12分)7.[2015·某某]不等式5x -3<3x +5的最大整数解是__3__.8.[2015·某某]一元一次不等式组⎩⎪⎨⎪⎧x +2≥0,5x -1>0的解集是__x >15__. 9.[2015·某某]不等式组⎩⎪⎨⎪⎧3x +4≥0,12x -24≤1的所有整数解的积为__0__. 【解析】 解第一个不等式得x ≥-43, 解第二个不等式得x ≤50,∴不等式组的整数解为-1,0,1,…50,所以所有整数解的积为0.三、解答题(共30分)10.(10分)[2015·某某]解不等式:x 3>1-x -36. 解:去分母,得2x >6-x +3,移项,得2x +x >6+3,合并,得3x >9,系数化为1,得x >3.11.(10分)[2015·某某]解不等式组:⎩⎪⎨⎪⎧x -2≤0,2(x -1)+(3-x )>0.并把它的解集在数轴上表示出来.解:⎩⎪⎨⎪⎧x -2≤0, ①2(x -1)+(3-x )>0, ② 由①得x ≤2,由②得x >-1,故此不等式组的解集为-1<x ≤2.在数轴上表示为:第11题答图12.(10分)[2014·某某]解不等式组⎩⎪⎨⎪⎧3x +2≤2(x +3),2x -13>x 2, 并写出不等式组的整数解.解:⎩⎪⎨⎪⎧3x +2≤2(x +3), ①2x -13>x 2, ② 解不等式①,得x ≤4;解不等式②,得x >2.所以这个不等式组的解集为2<x ≤4.这个不等式组的整数解为3,4.(24分)13.(5分)[2014·某某]若不等式组⎩⎪⎨⎪⎧1+x <a ,x +92+1≥x +13-1 有解,则实数a 的取值X 围是(C)A .a <-36B .a ≤-36C .a >-36D .a ≥-36【解析】 先求出不等式组中每一个不等式的解,不等式组有解,即两个不等式的解有公共部分,据此即可列不等式求得a 的X 围.⎩⎪⎨⎪⎧1+x <a , ①x +92+1≥x +13-1, ② 解①得x <a -1,解②得x ≥-37,则a -1>-37,解得a C.14.(4分)[2014·某某模拟]若关于x 的不等式13x -m <0的正整数解只有3个,则m 的取值X 围是__1<m ≤43__. 【解析】 解不等式13x -m <0,得x <3m ,根据题意,得3<3m ≤4,解得1<m ≤43. 15.(5分)在实数X 围内规定新运算“△”,其规则是a △b =2a -b .已知关于x 的不等式x △k ≥1的解集在数轴上表示如图11-1所示,则k 的值是__-3__.图11-1【解析】 x △k ≥1,即2x -k ≥1,2x ≥k +1,x ≥k +12.由图11-1知不等式的解集为x ≥-1,所以k +12=-1,解得k =-3. 16.(10分)[2014·呼和浩特]已知实数a 是不等于3的常数,解不等式组⎩⎪⎨⎪⎧-2x +3≥-3,12(x -2a )+12x <0,并依据a 的取值情况写出其解集. 解:⎩⎪⎨⎪⎧-2x +3≥-3,①12(x -2a )+12x <0,② 解①得x ≤3,解②得x <a ,∵a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3,当a <3时,不等式组的解集为x <a .(10分)17.(10分)[2015·呼和浩特]若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +y =-3m +2,x +2y =4的解满足x +y >-32,求出满足条件的m 的所有正整数值. 解:⎩⎪⎨⎪⎧2x +y =-3m +2, ①x +2y =4, ② ①+②得3(x +y )=-3m +6,即x +y =-m +2,代入不等式,得-m +2>-32,解得m <72, 则满足条件m 的正整数值为1,2,3.。
一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。
2、能够根据具体问题中的大小关系了解不等式的意义。
3、掌握不等式的基本性质。
4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。
其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。
1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。
观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。
第四章一元一次不等式(组)考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法考点二、不等式基本性质(3-5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
第11章《一元一次不等式》考点+易错知识梳理重难点分类解析考点1 不等式及其性质【考点解读】理解实数的运算法则,确定相关量的取值范围,然后用不等式来表示;要熟练掌握不等式的性质,特别注意当不等式两边同时乘(或除以)同一个负数时,不等号方向要改变.例1 下列说法不一定成立的是( ) A.若a b >,则a c b c +>+ B.若a c b c +>+,则a b > C.若a b >,则22ac bc > D.若22ac bc >,则a b >分析:在不等式a b >的两边同时加上c ,不等式仍成立,即a c b c +>+,故选项A 一定成立;在不等式a c b c +>+的两边同时减去c ,不等式仍成立,即a b >,故选项B 一定成立;当0c =时,若a b >,则不等式22ac bc >不成立,故选项C 不一定成立;因为22ac bc >,所以0c ≠,所以20c >.在不等式22ac bc >的两边同时除以2c ,该不等式仍成立,即a b >,故选项D 一定成立. 答案:C【规律·技法】应用不等式的性质解决问题时,特别要注意当不等式的两边同乘或同除以同一个负数时不等号要改变方向. 【反馈练习】1. (2018·南京期末)若x y >,则下列式子错误的是( ) A.33x y ->- B.33x y >C.33x y +>+D.33x y ->-点拨:在不等式两边同时乘(或除以)同一个负数时,不等号方向要改变. 2.下列不等式变形正确的是( )A.由a b >,得ac bc >B.由a b >,得22a b ->-C.由a b >,得a b -<-D.由a b >,得22a b -<- 点拨:注意各选项中,不等号的方向是否需要改变. 考点2 解一元一次不等式【考点解读】解一元一次不等式时,先认真分析不等式的特点,然后确定求解的步骤,在易错环节中要认真细致,紧扣变形依据. 例2 解小等式: 31212x x -->,并把它的解集在数轴上表示出来.分析:根据不等式的性质可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来. 解答:去分母,得4231x x ->-.移项,得4321x x ->-. 合并同类项,得1x >.将不等式解集表示在数轴上如图:【规律·技法】本题主要考查对解一元一次不等式,在数轴上表示不等式的解集,不等式的性质等知识点的理解和掌握,能根据不等式的性质正确解不等式是解此题的关键. 【反馈练习】 3.解下列不等式: (1)123(2)2x x -≤+; (2)13(1)42x x +≥--.点拨:先去分母,再去括号、移项、合并同类项,最后系数化为“1”. 考点3 解一元一次方程组【考点解读】根据解一元一次不等式组的步骤,先求两个不等式的解集,然后借助数轴求得两个解集的公共部分.例3 (2017·南京)解不等式组: 2623(1)1x x x x -≤⎧⎪>-⎨⎪-<+⎩①②③.请结合题意,完成本题的解答:(1)解不等式①,得 ,依据是 ; (2)解不等式③,得 ;(3)把不等式①②和③的解集在数轴上表示出来:(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集为 .分析:分别解不等式①③,再将不等式①②③的解集表示在数轴上,它们的公共部分即为不等式组的解集.解答:(1) 3x ≥ 不等式两边都乘(或除以)同一个负数,不等号的方向改变(2) 2x < (3)如图所示:(4)22x -<<【规律·技法】本题考查一元一次不等式组的解法,确定一元一次不等式组的解集可以借助于数轴,也可以利用口诀:同大取大,同小取小,大小小大中间找,大大小小解不了(无解). 【反馈练习】4. 解不等式组:253(1)121035x x x +≤+⎧⎪⎨-+>⎪⎩①②,并把解集表示在数轴上.点拨:先分别求解两个不等式,并在数轴上表示两个解集,寻找公共部分即可. 考点4 用一元一次不等式解决实际问题【考点解读】要明确列不等式解决实际问题的步骤与方法:理解题意,找出一个能表示实际问题意义的不等关系,然后设未知数,根据不等关系列出不等式,解这个不等式,检验并写出答案.例4 每年5月20日是中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况,他们从食品安全监督部门获取了一份快餐的信息如图.若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,则这份快餐最多含有多少克的蛋白质? 分析:设这份快餐含有x g 的蛋白质,根据所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,列出不等式求解即可. 解答:设这份快餐含有x g 的蛋白质.由题意,得440070%x x +≤⨯,解得56x ≤.故这份快餐最多含有56 g 的蛋白质.【规律·技法】读懂题意,找出题目中的数量关系,列出不等式.本题的数量关系是快餐所含的蛋白质与破水化合物的质量之和不高于快餐总质量的70%.例5某校需购买一批课桌椅供学生使用,已知A 型课桌椅230元/套,B 型课桌椅200元/套.(1)该校购买了A ,B 型课桌椅共250套,付款53 000元,则A ,B 型课桌椅各买了多少套? (2)因学生人数增加,该校需再购买100套A ,B 型课桌椅,现只有资金22 000元,则最多能购买A 型课桌椅多少套?分析:(1)设购买A 型课桌椅x 套,B 型课桌椅y 套,根据“A ,B 型课桌椅共250套”“A 型课桌椅230元/套,B 型课桌椅200元/套,付款53 000元”列出方程组并解答;(2)设购买A 型课桌待a 套,则购买B 型课桌(100)a -套.根据“只有资金22 000元”列出不等式并解答即可.解答:(1)设购买A 型课桌椅x 套,B 型课桌椅y 套.由题意,得25023020053000x y x y +=⎧⎨+=⎩,解得100150x y =⎧⎨=⎩.故购买A 型课桌椅100套,B 型课桌椅150套. (2)设购买A 型课桌待a 套,则购买B 型课桌(100)a -套. 由题意,得230200(100)22000a a +-≤, 解得2003a ≤. 因为a 是正整数, 所以66a =最大.故最多能购买A 型课桌椅66套.【规律·技法】本题考查列二元一次方程组和一元一次不等式解决实际问题,找准题中的数量关系是解题的关健, 【反馈练习】5.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?点拨:设购买球拍x 个,列不等式求解,注意取整数值.6.某校在开展“校园献爱心”活动中,准备向西部山区学校捐赠男、女两种款式的书包.已知男款书包的单价为50元/个,女款书包的单价为70元/个.(1)原计划募捐3 400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4 800元,如果购买两种款式的书包共80个,那么女款书包最多能买多少个?点拨:(1)可列方程求解;(2)设女款书包购买y 个,则男款书包购买(80)y -个,列不等式求解即可.易错题辨析易错点1 符号意义理解不清导致错误例1 给出下列不等式:①2a a >;②210a +>; ③86≥;④20x ≥.其中成立的是( ) A.②③ B.② C.①②④ D.②③④ 错误解答:A错因分析:导致本题错误的原因是对符号“≥”理解不透切,“≥”的意义是“>”或“=”,有选择功能,二者之一成立即可,事实上也只能两者取一,“>”与“=”不能同时成立,所以对“86≥”的理解应是“8大于6”,对20x ≥的理解应是当0x =时,20x =;当0x ≠时,20x >.正确答案:D易错辨析:“≥”的含义是“>”或“=”,且二者不能同时成立. 易错点2 对非负整数的概念理解不清导致错误例2 (2018·苏州期末)写出不等式3x ≤的所有非负整数解:x = . 错误解答:1,2,3错因分析:错解在于不理解非负整数的含义,非负整数包括零和正整数. 正一答案:0,1,2,3易错辨析:非负整数包括零和正整数. 易错点3 忽略不等号的方向是否变化例3 若1a <,则下列各式中,错误的是( )A. 1a ->-B. 10a -<C. 30a +>D. 22a < 错误解答:A错因分析:根据不等式的性质2,不等式两边同乘一个负数,不等号的方向改变,故选项A 正确;根据不等式的性质1可知选项B 正确;根据不等式的性质2,不等式的两边同乘一个正数,不等号的方向不变,故选项D 正确;取41a =-<,则34310a +=-+=-<,故选项C 不正确. 正确答案:C易错辨析:在运用“不等式的两边都乘(或除以)同一个负数,不等号的方向改变”这一性质时,关键是要注意乘的数是否是负数,如果是负数,不等号方向必须改变.这类题易出现的错误是运用此性质时,忽略了改变不等号的方向而导致选错答案,如本题容易误选A. 易错点4 去分母时,忽略分数线的括号作用而出错例4 解不等式:329251234x x x --+-≥. 错误解答:去分母,得182362151x x x --+≥+,即539x ≥5x,39,所以395x ≥. 错因分析:去分母时,分数线具有括号的作用,错解恰好忽视了这一点,正确的做法应在去括号时把分子视为一个整体用括号括起来.正确解答:去分母,得6(32)4(92)3(51)x x x ---≥+,即1151x ≥,所以5111x ≥. 易错辨析:分数线有两重功能:其一是表示分数线;其二有括号的作用.反馈练习1.若a b >,则下列不等式成立的是( )A. 22a b +<+B. 22a b -<-C. 22a b <D. 22a b -<- 点拨:注意不等式两边同时乘或除以一个负数时不等号方向改变.2.不等式组312114x x x -<⎧⎪⎨≤⎪⎩的解集在数轴上表示正确的是()点拨:分别解两个不等式,并将解集表示在数轴上,注意空心圆圈和实心圆点的使用.3. 对于不等式组131722523(1)x x x x ⎧-≤-⎪⎨⎪+>-⎩,下列说法正确的是( )A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解为3,2,1x =---D.此不等式组的解集为522x -<≤ 点拨:先解不等式组,根据解集判断即可.4.不等式组210312123x x x +>⎧⎪-+⎨≤⎪⎩的所有整数解是x = .点拨:先解不等式组,再根据解集分析出所有整数解.5.满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数解为x = .点拨:先解不等式组,再根据解集分析出所有整数解.探究与应用探究1 确定不等式(组)中的参数取值范围 例1 若不等式组20x b x a -≥⎧⎨+≤⎩的解集为34x ≤≤,求不等式0ax b +<的解集.点拨:求出每个不等式的解集,根据每个不等式的解集的规律找出不等式组的解集,即可求出,a b 的值,代入0ax b +<中求出不等式的解集即可.解答: 200x b x a -≥⎧⎨+≤⎩①②解不等式①,得2b x ≥; 解不等式②,得x a ≤-.因为部等式组20x b x a -≥⎧⎨+≤⎩的解集为34x ≤≤,所以324b a ⎧=⎪⎨⎪-=⎩,解得46a b =-⎧⎨=⎩.将46a b =-⎧⎨=⎩代入0ax b +<,得360x -+<, 解得32x >. 故不等式0ax b +<的解集为32x >. 规律·提示确定不等式(组)中参数的取值范围的常用方法:(1)根据不等式(组)的解集确定;(2)分类讨论确定;(3)借助数轴确定. 【举一反三】1.已知关于,x y 的方程组3133x y k x y +=+⎧⎨+=⎩的解满足01x y <+<,求k 的取值范围.2.若不等式组x a bx a b +<⎧⎨->⎩的解集是13x -<<,求不等式0ax b +<的解集.探究2 根据解集或整数解来确定系数的值或取值范围 例 2 如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3x =,那么适合这个不等式组的整数,a b 的有序数对(,)a b 共有( )A. 17对B. 6 4对C. 72对D. 81对点拨:分别求出满足题意的整数,a b 的个数即可.因为9080x a x b -≥⎧⎨-<⎩,所以98ax b x ⎧≥⎪⎪⎨⎪<⎪⎩.因为不等式组的整数解仅为1,2,3x =,所以019a <≤,348b<≤,即09a <≤,2432b <≤,所以a 的整数值有9个,b 的整数值有8个,所以有序数对(,)a b 共有9×8=72(对).【举一反三】3.已知关于x 的不等式组0521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围是 .4.已知不等式30x a -≤的正整数解为1,2,3x =,求a 的取值范围.探究3 求含有多个未知数的式子的最值例 3 已知,,a b c 是三个非负数,并且满足325a b c ++=,231a b c +-=,设37m a b c =+-,若x 为m 的最大值,y 为m 的最小值,求xy 的值.点拨:本题考查了方程组、不等式组的综合应用,解题的关键是通过解方程组,用含一个字母的代数式表示m ,通过解不等式组,确定这个字母的取值范围,在约束条件下,求出,x y 的值.解答:由条件,得325213a b ca b c+=-⎧⎨+=+⎩,解得73711a c b c =-⎧⎨=-⎩.将73711a c b c=-⎧⎨=-⎩代入37m a b c =+-,得32m c =-.由000a b c ≥⎧⎪≥⎨⎪≥⎩,得73071100c c c -≥⎧⎪-≥⎨⎪≥⎩, 解得37711c ≤≤. 所以71321111x =⨯-=-,353277y =⨯-=-,所以577xy =.规律·提示要求含有多个未知数的式子的最值,把多个未知数转化为含一个未知数的式子,再由题目的约束条件求出这个未知数的取值范围,最后求出最值.【举一反三】5.已知,,x y z 均为非负数,且满足30350x y z x y z ++=⎧⎨+-=⎩,求542u x y z =++的最大值和最小值.探究4 优惠方案的选择问题例4甲、乙两商场以同样的价格出售同样的电器,但是各自推出的优惠方案不同.甲商场规定:凡购买超过1 000元的电器,超出的金额按90%实收;乙商场规定:凡购买超过500元的电器,超出的金额按95%实收.顾客怎样选择商场购买电器才能获得最大的优惠?点拨:获得最大优惠是选择商场的前提,由于顾客购买电器金额不是具体的,因此应分类讨论解决问题.解答:设购买电器的金额为x 元,甲商场的实收金额为y 甲元,乙商场的实收金额为y 乙元.由题意,得,010001000(1000)0.9,1000x x y x x <≤⎧=⎨+-⨯>⎩甲,,0500500(500)0.95,500x x y x x <≤⎧=⎨+-⨯>⎩乙,①当0500x <≤时,两家均不优惠,所以任选一家;②当1000≤时,乙商场有优惠而甲商场没有,所以选择乙商场; ③当1000x >时,若y y =乙甲,即1000(1000)0.9500(500)0.95x x +-⨯=+-⨯,解得1500x =; 若y y >乙甲,即1000(1000)0.9500(500)0.95x x +-⨯>+-⨯,解得1500x <;当y y <乙甲,即1000(1000)0.9500(500)0.95x x +-⨯<+-⨯,解得1500x >. 综上所述,顾客对商场的选择可参考如下:①当0500x <≤或1500x =时,可任选一家;②当5001500x <<时,可选择乙商场;③当1500x >时,可选择甲商场.规律·提示寻找不等关系的方法:(1)利用事实不等关系,这里指的是不需要题设的表述就已经存在的不等关系.如生产用量≤供给量;(2)利用明确表达的不等关系,如常见的“不少于”“最多”“不超过”“最小”等;(3)利用题中隐藏的不等关系,如“哪一种方式更优惠”“如何安排运输的方案”等,其字里行间便隐藏着不等关系. 【举一反三】6.某商场响应“家电下乡”的惠农政策,决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的数量是乙种电冰箱的2倍,购买三种电冰箱的总金额不超过132000元.已知甲、乙、丙三种电冰箱的出厂价格分别为1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的数量不超过丙种电冰箱的数量,则有哪些购买方案?探究5 不空不满类型问题例5 学校为离家远的同学安排住宿,现有房间若干间.若每间住5人,则还有14人安排不下;若每间住7人,则最后一间房间里还余一些床位.学校可能有几间房间可以安排同学住宿?住宿的同学可能有多少人?点拨:本题是典型的不空不满类型问题,关健是弄清题中有两个量,住宿人数和房间安排方式不同,就有不同的结果,依据题中给出的安排方式,列出不等式组,从而求解. 解答:解法一:设房间有x 间,则住宿的同学有(514x +)人.由题意,得07(514)7x x <-+<, 解得710.5x <<. 因为x 取正整数, 所以x 取8,9,10.当8x =时,住宿的同学有54人; 当9x =时,住宿的同学有59人; 当10x =时,住宿的同学有64人. 解法二:设住宿的同学有x 人,则房间有145x -间. 由题意,得7(14)75x x x -<<+, 解得4966.5x <<.因为x 是正整数,所以x 取50,51,52,53,…,64,65,66.因为145x -为整数,所以x 可以取54,59,64,则房间对应可能有8,9或10间.综上所述,房间数与住宿的同学人数有3种可能的情况:①房间8间,同学54人;②房间9间,同学59人;③房间10问,同学 64人.规律·提示放缩法,即将代数式的某些部分恰当地放大或缩小,从而得到相应的不等式,以达到解决问题的目的.放缩法的实质是构造不等式,通过缩小范围逼近求解,放缩法体现了化“相等”为“不等”,以“不等”求“相等”的策略和思想.【举一反三】7.将若干只鸡放入若干个笼子中,若每个笼子里放4只,则有一只鸡无笼可放;若每个笼子里放5只,则有一笼无鸡可放.问:至少有多少只鸡,多少个笼子?参考答案知识梳理不等号 不等关系 成立 解 一个 1 不等于0括号 系数化为1 元 不等式 同一个未知数 成立未知数的值 解集 公共部分重难点分类解析【反馈练习】1. D2. C3. (1)83x ≤(2)3x ≤ 4. 不等式组的解集为415x -≤<,表示在数轴上如图所示:5. 孔明应该买7个球拍.6. (1)原计划购买男款书包40个,女款书包20个.(2)女款书包最多能买40个.易错题辨析反馈练习1. D2.C3. B4. 0,15. 2-,1-,0,1探究与应用【举一反三】1. 40k -<<2. 12x >3. 32a -<≤-4. 912a ≤<5. 542u x y z =++的最大值为130,最小值为120.6. (1)至少购进乙种电冰箱14台.(2)有3种购买方案.方案一:甲种电冰箱购进28台,乙种电冰箱购进14台,丙种电冰箱购进38台; 方案二:甲种电冰箱购进30台,乙种电冰箱购进15台,丙种电冰箱购进35台; 方案三:甲种电冰箱购进32台,乙种电冰箱购进16台,丙种电冰箱购进32台.7. 至少有25只鸡,6个笼子。
一元一次不等式与一元一次不等式组的解法知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .a 与6的和小于5; x 与2的差小于-1;1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >01.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-6): (这类试题在中考中很多见)1.(2010湖北随州)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥ 2.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来. 3.(2006年绵阳市)12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集:当0a >时,b x a >(或b x a<) 当0a <时,bx a <(或b x a >)当0a <时,b x a <(或b x a>) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-ab,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在|x |<37的整数解是________.不等式|x |<1的解集是________. 已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A.x <2B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)yx<0中,正确结论的序号为________。
一元一次不等式知识点一:不等式的概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。
3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。
求不等式的解集的过程叫做解不等式。
如:不等式x-4<1的解集是x<5. 不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。
要点诠释:不等式的解集必须符合两个条件:(1)解集中的每一个数值都能使不等式成立;(2)能够使不等式成立的所有的数值都在解集中。
知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。