江苏省扬州市2014-2015学年高一数学下学期期末考试试题
- 格式:doc
- 大小:537.36 KB
- 文档页数:8
高一化学试题可能用到的相对原子质量:H:1 N:14O:16S:32 Cl:35.5 Cu:64Ba:137第Ⅰ卷(选择题)一.选择题(每小题只有一个选项符合题意。
)1. 空气是人类生存所必需的重要资源。
为改善空气质量而启动的“蓝天工程”得到了全民的支持。
下列措施中,不利于“蓝天工程”建设的是A. 推广使用燃煤脱硫技术,防治SO2污染B. 实施绿化工程,防治扬尘污染C. 研制开发燃料电池汽车,消除机动车尾气污染D. 加大石油、煤炭的开采速度,增加化石燃料的使用量2. 银耳本身为淡黄色,某地生产的一种“雪耳”,颜色洁白如雪。
制作如下:将银耳堆放在密闭状态良好的塑料棚内,棚的一端支口小锅,锅内放有硫磺,加热使硫磺熔化并燃烧,两天左右,“雪耳”就制成了。
“雪耳”炖而不烂,对人体有害。
制作“雪耳”利用的是A. 硫的还原性B. 硫的漂白性C. 二氧化硫的还原性D. 二氧化硫的漂白性3. 在水泥、冶金工厂常用高压电对气溶胶作用,除去大量粉尘,以减少其对空气的污染,这种做法运用的原理是A. 丁达尔效应B. 电泳C. 渗析D. 聚沉4. 下列物质属于纯净物的是A. 盐酸B. 液氯C. 碘酒D. 漂白粉5. 下列变化需加氧化剂才能实现的是A. NH3NH4+B. N2NH3C. NH3NOD. Cl2Cl-6. 下列变化不属于氮的固定的是A. 根瘤菌把氮气转化为氨B. 氮气和氢气在适宜条件下合成氨C. 氮气和氧气在放电条件下合成NOD. 工业上用氨和二氧化碳合成尿素7. 下列物质均有漂白作用,其漂白原理相同的是①过氧化钠②次氯酸③双氧水④活性炭⑤臭氧A. ①②③⑤B.只有①③⑤C. ②③④D. 只有①②⑤8. 实验室不需用棕色试剂瓶保存的试剂是A. 浓硝酸B. 硝酸银C. 氯水D. 浓硫酸9. 自来水常用Cl2消毒,某学生用这种自来水去配制下列物质的溶液,不会产生明显的药品变质问题的是A. AgNO3B. Ca(OH)2C. Na2SO3D.AlCl310. 下列有关反应的离子方程式错误的是A. KOH 溶液与过量的SO 2反应: OH -+SO 2=HSO 3-B. Na 2SO 3溶液与稀硫酸反应: SO 32- +2H +=SO 2↑+H 2OC. NaBr 溶液中通入氯气: 2Br -+Cl 2=Br 2+2Cl -D. 石灰石与盐酸反应: CO 32-+2H +=H 2O+CO 2↑11. 下列叙述正确的为A. 石墨转化为金刚石属于化学变化B. 金刚石和石墨具有相似的物理性质C. C 60是碳元素的一种单质,其摩尔质量为720D. 由碳元素单质组成的物质一定是纯净物12. 下列化合物中不能由单质直接化合而制成的是A.FeSB.Cu 2SC.SO 3D.FeCl 313. 下列离子在溶液中可大量共存的一组是A. K +、Na +、OH -、SO 42- B. Ba 2+、Fe 2+、NO 3-、H + C. H +、Na +、CO 32-、SO 42- D. Fe 3+、Ba 2+、NO 3-、OH -14. 下列叙述正确的是A. 将钠放入硫酸铜溶液中可置换出铜B. 铜丝在氯气中燃烧,产生蓝色的烟C. 向氯化铁溶液中滴入KOH 溶液,可产生红褐色胶体D. 氢气在氯气中燃烧,火焰呈苍白色15. 甲、乙、丙三种溶液各含有一种X -(X -为Cl -、Br -、I -)离子。
高一语文期末试卷2015.2一、语言文字运用 (18分)1.下列加点字注音全都正确....的一项是(3分)A.蕞.尔(cuî)隽.永(juàn)犄.角(jī)日削.月割(xuē)B.怪癖.(pǐ)栖.息(qī)慰藉.(jí)舞榭.歌台(xiè)C.毋宁.(nìng)敛裾.(jū)滂.沱(pāng)桂棹.兰桨(zhào)D.朱拓.(tà)襁褓.(bǎo)黼黻.(fú)拾.级而上(shí)2.下列没有错别字.....的一项是(3分)A.蜇伏窈窕狙击目不暇接B.湔雪岑寂晌午深居简出C.胡诌惬意翘首一愁莫展D.草窠隐遁絮叨欢呼鹊跃3.下列各句中,加点的成语使用正确..的一项是(3分)A.重光葵在前,梅津美治郎随后……他们都是中国人民的熟人,当年曾几何时....在我们的国土上不可一世,现在在这里以这样的方式重逢了。
B.我不相信战争只是政客和资本家搞出来的,许多芸芸众生....的罪过和他们一样大;不然,许多人民和民族早就起来反叛了。
C.凯撒、西塞罗、马可•奥勒留的胸像复制得惟妙惟肖....,深黄的颜色,古希腊、古罗马的气派,威严地靠墙一字排开。
D.文艺演出现场,身着盛装的表演者光着脚、微笑着,一边跳着傣族舞,一边向人泼水致意,在场群众纷纷拍手称快....。
4.下列加点字用法分类正确....的一项是(3分)①辞楼下殿,辇.来于秦②廉颇老矣,尚能饭.否?③后秦击赵者再,李牧连却.之④攀援而登,箕.踞而遨⑤舞幽壑之潜蛟,泣.孤舟之嫠妇⑥西.望夏口,东望武昌⑦萦青.缭白,外与天际⑧苍然暮色,自远.而至A.①②⑤/③④/⑥⑧/⑦B.①④⑥/②/③⑤/⑦⑧C.①④/②③⑤/⑥⑦/⑧ D.①②⑤/⑥/③⑧/④⑦5.下列对有关作品的表述不正确...的一项是(3分)A.孟子是儒家的重要代表人物,被称为“亚圣”。
“民本”思想是孟子政治思想的核心,他认为应把人民放在第一位,国家其次,君在最后。
2014-2015学年度上学期期末考试高一化学试卷(含答案)可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 Al 27 S 32 Cl 35.5K 39 Ca 40 Zn 65 Fe 56 Cu 64注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间100分钟;2.第Ⅰ卷第Ⅱ卷答案用钢笔或签字笔写在答卷正确位置上;第I卷选择题一、选择题(本题包括20小题,每小题2分,共40分。
每小题只有一个选项符合题意。
)1.“化学,让生活更美好”,下列叙述不能直接体现这一主旨的是:A.风力发电,让能源更清洁B.合成光纤,让通讯更快捷C.合成药物,让人类更健康D.环保涂料,让环境更宜居2.下列化学用语正确的是:A.Cl-的结构示意图:B.光导纤维主要成分的化学式:SiIC.质子数为53,中子数为78的碘原子:13153D.H216O、D216O、H218O、D218O互为同位素34.下列操作中,不会发生明显颜色变化的是A.FeSO4溶液中滴入NaOH溶液B.硫酸铁溶液中滴加硫氰化钾溶液C.碳酸氢钠溶液中滴加稀盐酸D.氯化铁溶液中加入还原性铁粉5. 现有三种常见治疗胃病药品的标签:①②③药品中所含的物质均能中和胃里过量的盐酸,下列关于三种药片中和胃酸的能力比较,正确的是()A.③>②>①B.①>②>③C.①=②=③D.②>③>①6.关于NaHCO3与Na2CO3说法正确的是:① NaHCO3固体可以做干粉灭火剂,金属钠起火可以用它来灭火② NaHCO 3粉末中混有Na 2CO 3,可配置成溶液通入过量的CO 2,再低温结晶得到提纯 ③ Ca(HCO 3)2溶解度都比其正盐的溶解度大,因此NaHCO 3的溶解度也比Na 2CO 3大 ④Na 2CO 3固体中混有NaHCO 3,高温灼烧即可⑤区别NaHCO 3与Na 2CO 3溶液,Ca(OH)2溶液和CaCl 2溶液均可用 A .①③ B . ③⑤ C .②④ D . ②⑤ 7.下列关于Na 及其化合物的叙述正确的是:A .将钠投入FeSO 4溶液中,可以得到单质铁B .足量Cl 2、S 分别和二份等质量的Na 反应,前者得到电子多C .Na 2O 与Na 2O 2中阴阳离子的个数比均为1:2D .在2Na 2O 2+2H 2O=4NaOH+O 2反应中,每生成1molO 2,消耗2mol 氧化剂 8. 下列常见金属单质的工业冶炼方法正确的是:A .冶炼钠:电解氯化钠水溶液,同时得到副产品Cl 2、H 2B .冶炼镁:电解熔融MgCl 2.6H 2O ,同时得到副产品Cl 2,H 2OC .冶炼铝:电解熔融冰晶石(Na 3AlF 6),同时得到副产品Al 2O 3D .冶炼铁:高炉中生成CO ,CO 在高温下还原铁矿石,同时得到副产品CaSiO 3 9.设N A 代表阿伏伽德罗常数,下列说法正确的是 A .1mol MgCl 2中含有的离子数为2N AB .标准状况下,11.2L H 2O 中含有的原子数为1.5N AC .标准状况下,22.4L 氦气与22.4L 氯气所含原子数均为2N AD .常温下,2.7g 铝与足量的盐酸反应,失去的电子数为0.3 N A 10. 下列物质中,既能跟稀硫酸反应,又能跟NaOH 溶液反应的是①Al 2O 3;②Mg(OH)2;③Al(OH)3;④(NH 4)2CO 3;⑤NaHCO 3;⑥AlCl 3 A .①③⑤⑥ B .只有①③ C .只有②③ D .①③④⑤ 11.等质量的两根镁条,第一根在足量氧气中加热燃烧,第二根在足量CO 2气体中加热燃烧,则下列说法正确的是:①两根镁条失去电子一样多 ②第一镁根条失去电子多 ③第二根镁失去电子多 ④两根镁的产物质量一样大 ⑤第一根镁的产物质量大 ⑥第二根镁的产物质量大A .①④B . ①⑥C .③⑥D .②⑤12. Fe 和Fe 2O 3 、Fe 3O 4的混合物,加入200mL 5mol·L -1的盐酸,恰好完全溶解,再向其中加入KSCN 溶液,未见血红色,则所得溶液中Fe 2+的物质的量浓度为(假设反应后溶液体积仍为200mL) A 、2.5mol·L -1 B 、lmol·L -1 C 、2mol·L -1 D 、5mol·L -1 13.下列选用的相关仪器符合实验要求的是A .存放液溴B .量取9.50 mL 水C .称量8.55g 氯化钠固体D .配制240 mL0.1mol/L的NaCl溶液14.下列除去杂质(括号内的物质为杂质)的方法中错误..的是A.FeSO4 (CuSO4):加足量铁粉后,过滤B.CO (CO2):用NaOH溶液洗气后干燥C.MnO2 (KCl):加水溶解后,过滤、洗涤、烘干D.CO2 (HCl):用NaOH溶液洗气后干燥15.下列化学反应所对应的离子方程式正确的是:A.氧化铝和过量的氢氧化钠溶液反应:2OH-+Al2O3=2AlO2-+H2B.AlCl3溶液中加过量的氨水:Al3+ + 3NH3·H2O = Al(OH)3↓ + 3NH4+C.明矾溶液中加入过量的Ba(OH)2:Al3+ + SO42— + Ba2+ + 4OH—=BaSO4↓+AlO2—+H2OD.向NaAlO2溶液中通入过量CO2:2AlO2-+CO2+3H2O=2Al(OH)3↓+CO32-16.已知KMnO4与浓HCl在常温下反应就能产生Cl2。
2014—2015学年度高一数学竞赛试题(含答案)2014-2015学年度高一数学竞赛试题一.选择题:本大题共5小题,每小题6分,共30分。
在每个小题给出的四个选项中,只有一个正确的答案。
1.已知集合$M=\{x|x+3<0\}$,$N=\{x|x\leq -3\}$,则集合$M\cap N$=()A。
$\{x|x0\}$ D。
$\{x|x\leq -3\}$2.已知$\alpha+\beta=\frac{\pi}{4}$,则$(1-\tan\alpha)(1-\tan\beta)$等于()A。
2 B。
$-\frac{2}{3}$ C。
1 D。
$-\frac{1}{3}$3.设奇函数$f(x)$在$(0,+\infty)$上为增函数,且$f(1)=0$,则不等式$f(x)-f(-x)<0$的解集为()A。
$(-\infty,-1)\cup (0,1)$ B。
$(-1,0)\cup (1,+\infty)$ C。
$(-\infty,-1)\cup (1,+\infty)$ D。
$(0,1)$4.函数$f(x)=\ln|x-1|-x+3$的零点个数为()A。
3 B。
2 C。
1 D。
05.已知函数$f(x)=\begin{cases}1/x。
& x\geq 4 \\ 2.&x<4\end{cases}$,则$f(\log_2 5)$=()A。
$-\frac{11}{23}$ B。
$\frac{1}{23}$ C。
$\frac{11}{23}$ D。
$\frac{19}{23}$二.填空题:本大题共5小题,每小题6分,共30分。
将正确的答案写在题中横线上。
6.已知$0\leq x\leq \frac{\pi}{2}$,则函数$f(x)=4\sqrt{2}\sin x\cos x+\cos^2 x$的值域是\line(5,0){80}。
7.已知:$a,b,c$都不等于0,且$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$,则$\max\{m,n\}=$\line(5,0){80},$\min\{m,n\}=$\line(5,0){80}。
XXX2014-2015学年下学期高一年级期中数学试卷。
后有答案XXX2014-2015学年下学期高一年级期中数学试卷试卷分为两卷,卷(I)100分,卷(II)50分,共计150分。
考试时间:120分钟。
卷(I)一、选择题:(本大题共10小题,每小题5分,共50分)1.若实数a,b满足a>b,则下列不等式一定成立的是()A。
a^2<b^2B。
1/a<1/bC。
a^2>b^2D。
a^3>b^32.等差数列{an}中,若a2=1,a4=5,则{an}的前5项和S5=()A。
7B。
15C。
20D。
253.不等式(1/x-1)>1的解集为()A。
{x>1}B。
{x<1}C。
{x>2}D。
{x<2}4.△ABC中,三边a,b,c的对角为A,B,C,若B=45°,b=23,c=32,则C=()A。
60°或120°B。
30°或150°C。
60°D。
30°5.已知数列{an}的前n项和为Sn,且Sn=2an-1(n∈N*),则a5=()A。
32B。
31C。
16D。
156.等差数列{an}中,an=6-2n,等比数列{bn}中,b5=a5,b7=a7,则b6=()A。
42B。
-42C。
±42D。
无法确定7.△ABC中,若∠ABC=π/2,AB=2,BC=3,则sin∠BAC=()A。
4/5B。
3/10C。
5/10D。
1/108.计算机是将信息转换成二进制进行处理的,所谓二进制即“逢二进一”,如(1101)2表示二进制的数,将它转换成十进制数的形式是1×23+1×22+0×21+1×2=13,那么将二进制数(11.1)2转换成十进制数是(){共9位}A。
512B。
511C。
256D。
2559.不等式①x2+3>3x;②a2+b2≥2(a-b-1);③ba+≥2,其中恒成立的是()A。
2014-2015学年上学期高一期中测试数学试题(含答案) 第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合要求的)1.下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )A .3y x =B . 1y x =+C .21y x =-+D . 2x y -=2.在同一坐标系中,表示函数log a y x =与y x a =+的图象正确的是( )A B C D3.若1log 12a<,则a 的取值范围是( ) A .1(0,)(1,)2+∞ B .1(,1)2 C .(1,)+∞ D .1(,1)(1,)2+∞4.已知函数f(x)为定义在R 上的奇函数,当x≥0时, ()22xf x x m =++ (m 为常数),则(1)f -的值为( )A .-3B .-1C .1D .35.设全集U =R ,{}|0P x f x x ==∈R (),,{}|0Q x g x x ==∈R (),,{}|0S x x x ϕ==∈R (),,则方程22f x x x ϕ=()+g ()()的解集为( )A . P Q SB .P QC .P Q S ()D . P Q S u (C )5.设9.0log 5.0=a ,9.0log 1.1=b ,9.01.1=c ,则c b a , ,的大小关系为( )A .c b a <<B .c a b <<C .a c b <<D .b c a <<6.设}3 2, ,21 ,31 ,1{-∈α,若函数αx y =是定义域为R 的奇函数,则α的值为( )A .3 ,31B .3 ,31 ,1- C .3 ,1- D .31,1- 7.已知函数)(x f 是奇函数,当0>x 时,)1 ,0( )(≠>=a a a x f x,且3)4(log 5.0-=f ,则a的值为( )A .3B .3C .9D .238.已知函数⎪⎩⎪⎨⎧>-≤=-)1( )23(log )1( 2)(2x x x x f x ,若4)(=a f ,则实数=a ( ) A .2-或6 B .2-或310 C .2-或2 D .2或3109.方程21231=⎪⎭⎫ ⎝⎛--x x 的解所在的区间为( )A .) 1 ,0 (B .) 2 ,1 (C .) 3 ,2 (D .) 4 ,3 (10.已知函数bx ax y +=2和xb a y =|)| || ,0(b a ab ≠≠在同一直角坐标系中的图象不可能 是( )11.已知函数)3(log 221a ax x y +-=在区间) ,2[∞+上是减函数,则a 的取值范围是( )A .)4 ,(-∞B .]4 ,4[-C .]4 ,4(-D .]4 ,(-∞12.若在直角坐标平面内B A ,两点满足条件:①点B A ,都在函数)(x f y =的图象上;②点B A ,关于原点对称,则称B A ,为函数)(x f y =的一个“黄金点对”.那么函数=)(x f ⎪⎩⎪⎨⎧>≤-+)0( 1)0( 222x x x x x 的“黄金点对”的个数是( )A .0个B .1个C .2个D .3个 第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,共20分.13.已知集合}06|{2=--=x x x M ,}01|{=+=ax x N ,且M N ⊆,则由a 的取值组成的集合是 .14.若x x f =)(log 5,则=-)9log 2(log 255f .15.已知定义在R 上的偶函数)(x f 满足0)1(=-f ,并且)(x f 在)0 ,(-∞上为增函数.若0)( <a f a ,则实数a 的取值范围是 .16.已知函数()x f 的定义域是}0|{≠∈=x R x D ,对任意D x x ∈21 ,都有:=⋅)(21x x f)()(21x f x f +,且当1>x 时,()0>x f .给出结论:①()x f 是偶函数;②()x f 在()∞+ ,0上是减函数.则正确结论的序号是 .三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤。
2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。
高一上学期数学期末考试《必修4》试题姓名: 分数:一、选择题(每小题4分,共40分)1、与463-︒终边相同的角可以表示为(k Z)∈ ( )A 、k 360463⋅︒+︒B 、k 360103⋅︒+︒C 、k 360257⋅︒+︒D 、k 360257⋅︒-︒2、如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A 、AB OC = B 、AB ∥DE C 、AD BE = D 、AD FC =3、α是第四象限角,12cos 13α=,sin α=( )A 、513B 、513-C 、512D 、512-4、2255log sin log cos 1212π+π的值是( ) A 、4 B 、1 C 、4- D 、1-5、设()sin()cos()f x a x b x =π+α+π+β+4,其中a b 、、、αβ均为非零的常数,若(1988)3f =, 则(2008)f 的值为( )A 、1B 、3C 、5D 、不确定6、若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A 、1B 2C 3D 、27、为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A 、向左平移5π12个长度单位 B 、向右平移5π12个长度单位 C 、向左平移5π6个长度单位 D 、向右平移5π6个长度单位8、函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为( ) A 、)48sin(4π-π-=x y B 、)48sin(4π-π=x yC 、)48sin(4π+π=x yD 、)48sin(4π+π-=x yE DBAO9、设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x =( )A 、在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B 、在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C 、在区间84ππ⎡⎤⎢⎥⎣⎦,上是增函数 D 、在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数10、设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC ( )A 、互相垂直B 、同向平行C 、反向平行D .既不平行也不垂直二、填空题(每小题4分,共16分)11、23sin 702cos 10-=-12、已知函数()2sin 5f x x π⎛⎫=ω- ⎪⎝⎭的图象与直线1y =-的交点中最近的两个交点的距离为3π,则函数()f x 的最小正周期为 。
2014-2015学年江苏省宿迁市高一下学期数学期中试卷一、填空题:本大题共14小题,每小题5分,共70分.1.(5分)不等式>0的解集是.2.(5分)已知数列{a n}的前n项和为S n,若S n=2n+1,则a3=.3.(5分)在等比数列{a n}中,a2=2,a5=16,则a6=.4.(5分)在△ABC中,sinA:sinB:sinC=3:2:4,则cosC的值为.5.(5分)在△ABC中,a,b,c分别为角A,B,C的对边,a=,A=45°,B=60°,则b=.6.(5分)在等差数列{a n}中,a4=7,a8=15,则数列{a n}的前n项和S n=.7.(5分)在△ABC中,A=60°,AC=3,AB=2,那么BC的长度为.8.(5分)若关于x的不等式x2﹣ax+2<0的解集是(1,2),则a=.9.(5分)在△ABC中,a=2bcosC,则△ABC的形状为.10.(5分)已知数列{a n}是等差数列,且a2+a5+a8=π,则sina5=.11.(5分)已知等比数列{a n}中,各项都是正数,且a1,a3,2a2成等差数列,则的值为.12.(5分)等差数列{a n}中,a1=﹣3,11a5=5a8,则其前n项和S n的最小值为.13.(5分)已知向量,,满足++=,且与的夹角等于120°,与的夹角等于15°,||=3,则||=.14.(5分)数列{a n}满足a1=1,a n+1=1,记S n=a12+a22+…+a n2,若S2n+1﹣S n≤对任意n∈N*恒成立,则正整数m的最小值是.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.(14分)设数列{a n}的前n项和为S n,且S n=n2+2n(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明{a n}是等差数列.16.(14分)在半径为R的圆的内接四边形ABCD中,AB=2,BC=4,∠ABC=120°,AD+CD=10.求:(Ⅰ)AC的长及圆的半径R;(Ⅱ)四边形ABCD的面积.17.(14分)已知等差数列{a n}的各项均为正数,a1=3,其前n项和为S n,数列{b n}为等比数列,且b1=1,b2S2=16,b3S3=60.求:(Ⅰ)数列{a n}与{b n}的通项公式;(Ⅱ)++…+.18.(16分)如图,一船由西向东航行,在A处测得某岛M的方位角为α,前进5km后到达B处,测得岛M的方位角为β.已知该岛周围3km内有暗礁,现该船继续东行.(Ⅰ)若α=2β=60°,问该船有无触礁危险?(Ⅱ)当α与β满足什么条件时,该船没有触礁的危险?19.(16分)已知二次函数f(x)=ax2+bx+c(a∈N*),若不等式f(x)<2x的解集为(1,4),且方程f(x)=x有两个相等的实数根.(Ⅰ)求f(x)的解析式;(Ⅱ)若不等式f(x)>mx在x∈(1,+∞)上恒成立,求实数m的取值范围;(Ⅲ)解不等式f(x)>mx(m∈R).20.(16分)如图,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图(2).如此继续下去,得图(3)…,记第n个图形的边长a n、周长为b n.(Ⅰ)求数列{a n}、{b n}的通项公式;,(n≥2)满足的关系式,并(Ⅱ)若第n个图形的面积为S n,试探求S n,S n﹣1证明S n<.2014-2015学年江苏省宿迁市高一下学期数学期中试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.1.(5分)不等式>0的解集是{x|x>1或x<﹣2}.【解答】解:不等式>0即为或,解得x>1或x<﹣2.则解集为{x|x>1或x<﹣2}.故答案为:{x|x>1或x<﹣2}.2.(5分)已知数列{a n}的前n项和为S n,若S n=2n+1,则a3=4.【解答】解:∵S n=2n+1,当n≥2时,a n=S n﹣S n﹣1=(2n+1)﹣(2n﹣1+1)=2n﹣1.则a3=23﹣1=4.故答案为:4.3.(5分)在等比数列{a n}中,a2=2,a5=16,则a6=32.【解答】解:∵在等比数列{a n}中,a2=2,a5=16,∴公比q3==8,则q=2,∴a6=a5•q=16×2=32,故答案为:32.4.(5分)在△ABC中,sinA:sinB:sinC=3:2:4,则cosC的值为﹣.【解答】解:∵在△ABC中,sinA:sinB:sinC=3:2:4,∴根据正弦定理得:a:b:c=3:2:4,设a=3k,b=2k,c=4k,则由余弦定理得cosC===﹣.故答案为:﹣5.(5分)在△ABC中,a,b,c分别为角A,B,C的对边,a=,A=45°,B=60°,则b=.【解答】解:由题意知,a=,A=45°,B=60°,∴根据正弦定理得:,则b===,故答案为:.6.(5分)在等差数列{a n}中,a4=7,a8=15,则数列{a n}的前n项和S n=n2.【解答】解:设等差数列{a n}的公差为d,则可得,解之可得,故S n==n2故答案为:n27.(5分)在△ABC中,A=60°,AC=3,AB=2,那么BC的长度为.【解答】解:∵在△ABC中,A=60°,AC=3,AB=2,∴由余弦定理可得:BC2=AC2+AB2﹣2AC•AB•cosA=9+4﹣2×3×2×cos60°=7.∴BC=.故答案为:.8.(5分)若关于x的不等式x2﹣ax+2<0的解集是(1,2),则a=3.【解答】解:不等式x2﹣ax+2<0的解集是(1,2),∴x2﹣ax+2=0有两个根1,2,∴1+2=a∴a=3,故答案为:3.9.(5分)在△ABC中,a=2bcosC,则△ABC的形状为等腰三角形.【解答】解:∵a=2bcosC,∴cosC=∵cosC=∴=,化简整理得b=c∴△ABC为等腰三角形.故答案为:等腰三角形.10.(5分)已知数列{a n}是等差数列,且a2+a5+a8=π,则sina5=.【解答】解:由等差数列的性质可得,a2+a5+a8=3a5=π,∴a5=,∴sina5=,故答案为:.11.(5分)已知等比数列{a n}中,各项都是正数,且a1,a3,2a2成等差数列,则的值为3+2.【解答】解:依题意可得2×()=a1+2a2,即,a3=a1+2a2,整理得q2=1+2q,求得q=1±,∵各项都是正数,∴q>0,q=1+,∴==q2=3+2.故答案为:3+212.(5分)等差数列{a n}中,a1=﹣3,11a5=5a8,则其前n项和S n的最小值为﹣4.【解答】解:由11a5=5a8,得6a1 +9d=0,又a1=﹣3,故d=2.故a n =﹣3+(n﹣1)2=2n﹣5,故此数列为递增数列.故等差数列{a n}的前2项为负数,从第三项开始为正数,故前2项的和最小为﹣3+(﹣1)=﹣4,故答案为﹣4.13.(5分)已知向量,,满足++=,且与的夹角等于120°,与的夹角等于15°,||=3,则||=.【解答】解:∵向量,,满足++=,∴令=,=,=,∵与的夹角等于120°,与的夹角等于15°∴∠A=180°﹣120°=60°,∠C=180°﹣150°=30°,∴三角形为直角三角形,=tan30°=,∵|BC|=||=3,∴|AB|=,故答案为:.14.(5分)数列{a n}满足a1=1,a n+1=1,记S n=a12+a22+…+a n2,若S2n+1﹣S n≤对任意n∈N*恒成立,则正整数m的最小值是10.【解答】解:∵数列{a n}满足a1=1,a n+1=1,∴=4,∴数列是等差数列,首项为1,公差为4.∴.∴=.∵S n=a12+a22+…+a n2,∴(S2n+1﹣S n)﹣(S2n+3﹣S n+1)=(S n+1﹣S n)﹣(S2n+3﹣S2n+1)=﹣﹣=﹣﹣=+>0,∴数列{S2n+1﹣S n}是单调递减数列,∴数列{S2n+1﹣S n}的最大项是S3﹣S1===.∵≤,∴.又m为正整数,∴m的最小值为10.故答案为:10.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.(14分)设数列{a n}的前n项和为S n,且S n=n2+2n(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明{a n}是等差数列.【解答】解:(Ⅰ)∵S n=n2+2n,∴a1=S1=3,当n≥2时,a n=S n﹣S n﹣1=n2+2n﹣[(n﹣1)2+2(n﹣1)]=2n+1,则当n=1时,满足a n=2n+1,综上都有a n=2n+1.(Ⅱ)∵a n﹣a n﹣=2(n+1)+1﹣2n﹣1=2,为常数,∴{a n}是首项为3,公差为2的等差数列.16.(14分)在半径为R的圆的内接四边形ABCD中,AB=2,BC=4,∠ABC=120°,AD+CD=10.求:(Ⅰ)AC的长及圆的半径R;(Ⅱ)四边形ABCD的面积.【解答】解:(Ⅰ)在△ABC中,由余弦定理得:AC==,…4分由正弦定理得:2R=,R=…7分(Ⅱ)设AD=m,CD=n,m+n=10,在△ACD中,由余弦定理得,AC2=m2+n2﹣mn=(m+n)2﹣3mn …9分即28=100﹣3mn,∴mn=24.…11分=mnsin60°=6,则S△ACDS△ABC=,…13分所以四边形ABCD的面积为8.…14分.17.(14分)已知等差数列{a n}的各项均为正数,a1=3,其前n项和为S n,数列{b n}为等比数列,且b1=1,b2S2=16,b3S3=60.求:(Ⅰ)数列{a n}与{b n}的通项公式;(Ⅱ)++…+.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,则d >0,a n=3+(n﹣1)d,b n=q n﹣1.∵b2S2=16,b3S3=60.∴,解得或(舍去).故a n=3+2(n﹣1)=2n+1,.(Ⅱ)∵S n==n(n+2),∴==.∴++…+=++…+==.18.(16分)如图,一船由西向东航行,在A处测得某岛M的方位角为α,前进5km后到达B处,测得岛M的方位角为β.已知该岛周围3km内有暗礁,现该船继续东行.(Ⅰ)若α=2β=60°,问该船有无触礁危险?(Ⅱ)当α与β满足什么条件时,该船没有触礁的危险?【解答】解:(Ⅰ)在△ABM中可知,AB=BM=5,…4分从而MC=5sin60°=>3,没有触礁危险.…8分(Ⅱ)设CM=x,在△ABM中由正弦定理得,,解得x=,…14分所以当>3时没有触礁危险.…16分.19.(16分)已知二次函数f(x)=ax2+bx+c(a∈N*),若不等式f(x)<2x的解集为(1,4),且方程f(x)=x有两个相等的实数根.(Ⅰ)求f(x)的解析式;(Ⅱ)若不等式f(x)>mx在x∈(1,+∞)上恒成立,求实数m的取值范围;(Ⅲ)解不等式f(x)>mx(m∈R).【解答】解:(Ⅰ)由题意,1,4是方程ax2+(b﹣2)x+c=0的两根,且a>0,由韦达定理得,1+4=,1×4=,即有b=2﹣5a,c=4a,因为方程f(x)=x有两个相等的实数根,所以(b﹣1)2﹣4ac=0,消去b,c得a=1或(舍去),b=﹣3,c=4,所以f(x)=x2﹣3x+4;(Ⅱ)由题意,不等式x2﹣(m+3)x+4>0在x∈(1,+∞)上恒成立,设g(x)=x2﹣(m+3)x+4其图象的对称轴方程为x=,当>1即m>﹣1时,有g()=>0,得﹣1<m<1,当≤1即m≤﹣1时,有g(1)=2﹣m≥0,得m≤﹣1,综上,m<1;(Ⅲ)方程x2﹣(m+3)x+4=0的判别式△=(m+3)2﹣16,当△<0即﹣7<m<1时,不等式的解集为R;当△=0时:m=﹣7时,不等式的解集为{x|x≠﹣2};m=1时,不等式的解集为{x|x≠﹣2};当△>0即m<﹣7或m>1时,不等式的解集为{x|x<或x>}.20.(16分)如图,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图(2).如此继续下去,得图(3)…,记第n个图形的边长a n、周长为b n.(Ⅰ)求数列{a n}、{b n}的通项公式;,(n≥2)满足的关系式,并(Ⅱ)若第n个图形的面积为S n,试探求S n,S n﹣1证明S n<.【解答】解:(Ⅰ)由题意知,从第2个图形起,每一个图形的边长均为上一个图形边长的所以数列{a n}是首项为1,公比为的等比数列,则a n=()n﹣1,设第n个图形的边数为c n,因为第1个图形的边数为3,从第2个图形起,每一个图形的边数均为上一个图形边数的4倍,则c n=3×4n﹣1,因此,第n个图形的周长b n=a n×c n=()n﹣1×3×4n﹣1=3×()n﹣1,(Ⅱ)S1=,当n≥2时,S n=S n﹣1+c n×(×a n2)=S n﹣1+3×4n﹣2××[()n﹣1]2=S+×()n﹣1,n﹣1则S n=S1+(S2﹣S1)+(S3﹣S2)+…+(S n﹣S n﹣1),=+[+()2+()3+…++()n﹣1],=+×,=﹣×()n﹣1,∴S n<.。
江苏省扬州市2014-2015学年高一数学下学期期末考试试题2015.7(满分160分,考试时间120分钟)注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上) 1.直线10x y -+=的倾斜角为 ▲ . 2.不等式031<+-x x 的解集是 ▲ .3.经过点(2,1)-,且与直线2350x y -+=平行的直线方程是 ▲ .4.已知数列{}n a 是等差数列,且25815a a a ++=,则9S = ▲ .5.直线x -y -5=0被圆x 2+y 2-4x +4y +6=0所截得的弦的长为 ▲ .6= ▲ .7.在约束条件⎪⎩⎪⎨⎧≤+≤≥12y x x y x y 下,目标函数y x z 2+=的最大值为 ▲ .8.已知a ∈R ,直线l :(1)30a x ay -++=,则直线l 经过的定点的坐标为▲ .9.在ABC ∆中,已知,30,4,3340===A b a 则ABC ∆的面积为 ▲ . 10.等差数列{}n a 中,n S 是其前n 项和,12014a =,20142012220142012S S -=-,则2015S 的值 为 ▲ .11.ABC ∆三内角为C B A ,,,若关于x 的方程22cos cos cos 02Cx x A B --=有一根为1,则A B C ∆的形状是 ▲ .12.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式:()()2x a x a -⊗+<对实数[1,2]x ∈恒成立,则a 的范围为 ▲ .13.已知{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列。
若对一切n N *∈,1n n na b a +=总成立,则d q += ▲ .14.若ABC ∆的内角,A B 满足sin 2cos()sin BA B A=+,则当B 取最大值时,角C 大小为 ▲ .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本题满分14分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足sin cos c A a C =.(1)求角C 的大小;(2)求()cos()4f A A B π=-+的最大值.16.(本题满分14分)等比数列{}n a 中,637,63S S ==. (1)求n a ;(2)记数列{}n S 的前n 项和为n T ,求n T .17.(本题满分15分)在ABC ∆中,C ∠的平分线所在直线l 的方程为2y x =,若点A (-4,2),B (3,1). (1)求点A 关于直线l 的对称点D 的坐标; (2)求AC 边上的高所在的直线方程; (3)求ABC ∆得面积.18. (本题满分15分)为响应国家扩大内需的政策,某厂家拟在2016年举行某一产品的促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用t (0)t ≥万元满足x =4-k2t +1(k 为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2016年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均生产投入成本的1.5倍(生产投入成本包括生产固定投入和生产再投入两部分). (1)求常数k ,并将该厂家2016年该产品的利润y 万元表示为年促销费用t 万元的函数;(2)该厂家2016年的年促销费用投入多少万元时,厂家利润最大?19.(本题满分16分)在平面直角坐标系中,圆O :224x y +=与x 轴的正半轴交于点A ,以A 为圆心的圆A :222(2)(0)x y r r -+=>与圆O 交于,B C 两点.(1)若直线l 与圆O 切于第一象限,且与坐标轴交于,D E ,当线段DE 长最小时,求直线l 的方程;(2)设P 是圆O 上异于,B C 的任意一点,直线PB 、PC 分别与x 轴交于点M 和N ,问OM ON ⋅是否为定值?若是,请求出该定值;若不是,请说明理由.20.(本题满分16分)已知数列{}n a 的前n 项和为n S ,1a 1=,0n a ≠,n n n S a a λ1+=+1,其中λ为常数. (1)证明:数列{}21n a -是等差数列;(2)是否存在实数λ,使得{}n a 为等差数列?并说明理由; (3)若{}n a 为等差数列,令()1141n n n n nb a a -+=-,求数列n b 的前n 项和n T .扬州市2014—2015学年度第二学期期末调研测试试题 高 一 数 学 参 考 答 案 2015.71.4π2.()1,3- 3.2370x y -+= 4.45 5.2 7.35 8. (3,3)- 910.0 11. 等腰三角形.12.21<<-a解:由题:()[1()]2x a x a --+<对实数[1,2]x ∈恒成立,即2220x x a a --++>对实数[1,2]x ∈恒成立,记22()2f x x x a a =--++,则应满足22(1)112>0f a a =--++, 化简得22<0a a --,解得21<<-a 13.1解析:由111n n n n n nb a a q b a a +--=⋅=,得211n n na a qa +-⋅=,所以2111()(2)()a nd a nd d q a nd d +⋅+-=+-对n N *∈恒成立,从而22d qd =.若0,d =则2211a qa =,得1q =;若1,q =则0d =,综上1d q +=. 14.23π解:由条件得sin 2sin cos()B A A B =+,2sin 2sin cos cos 2sin sin B A A B A B ∴=-所以222sin cos 2tan tan 12sin 13tan A A A B A A ==++,由此可知(0,)2A π∈,(0,)2B π∈,tan 0A >,2tan 3tan tan B A A∴=≤+,当且仅当tan 3A =时,即6A π=时,max (tan )3B =B的最大值为6π,从而角C 大小为23π.15.解(1)由sin cos c A a C =及正弦定理得tan 1C =, ……………………3分在ABC ∆中,(0,)2C π∈,5分4C π∴=. ……………………7分(2)由(1)4C π=,34A B π∴+=, 34B A π∴=- …………………… 9分3()cos()cos[()]444cos 2sin()6f A A B A A A A A ππππ∴=-+=--+=+=+ ……………… 12分因为304A π<<,所以当3A π=时,()cos()4f A A B π=-+的最大值为2. ……………………14分 16.解:(1)若1q =,则362S S =,与已知矛盾,所以1q ≠。
………………………… 2分从而()()3136161711631a q S qa q S q-==--==-⎧⎪⎨⎪⎩解得{112a q ==,因此12n n a -=. ………………………………………………7分 (2)由(1),求得21n n S =-, (9)分于是12212121nn T =-+-++- ()12122212n n n n +-=-=---………………………………………14分17.解:(1)设点A 关于l 的对称点(,)D m n 21442224222n m m n n m -⎧=-⎪=⎧⎪+⇒⎨⎨=-+-⎩⎪=⨯⎪⎩∴(4,2)D - …………………………………………………………………………5分 (2) ∵D 点在直线BC 上,∴直线BC 的方程为3100x y +-=,因为C 在直线2y x =上,所以3100224x y x y x y +-==⎧⎧⇒⎨⎨==⎩⎩所以(2,4)C 。
……………………………8分∴13AC k =,所以AC 边上的高所在的直线方程的方程为3100x y +-=。
…………10分 (备注:若学生发现AC BC ⊥,进而指出AC 边上的高即为BC ,AC 边上的高所在的直线方程的方程为3100x y +-=也可以) (3)111022ABC S AC BC ∆=⨯=⨯=…………15分 18.解 (1)由题意,当0t =时,1x =,代入x =4-k 2t +1中,得1=4-k1,得k =3 故x =4-32t +1,∴y =1.5×6+12xx ×x -(6+12x )-t ……………………………………………5分 =3+6x -t =3+6⎝ ⎛⎭⎪⎫4-32t +1-t =27-182t +1-t (t ≥0). …………………………………………… 7分(2)由(1)知:y =27-182t +1-t =27.5-⎣⎢⎢⎡⎦⎥⎥⎤9t +12+⎝ ⎛⎭⎪⎫t +12. 由基本不等式9t +12+⎝ ⎛⎭⎪⎫t +12≥2 9t +12·⎝ ⎛⎭⎪⎫t +12=6, ………………………12分 当且仅当9t +12=t +12,即t =2.5时等号成立, ……………………13分 故y =27-182t +1-t =27.5-⎣⎢⎢⎡⎦⎥⎥⎤9t +12+⎝ ⎛⎭⎪⎫t +12≤27.5-6=21.5. …………………………14分答:该厂家2016年的年促销费用投入2.5万元时,厂家利润最大。
………………15分 19.解: (1)设直线l 的方程为1(0,0)x ya b a b+=>>,即0bxay ab +-=, 由直线l 与圆O 2=,即221114a b +=, ……………4分 2222222114()()16DEa b a b a b=+=++≥,当且仅当a b ==l 的方程为0x y +-=.………8分(2)设00(,)B x y ,1110(,)()P x y y y ≠±,则00(,)C x y -,22004x y +=,22114x y +=直线PB 的方程为:011101()y y y y x x x x --=--直线PC 的方程为:011101()y y y y x x x x ---=--分别令0y =,得100110010101,,M N x y x y x y x yx x y y y y -+==-+所以OM ON ⋅=222222221001100122220101(4)(4)4M N x y x y y y y y x x y y y y ----===--为定值。