复习常用逻辑用语复习课
- 格式:ppt
- 大小:538.00 KB
- 文档页数:5
高三总复习第四讲 常用逻辑用语 姓名 .教学目标:了解命题的概念和命题的构成;理解逻辑联结词“或”“且”“非”的含义;理解四种命题及其互相关系;教学重点:复合命题的构成及其真假的判断,四种命题的关系. (一)主要知识:1.命题分类:真命题与假命题,简单命题与复合命题;2.复合命题的形式:“p 或q ”: “x ∈A 或x ∈B ” x ∈AB“p 且q ”: “x ∈A 且x ∈B ” 即x ∈A B “非p ”:x ∉A 即 x ∈A C U3.复合命题的真假:对p 且q 而言,当q 、p 为真时,其为真;当p 、q 中有一个为假时,其为假。
对p 或q 而言,当p 、q 均为假时,其为假;当p 、q 中有一个为真时,其为真;当p 为真时,非p 为假;当p 为假时,非p 为真。
4.四种命题:记“若q 则p ”为原命题,则否命题为“若非p 则非q ”,逆命题为“若q 则p “,逆否命题为”若非q 则非p “。
其中互为逆否的两个命题同真假,即等价。
因此,四种命题为真的个数只能是偶数个。
5. 全称命题:,()x M p x ∀∈;其否定命题为“,()x M p x ∃∈⌝存在性(特称)命题:,()x M p x ∃∈,其否定命题为“,()x M p x ∀∈⌝” M 为给定集合,p(x)是一个关于x 的命题。
(二)主要方法:1.逻辑联结词“或”“且”“非”与集合中的并集、交集、补集有着密切的关系,解题时注意类比; 2.通常复合命题“p 或q ”的否定为“p ⌝且q ⌝”、“p 且q ”的否定为“p ⌝或q ⌝”、“全为”的否定是“不全为”、“都是”的否定为“不都是”等等;3.有时一个命题的叙述方式比较的简略,此时应先分清条件和结论,该写成“若p ,则q ”的形式; 二、基础演练1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +-> D .梯形是不是平面图形呢?2.命题p:“∃x ∈R,有x 2+x+1≤0”则⌝p: .3.有下列命题:①2004年10月1日是国庆节,又是中秋节;②10的倍数一定是5的倍数; ③梯形不是矩形;④方程21x =的解1x =±。
2-1第一章常用逻辑用语小结与复习(教案)【知识归类】1.命题:能够判断真假的陈述句.2.四种命题的构成:原命题:若p则q;逆命题:若q则p;否命题:若p⌝则q⌝.⌝;逆否命题: 若q⌝则p一个命题的真假与其他三个命题的真假有如下关系:原命题为真,它的逆命题真假不一定. 原命题为真,它的否命题真假不一定.原命题为真,它的逆否命题真命题. 逆命题为真,它的否命题真命题.原命题与逆否命题互为逆否命题,它们的真假性是同真同假.逆命题与否命题互为逆否命题,它们同真同假.3. 充分条件与必要条件:⇒:p是q充分条件;q是p必要条件;p q⇔是的充分必要条件,简称充要条件.:p q p q4. 逻辑联接词:“且”、“或”、“非”分别用符号“∧”“∨”“⌝”表示,意义为:或:两个简单命题至少一个成立;且:两个简单命题都成立;非:对一个命题的否定.按要求写出下面命题构成的各复合命题,并注明复合命题的“真”与“假”.p:矩形有外接圆; :q矩形有内切圆.或矩形有外接圆或内切圆(真)p q:且矩形有外接圆且有内切圆(假)p q:非p:矩形没有外接圆(假)5.全称量词与全称命题:常用的全称量词有:“所有的”、“任意的”、“每一个”、“一切”、“任给”等,并用符号“∀”表示.含有全称量词的命题叫全称命题.6. 存在量词与特称命题:常用的存在量词有:“存在一个”、“至少有一个”、“有些”、“有的”、“某个”等,并用符号“∃”表示.含有存在量词的命题叫特称命题.(1) p 与p ⌝的真假相异,因此,欲证p 为真,可证p ⌝为假,即将p ⌝作为条件进行推理,如果导致矛盾,那么p ⌝必为假,从而p 为真.(2) “,p q 若则”与“q p ⌝⌝若则”等价.欲证“,p q 若则”为真,可由假设“q ⌝”来证明“p ⌝”,即将“q ⌝”作为条件进行推理,导致与已知条件p 矛盾.(3)由“,p q 若则”的真假表可知,“,p q 若则”为假,当且仅当p 真q 假,所以我们假设“p 真q 假”,即从条件p 和q ⌝出发进行推理,如果导致与公理、定理、定义矛盾,就说明这个假设是错误的,从而就证明了“,p q 若则”是真命题.后两条的逻辑基础,可以概括成一句话:“否定结论,推出矛盾”.【题型归类】题型一:四种命题之间的关系例1 命题“20(b a b +=∈2若a 、R),则a=b=0”的逆否命题是( D ).(A ) ≠≠若 a b 0∈(a,b R),则20b +≠2a(B) ≠若 a=b 0∈(a,b R),则20b +≠2a(C ) 0≠≠若 a 且b 0∈(a,b R),则20b +≠2a(D) 0≠≠若 a 或b 0∈(a,b R),则20b +≠2a【审题要津】命题结论中的a=b=0如何否定是关键.解: a=b=0是a=0且b=0,否定时“且”应变为“或”,所以逆否命题为:0≠≠若 a 或b 0∈(a,b R),则20b +≠2a ,故应选D【方法总结】一个命题结论当条件,条件作结论得到的命题为原命题的逆否命题.题型二:充分、必要条件题型例2 “,,αβγ 成等差数列”是“等式αγβsin(+)=sin2成立”的 ( A ).(A )充分而不必要条件 (B)必要而不充分条件(C)充要条件 (D)既不充分有不必要的条件【审题要津】,,αβγ 成等差数列,说明2αγβ+= ,问题的关键是由两个角的正弦值相等是否一定有两个角相等.解: 由,,αβγ 成等差数列,所以2αγβ+= ,所以αγβsin(+)=sin2成立,充分;反之,由αγβsin(+)=sin2成立,不见得有,,αβγ 成等差数列,故应选A.【方法总结】p q ⇒:p 是q 充分条件; q 是p 必要条件,否则:p 是q 的不充分条件; q 是p 不必要条件.变式练习:“1a =”是“,21a x x x+≥对任意的正数”的 ( A ).(A)充分而不必要条件 (B)必要而不充分条件(C )充要条件 (D)既不充分有不必要的条件例3 221:212;:210(0)3x p q x x m m --≤-≤-+-≤>已知,若p ⌝是q ⌝的必要但不充分条件,求实数m 的取值范围.【审题要津】命题p ,q 可以化的更简,由p ⌝和q ⌝的关系可以得到p 与q 的关系,利用集合的理论方法将问题解决.解: 由22210x x m -+-≤得:11,(0)m x m m -≤≤+>,{}:11,0q A x x m x m m ∴⌝=>+<->或.{}112210,:2103x x p B x x x -≤-≤-≤≤∴⌝=<->由-2得或. 由p ⌝是q ⌝的必要但不充分条件知:p 是q 的充分但不必要条件,即B A⊆于是:012110m m m >⎧⎪-≥-≤⎨⎪+≤⎩解得0<m 3为所求.【方法总结】利用集合作为逻辑演绎的一个方法,体现了集合的应用,能把各种关系清楚地描绘出来.题型三:复合命题真假的判断例4 已知2:10p x mx ++=方程有两个不等的负实数根;q :方程24x +()4210m x -+=无实根, p q p q 若或为真,且为假,求m 的取值范围.【审题要津】把两个方程化简,然后根据p q p q 或及且列不等式组,方可求m的取值范围.解:240,:2;0m p m m ⎧∆=->>⎨>⎩解得 ()()22:16216164301 3.q m m m m ∆=--=-+<<<解得 p q p q 或及且,p q p q ∴为真,为假或为假,为真,2,2,3121 3.13m m m m m m m >≤⎧⎧≥<≤⎨⎨<<≤≥⎩⎩即或解得或或 【方法总结】此题是方程与命题的综合题,涉及到一元二次方程的判别式和根与系数的关系,一元二次不等式及不等式组、集合的补集、p q p q 或及且两类复合命题的真假判断.变式练习:设有两个命题, p :不等式1x x a ++>的解集为R , q :函数()f x =()73xa --在R 上是减函数,如果这两个命题中有且只有一个真命题,则a 的取值范围是12a ≤<.题型四:全称命题、特称命题例5 设,A B 为两个集合,下列四个命题:(1),A B x A x B ⊆⇔∀∈∉有 (2) A B A B ⊄⇔=∅(3) A B B A ⊄⇔⊄ (4) A B x A x B ⊄⇔∃∈∉使得其中真命题的序号为(4).【审题要津】根据子集的概念,通过举反例加以排除假命题.解: {}{}{}1231241112A B A B A B A B ==⊄∈∈=若,,,,,,满足,但且,,,所以(1),(2)是假命题; {}{}1241A B A B B A ==⊄⊆若,,,,满足但,所以(3)是假命题,只有(4)为真命题.【方法总结】全称命题通过“举反例”来否定.变式练习:下列命题中,既是真命题又是特称命题的是 ( A ).(A) ()n 90sin ααα︒-=有一个使si(B ) sin 2x x π=存在实数,使(C ) (),sin 180sin ααα︒-=对一切(D) sin15sin 60cos 45cos60sin 45︒︒︒︒︒=-题型五:综合应用例6 已知关于x 的实系数二次方程20x ax b ++=有两个实数根,αβ.证明: 2α< 且2244b βα<<+<是且b 的充要条件.【审题要津】充要条件的证明题都必须从充分和必要两个方面加以证明,其中的充分性是由条件推出结论,从题目的叙述中可以看出,2α<且2β<是条件,244b α<+<且b 是结论,由于二次方程的根由相应的二次函数的图象与x轴的交点直观的表示出来,因此可以其直观性帮助解题。
帮你复习常用逻辑用语一、本章知识网络⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎨⎪⎩⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎨⎪⎪⎪⎩⎩命题命题及其关系四种命题四种命题的相互关系充分条件与必要条件充分条件与必要条件充要条件且简单的逻辑联结词或非全称量词全称量词与存在量词存在量词含有一个量词的命题的否定二、重点、难点回顾1.命题与其关系(1)写原命题的逆命题、否命题与逆否命题时,比较容易错的是写否命题.原命题是“若p ,则q ”的形式时,否命题应为“若p ⌝,则q ⌝”,既要否定条件,又要否定结论.(2)四种命题形式之间的关系是相对的,如逆命题的逆命题是原命题,逆否命题的逆否命题也是原命题.原命题与逆否命题同真假,原命题与逆命题(或否命题)不一定同真假.由于逆命题与否命题之间的关系是“互为逆否”,因此逆命题与否命题同真假.当原命题的真假不易判断时,常转换为判断它的逆否命题的真假.2.充分条件与必要条件在判断时应注意以下几点:(1)确定一个命题,条件是什么,结论是什么.(2)若原命题为真,则条件是结论的充分条件.(3)若逆命题为真,则原命题中条件是结论的必要条件.(4)若原命题及其逆命题同时为真,则条件(或结论)是结论(或条件)的充要条件.3.简单的逻辑联结词会判断由简单的逻辑联结词构成的命题的真假性.4.全称量词与存在量词(1)全称量词与存在量词的基本特征;(2)含一个量词的全称命题与特称命题的否定.特称命题:()p x A p x ∃∈,,它的否定是::p x A ⌝∀∈,()p x ⌝,全称命题:q x A ∀∈,()q x ,它的否定是::()q x A q x ⌝∃∈⌝,.非常提示:互为逆否命题的两个命题具有相同的真假性与充要条件是本章中两个特别重要的内容,它们在以后的学习中将经常用到,因此,要特别引起同学们的注意.三、学习中应注意的问题1.学习过程中要注意总结解题规律,反思章节知识中的数学思想方法总结解题规律,反思章节知识中的数学思想方法,这是对章节知识的升华,是对学习能力的进一步提高.学习知识要经过由表及里,从量变到质变的转化,经过这个环节的梳理,我们不再以"题海"为终结目标,而是通过真实的感受、愉快的体验、实效的互动,学习数学文化,接纳数学问题,提高数学品位.本章主要的数学思想方法有等价转化思想、逆向思想、递推法等.2.要注意对易错题的总结有用的经验都是在对数学问题的挫折与差异分析中总结出来的.同学们可通过这方面的积累与总结,降低出错率.如,在使用常用逻辑用语的过程中,要注意掌握常用逻辑用语的用法,纠正出现的逻辑错误,用心体会运用常用逻辑用语表述数学内容的准确性、简洁性.四、学习常用逻辑用语的意义正确地使用逻辑用语是现代社会公民应该具备的基本素质.无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思维.学习常用逻辑用语,要体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,从而更好地进行交流.通过本章的学习,还要努力培养自己观察、比较、抽象、概括、逻辑推理能力,初步形成运用逻辑知识准确地表达数学问题和实际问题的意识和能力,培养科学的、严谨的学习态度,为树立辩证唯物主义科学的世界观打下基础.。
第一章常用逻辑用语单元复习教学目标:(1)了解命题及其逆命题,否命题与逆否命题.(2)理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系.(3)简单的逻辑联结词:了解逻辑联结词“或”、“且”、“非”的含义.(4)全称量词与存在量词:①理解全称量词与存在量词的意义;②能正确地对含有一个量词的命题进行否定. 教学重点:必要条件、充分条件与充要条件的意义及四种命题的相互关系,逻辑联结词“或”、“且”、“非”的含义 全称量词与存在量词的意义以及对含有该量词的命题的否定.教学难点:一个命题的否命题及命题的否定,必要条件、充分条件与充要条件的判断.基本知识:(1)命题的定义: 。
由 条件 和结论构成(2)命题的四种形式及其真假关系 ,(3)逻辑联结词“或”、“且”、“非”的含义在集合中分别相当于 并 、 交 、补(4)充分条件、必要条件、充要条件的概念(5)全称量词与存在量词的定义及含有一个该量词的命题的否定 典型例题例1.分别指出下列复合命题的构成形式及构成它的简单命题:(1)x=2或x=3是方程x 2-5x+6=0的根(2)π既大于3又是无理数(3)直角的大小不等于90︒(4)垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧例2.分别写出由下列各种命题构成的“p 或q ”“p 且q ”“非p ”形式的复合命题,并判断它们的真假:(1)p :末位数字是0的自然数能被5整除 q :5∈{x|x 2+3x-10=0}(2)p :四边都相等的四边形是正方形 q :四个角都相等的四边形是正方形(3)p :Φ∈0; q : {}R x x x ⊆<--053|2(4)p :不等式x 2+2x -8<0的解集是:{x|-4<x<2} q :不等式x 2+2x -8<0的解集是:{x| x<-4或x> 2}例3.写出下列命题的逆命题、否命题、逆否命题,并分别判断真假:(1)面积相等的两个三角形是全等三角形。
复习课(一) 常用逻辑用语命题及其关系通过选择题、填空题的方式设置一些多知识点、知识跨度大的试题,考查命题及其关系,以及对命题真假的判断.[考点精要]四种命题的相互改写交换原命题的条件和结论,所得的命题是原命题的逆命题;同时否定原命题的条件和结论,所得的命题是原命题的否命题;交换原命题的条件和结论,并且同时否定,所得的命题是原命题的逆否命题.[注意] 互为逆否命题的两个命题,它们具有相同的真假性.[典例] 将下列命题改写成“若p,则q”的形式,并写出它的逆命题、否命题和逆否命题并判断它们的真假.(1)垂直于同一平面的两条直线平行;(2)当mn<0时,方程mx2-x+n=0有实数根.[解] (1)将命题写成“若p,则q”的形式为:若两条直线垂直于同一个平面,则这两条直线平行.它的逆命题、否命题和逆否命题如下:逆命题:若两条直线平行,则这两条直线垂直于同一个平面.(假命题)否命题:若两条直线不垂直于同一个平面,则这两条直线不平行.(假命题)逆否命题:若两条直线不平行,则这两条直线不垂直于同一个平面.(真命题)(2)将命题写成“若p,则q”的形式为:若mn<0,则方程mx2-x+n=0有实数根.它的逆命题、否命题和逆否命题如下:逆命题:若方程mx2-x+n=0有实数根,则mn<0.(假命题)否命题:若mn≥0,则方程mx2-x+n=0没有实数根.(假命题)逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.(真命题)[类题通法]简单命题真假的判断方法[题组训练]1.命题“若函数f (x )=x 2-ax +3在[1,+∞)上是增函数,则a ≤2”的否命题( ) A .与原命题同为假命题 B .与原命题一真一假 C .为假命题D .为真命题解析:选D 原命题显然为真,原命题的否命题为“若函数f (x )=x 2-ax +3在[1,+∞)上不是增函数,则a >2”,为真命题,故选D.2.下列命题中为真命题的是( ) A .命题“若a >b ,则3a >3b”的逆命题 B .命题“若x 2≤1,则x ≤1”的否命题 C .命题“若x =1,则x 2-x =0”的否命题 D .命题“若a >b ,则1a <1b”的逆否命题解析:选A 对于A ,逆命题是“若3a >3b,则a >b ”,是真命题;对于B ,否命题是“若x 2>1,则x >1”,是假命题,因为x 2>1⇔x >1或x <-1;对于C ,否命题是“若x ≠1,则x 2-x ≠0”,是假命题,因为当x =0时,x 2-x =0;对于D ,逆否命题是“若1a ≥1b,则a ≤b ”,是假命题,如a =1,b =-1.故选A.3.下列说法中错误的个数是( )①命题“余弦函数是周期函数”的否命题是“余弦函数不是周期函数” ②命题“若x >1,则x -1>0”的否命题是“若x ≤1,则x -1≤0” ③命题“两个正数的和为正数”的否命题是“两个负数的和为负数”④命题“x =-4是方程x 2+3x -4=0的根”的否命题是“x =-4不是方程x 2+3x -4=0的根”A .1B .2C .3D .4解析:选C ①错误,否命题是“若一个函数不是余弦函数,则它不是周期函数”;②正确;③错误,否命题是“若两个数不全为正数,则它们的和不为正数”;④错误,否命题是“若一个数不是-4,则它不是方程x 2+3x -4=0的根”.充分条件与必要条件充要条件是数学的重要概念之一,在数学中有着非常广泛的应用,在高考中有着较高的考查频率,其特点是以高中数学的其他知识为载体考查充分条件、必要条件、充要条件的判断.[考点精要]充分条件、必要条件与充要条件(1)如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件; (2)如果p ⇒q ,q ⇒p ,则p 是q 的充要条件.[典例] (1)(2017·某某高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)(2017·某某高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.(2)法一:由⎪⎪⎪⎪⎪⎪θ-π12<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪⎪⎪θ-π12<π12”.故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件.法二:⎪⎪⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. [答案] (1)C (2)A [类题通法]充要关系的判断方法(1)定义法:直接判断若p则q,若q则p的真假.(2)等价法:利用A⇒B与綈B⇒綈A,B⇒A与綈A⇒綈B,A⇔B与綈B⇔綈A的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.[题组训练]1.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选A 若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD不一定是菱形,故选A.2.设α,β是两个不同的平面,m是直线且m⊂α,“m∥β”是“α∥β”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选B 当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥β⇒/ α∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β”的必要不充分条件.3.对于任意实数x,〈x〉表示不小于x的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x-y|<1”是“〈x〉=〈y〉”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选B 当x=1.8,y=0.9时,满足|x-y|<1,但〈1.8〉=2,〈0.9〉=1,即〈x〉≠〈y〉;当〈x〉=〈y〉时,必有|x-y|<1,所以“|x-y|<1”是“〈x〉=〈y〉”的必要不充分条件,故选B.含有逻辑联结词、量词的命题的真假,以及全称命题,特称命题的否定.[考点精要]1.含有逻辑联结词的命题与集合之间的关系2.全称命题、特称命题的否定全称命题“∀x ∈M ,p (x )”的否定是“∃x 0∈M ,綈p (x 0)”,特称命题“∃x 0∈M ,p (x 0)”的否定是“∀x ∈M ,綈p (x )”.[典例] (1)已知命题p :∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≤0 B .∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≤0 C .∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0 D .∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0(2)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题:p 1:|a +b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3; p 2:|a +b |>1⇔θ∈⎝⎛⎦⎥⎤2π3,π;p 3:|a -b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3;p 4:|a -b |>1⇔θ∈⎝ ⎛⎦⎥⎤π3,π.其中的真命题是( ) A .p 1,p 4 B .p 1,p 3 C .p 2,p 3D .p 2,p 4[解析] (1)已知全称命题p :∀x 1,x 2∈R ,[f (x 2)-f (x 1)]·(x 2-x 1)≥0,则綈p :∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0,故选C.(2)由|a +b |>1可得:a 2+2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b >-12.故θ∈⎣⎢⎡⎭⎪⎫0,2π3.当θ∈⎣⎢⎡⎭⎪⎫0,2π3时,a ·b >-12,|a +b |2=a 2+2a ·b +b 2>1,即|a +b |>1;由|a -b |>1可得:a 2-2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b <12.故θ∈⎝ ⎛⎦⎥⎤π3,π,反之也成立.[答案] (1)C (2)A [类题通法]1.判断含有逻辑联结词的命题真假的方法 (1)先确定简单命题p ,q .(2)分别确定简单命题p ,q 的真假. (3)利用真值表判断所给命题的真假. 2.判断含有量词的命题真假的方法(1)全称命题的真假判定:要判定一个全称命题为真,必须对限定集合M 中每一个x 验证 p (x )成立,一般用代数推理的方法加以证明;要判定一个全称命题为假,只需举出一个反例即可.(2)特称命题的真假判定:要判定一个特称命题为真,只要在限定集合M 中,能找到一个x =x 0,使p (x 0)成立即可;否则,这一特称命题为假.(3)全称命题的否定一定是特称命题,特称命题的否定一定是全称命题.首先改变量词,把全称量词改为存在量词,把存在量词改为全称量词,然后把判断词加以否定.[题组训练]1.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( )A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真解析:选C 由题意p 与q 均为假命题,故p ∧q 为假.2.命题“存在x ∈R ,使得x 2+2x +5=0”的否定是________________.解析:这里给出的是一个特称命题,其否定是一个全称命题.等于的否定是不等于. 答案:对任意的x ∈R ,都有x 2+2x +5≠03.已知p :点M (2,3)在直线ax -y +1=0上,q :方程x 2+y 2+x +y +a =0表示圆,p ∨q 是假命题,某某数a 的取值X 围.解:当p 是真命题时,2a -3+1=0,即a =1, 所以当p 是假命题时,a ≠1;当q 是真命题时,1+1-4a >0,即a <12,所以当q 是假命题时,a ≥12.又p ∨q 是假命题,所以p ,q 均为假命题, 所以a ≥12且a ≠1,所以实数a 的取值X 围是⎣⎢⎡⎭⎪⎫12,1∪(1,+∞).1.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( ) A .綈p :∃x ∈A,2x ∈B B .綈p :∃x ∉A,2x ∈B C .綈p :∃x ∈A,2x ∉BD .綈p :∀x ∉A,2x ∉B解析:选C 命题p 是全称命题:∀x ∈M ,p (x ),则綈p 是特称命题:∃x ∈M ,綈p (x ).故选C.2.命题p :若ab =0,则a =0;命题q :若a =0,则ab =0,则( ) A .“p 或q ”为假 B .“p 且q ”为真 C .p 真q 假D .p 假q 真解析:选D 由条件易知:命题p 为假命题,命题q 为真命题,故p 假q 真.从而“p 或q ”为真,“p 且q ”为假.3.下列命题中,真命题是( ) A .∃x 0∈R ,e x 0≤0 B .∀x ∈R,2x >x 2C .a +b =0的充要条件是ab=-1 D .a >1,b >1是ab >1的充分条件解析:选D ∵∀x ∈R ,e x >0,∴A 错;∵函数y =2x 与y =x 2的图象有交点,如点(2,2),此时2x=x 2,∴B 错;∵当a =b =0时,a +b =0,而0作分母无意义,∴C 错;a >1,b >1,由不等式可乘性知ab >1,∴D 正确.4.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 先证“α⊥β⇒a ⊥b ”.∵α⊥β,α∩β=m ,b ⊂β,b ⊥m ,∴b ⊥α.又∵a ⊂α,∴b ⊥a ;再证“a ⊥b ⇒/ α⊥β”.举反例,当a ∥m 时,由b ⊥m 知a ⊥b ,此时二面角αm β可以为(0,π]上的任意角,即α不一定垂直于β.故选A.5.下列有关命题的说法错误的是( )A .命题“若x 2-1=0,则x =1”的逆否命题为“若x ≠1,则x 2-1≠0” B .“x =1”是“x 2-3x +2=0”的充分不必要条件 C .若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =1D .对于命题p :∃x 0∈R ,使得x 20+x 0+1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0 解析:选C A 显然正确;当x =1时,x 2-3x +2=0成立,但x 2-3x +2=0时,x =1或x =2,故“x =1”是“x 2-3x +2=0”的充分不必要条件,B 正确;若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =0或k =1,故C 错误;D 显然正确.6.已知p :m -1<x <m +1,q :(x -2)(x -6)<0,且q 是p 的必要不充分条件,则m 的取值X 围是( )A .(3,5)B .[3,5]C .(-∞,3)∪(5,+∞)D .(-∞,3]∪[5,+∞)解析:选B p :m -1<x <m +1,q :2<x <6.因为q 是p 的必要不充分条件,所以由p 能得到q ,而由q 得不到p ,所以可得⎩⎪⎨⎪⎧m -1>2,m +1≤6或⎩⎪⎨⎪⎧m -1≥2,m +1<6.解得3≤m ≤5.7.命题“在△ABC 中,如果∠C =90°,那么c 2=a 2+b 2”的逆否命题是__________________________________.答案:在△ABC 中,若c 2≠a 2+b 2,则∠C ≠90°8.设p :x >2或x <23;q :x >2或x <-1,则綈p 是綈q 的________条件.解析:綈p :23≤x ≤2.綈q :-1≤x ≤2.因为綈p ⇒綈q ,但綈q ⇒/ 綈p . 所以綈p 是綈q 的充分不必要条件. 答案:充分不必要9.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值X 围是________.解析:命题p :“∀x ∈[1,2],x 2-a ≥0”为真,则a ≤x 2,x ∈[1,2]恒成立,所以a ≤1. 命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”为真, 则“4a 2-4(2-a )≥0,即a 2+a -2≥0”,解得a ≤-2或a ≥1. 若命题“p 且q ”是真命题,则实数a 的取值X 围是(-∞,-2]∪{1}. 答案:(-∞,-2]∪{1}10.已知p :x 2-8x -20>0,q :x 2-2x +1-a 2>0,若p 是q 的充分不必要条件,求正实数a 的取值X 围.解:p :x 2-8x -20>0⇔x <-2或x >10, 令A ={x |x <-2或x >10},∵a >0,∴q :x <1-a 或x >1+a , 令B ={x |x <1-a 或x >1+a }, 由题意p ⇒q 且q ⇒/ p ,知A B ,应有⎩⎪⎨⎪⎧a >0,1+a <10,1-a ≥-2或⎩⎪⎨⎪⎧a >0,1+a ≤10,1-a >-2⇒0<a ≤3,∴a 的取值X 围为(0,3].11.已知函数f (x )=⎩⎪⎨⎪⎧-x -1,x <-2,x +3-2≤x ≤12.(1)求函数f (x )的最小值;(2)已知m ∈R ,命题p :关于x 的不等式f (x )≥m 2+2m -2对任意m ∈R 恒成立;q :函数y =(m 2-1)x是增函数.若“p 或q ”为真,“p 且q ”为假,某某数m 的取值X 围.解:(1)作出函数f (x )的图象,可知函数f (x )在(-∞,-2)上单调递减,在⎝ ⎛⎭⎪⎫-2,12上单调递增,故f (x )min =f (-2)=1.(2)对于命题p ,m 2+2m -2≤1, 故-3≤m ≤1; 对于命题q ,m 2-1>1,故m >2或m <- 2.由于“p 或q ”为真,“p 且q ”为假,则p 与q 一真一假.①若p 真q 假,则⎩⎨⎧-3≤m ≤1,-2≤m ≤2,解得-2≤m ≤1.②若p 假q 真,则⎩⎨⎧m >1或m <-3,m <-2或m >2,解得m <-3或m > 2. 故实数m 的取值X 围是(-∞,-3)∪[-2,1]∪(2,+∞).。
《第一章集合与常用逻辑用语复习课》教学设计一、内容和内容解析1.内容2.内容解析本章学习内容包括集合的有关概念,关系和运算,还有充分条件、必要条件、充要条件、全称量词、存在量词、全称量词命题与存在量词命题及其否定。
这些知识在后续学习中会得到大量应用,是进一步学习的重要基础。
复习本章所学知识,在知识的复习和再现的基础上,用联系的观点和递进的方式可以加深对本章内容的理解。
复习本章知识能有效总结和提升学习内涵,整理学习方法提高学习效率,对于全章知识的联系和整合也能有更好的效果。
在本章内容的复习中,首先应掌握集合语言的表述方式,学习了集合的含义,明确了集合中元素的确定性、无序性、互异性等特征;再学习了列举法、描述法等集合的表示法,其中描述法利用了研究对象的某种特征,需要先理解研究对象的性质;类比数与数的关系,我们研究了集合之间的包含关系与相等关系,这些关系是由元素与集合的关系决定的,其中集合的相等关系很重要;类比数的运算,我们学习了集合的交、并、补运算,通过这些运算可以得到与原有集合紧密关联的集合,由此可以表示研究对象的某些关系。
常用逻辑用语是数学语言的重要组成部分,是逻辑思维的基本语言,也是数学表达和交流的工具。
充分条件、必要条件和充要条件,全称量词命题,存在量词命题及它们的否定都能与许多已学过的内容进行融合,如初中学习过的数学定义、定理、命题及许多代数结论等都可以用常用逻辑用语表示。
利用常用逻辑用语表述数学内容,进行推理论证,可以大大提升表述的逻辑性和准确性,提升逻辑推理素养。
结合以上分析,确定本节课的教学重点是:引领复习全章重点内容。
二、目标和目标解析1.目标(1)理解集合的含义,表示法,明确元素与集合,集合与集合的关系;(2)理解并掌握集合的运算法,能解决集合的交、并、补运算问题;(3)能通过“若p,则q”形式命题的真假性,判断充分条件、必要条件、充要条件;(4)能辨别全称量词命题和存在量词命题的真假,并能写出否定形式。
常用逻辑用语复习课教案公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-选修1—1第一章常用逻辑用语复习课绿春县第一中学白霞一、目标认知二、考试大纲要求:1. 理解命题的概念;了解逻辑联结词“或”、“且”、“非”的含义.2. 了解命题“若p,则q”的形式及其逆命题、否命题与逆否命题,分析四种命题相互关系.3. 理解必要条件、充分条件与充要条件的意义.4. 理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定.重点:四种命题间关系的真假判定,充分条件与必要条件的判定难点:根据命题关系或充分(或必要)条件进行逻辑推理。
二、教学的基本流程:12知识点一:命题1. 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题.(1)命题由题设和结论两部分构成. 命题通常用小写英文字母表示,如p,q,r,m,n等.(2)命题有真假之分,正确的命题叫做真命题,错误的命题叫做假命题. 数学中的定义、公理、定理等都是真命题(3)命题的形式:“若P, 则q”也可写成“如果P,那么q”的形式也可写成“只要P,就有q”的形式通常,我们把这种形式的命题中的P叫做命题的条件,q叫做结论. 记做:四种命题1. 四种命题的形式:用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,则四种命题的形式为:原命题:若p则q;逆命题:若q则p;否命题:若p则q;逆否命题:若q则p.注意:三种命题中最难写的是否命题。
要严格区分命题的否定与否命题之间的差别.原语句是都是>至少有一个至多有一个x∈A使p(x)真否定形式不是不都是≤一个也没有至少有两个x∈A使p(x)假2. 四种命题的关系命题真假性判断(1)原命题为真,则其逆否命题一定为真。
但其逆命题、否命题不一定为真。
(2)若其逆命题为真,则其否命题一定为真。
但其原命题、逆否命题不一定为真。
结论:p q(1)原命题与逆否命题同真假。