煅烧温度和时间对熟料质量的影响
- 格式:pdf
- 大小:186.18 KB
- 文档页数:3
石灰回转窑煅烧参数
1. 温度,煅烧温度是影响石灰质量的关键因素。
通常情况下,
煅烧温度在900°C至1300°C之间。
过低的温度会影响石灰的活性,而过高的温度可能会导致能耗增加和设备磨损加剧。
2. 煅烧时间,煅烧时间与温度密切相关,一般来说,煅烧时间
越长,石灰的活性和成熟度越高。
然而,过长的煅烧时间也会增加
生产成本,因此需要在活性和成本之间寻找平衡点。
3. 石灰石粒度,石灰石的粒度对煅烧过程和产物质量有影响。
通常情况下,石灰石的粒度越小,煅烧过程中的反应速率越快,但
也容易造成设备结垢和堵塞。
4. 空气流速,在回转窑煅烧过程中,空气流速的控制对于石灰
的煅烧和冷却过程非常重要。
合理的空气流速可以促进煅烧反应的
进行,同时也有利于热能的传递和利用。
5. 石灰石配比,石灰石的配比也是影响煅烧效果的重要因素。
不同原料的配比会影响石灰的成分和性质,因此需要根据具体原料
的特性进行合理的配比设计。
除了上述参数外,还有其他一些影响石灰回转窑煅烧的因素,如燃料选择、窑速控制、窑体结构等。
综合考虑这些参数,可以优化石灰回转窑煅烧的生产工艺,提高石灰的质量和产量,降低能耗和生产成本。
Cement production 水泥生产1浅谈水泥熟料微观结构及其质量性能李成恩(葛洲坝当阳水泥有限公司 444103)中图分类号:TQ172 文献标识码:B 文章编号1007-6344(2017)04-0001-01摘要:随着经济的发展,促使建筑行业也有了质的飞跃,然而在建筑中水泥的应用是必不可少的,水泥熟料的质量性能决定了建筑的安全性,对水泥熟料的微观结构进行有效的分析,进而加强其质量性能的确定。
关键词:水泥熟料;微观结构;质量性能引言:水泥熟料微观结构也就是其在显微镜下的形态,其会因原材料和工艺因素的不同而有显著的变化。
也就是熟料微观结构与原材料和工艺因素密切相关,并从本质上影响着熟料的性能。
这样,水泥熟料的微观结构不仅记录了矿物的形成和生长的全过程,也反映了全过程的工艺因素,以及因工艺因素不同而变化了的水泥熟料诸多物性。
1.水泥熟料的形成生料在窑内经过干燥、预热、分解、烧成及冷却等阶段形成熟料。
硅酸盐水泥熟料主要由硅酸三钙(C3S)、硅酸盐二钙(C2S)、铝酸三钙(C3A)、铁铝酸四钙(C4AF)等矿物所组成。
生料通常是用石灰石、黏土及少量铁矿石等按适当的比例配制而成。
石灰石的主要组成是碳酸钙(CaCO3)和少量的碳酸镁(MgCO3),黏土的主要矿物是高岭石(SiO2·2Al2O3·2H2O)及蒙脱石(Al,Mg)2[(OH)2|Si4O10](Na,Ca)x*nH2O 等,铁矿石的主要组成是氧化铁(Fe2O3)。
硅酸盐水泥熟料形成的过程,实际上是石灰石、黏土、铁矿石等主要原料经过加热发生一系列物理化学变化形成C3A、C4AF、C2S和C3S等 矿物的过程,不论窑型的变化如何,其过程是不变的。
2.水泥熟料的特征水泥熟料是以石灰石和粘土等作为原料在部份熔融状态下烧成的,通过固液相反应形成矿物。
因此它的成分是不均一的,是多种矿物的集合体。
我们用肉眼观察熟料,从外观可以看到颗粒大小、形状、表面状态、色泽等,把熟料颗粒打碎,还可看到内部的致密程度等。
煅烧温度和时间对熟料质量的影响纯阅读作者:刘天振单位:淮海中联水泥有限公司来源:发布日期:2013—08-15影响熟料质量方面因素很多,但熟料在窑内煅烧是最重要环节之一.熟料矿物形成实际上是在液相量出现以后进行的.影响熟料质量方面因素很多,但熟料在窑内煅烧是最重要环节之一。
熟料矿物形成实际上是在液相量出现以后进行的.液相主要有氧化铁、氧化铝、氧化钙所组成(包括其他次要组分氧化镁、氧化钾、氧化钠等),在高温液相作用下,C2S逐渐溶解于液相中与f-cao化合成C3S,随着温度升高和时间延长,C3S晶核不断形成,小晶体逐渐长大,最终形成阿里特晶体.完成熟料的烧结过程。
实践证明,C3S的生成,如果熟料配料时三率值KH、N、P适当,生料成分稳定的条件下,主要取决于熟料煅烧温度、液相量、液相性质以及形成晶体反应时间。
本文重点介绍熟料煅烧温度和晶体反应时间对熟料强度的影响。
淮海中联水泥(287.08元/吨,0%)有限公司2#窑是由南京凯盛水泥设计院设计,2005年3月投产的5000t/d 熟料生产线,2007年8月公司利用现有1条日产5000t/d 熟料生产线的窑尾、窑头废气余热,配套建设了1*9MW的纯低温余热发电系统。
该厂3、6、7月份窑系统工艺参数平均台帐(一)6月与3月份工艺参数对比.CO平均值下降-44.12ppm。
二次风温上升+25。
2℃。
f—cao合格率上升+5.81%,在同等喂料量情况下窑速降低—0。
3rpm,主窑皮长度增加+3。
10m;由于窑皮厚度较3月份降低(见表五)。
窑内填充率下降窑功率同比降低—120A。
其它参数无明显变化。
熟料3天、7天、28天强度分别增加+1.38 Mpa、+5。
59 Mpa、+4.19Mpa,液相量略有增加+0.1%。
通过参数对比分析:CO平均值下降和二次风温以及f-cao合格率上升,都能说明窑系统通风状况较好,二、三次风比例合适,窑内煅烧温度同比较高;在同等喂料量情况下由于窑速降低和主窑皮长度增加,延长了熟料在窑内煅烧时间,使熟料矿物结晶更加完全,熟料强度提高明显。
煅烧温度对硫铝酸盐水泥熟料矿物组成及性能有何影响(1)烧成温度对熟料矿物组成的影响实验室煅烧试验结果表明,在1200~1400℃温度范围内都可以烧成以SAC34和C2S为主的硫铝酸盐水泥熟料。
但随着烧成温度的不同,熟料的矿物组成会有如下变化: 当烧成温度在1200℃时,除SAC34和C2S外,还有C2AS、2C2S·CaSO4及CaSO4存在,后三种矿物在1250℃还存在,说明在此温度下熟料的有用矿物还没有完全形成。
当烧成温度上升至1300℃时,2C2S·CaSO4和C2AS基本消失,温度在1300~1350℃范围内,熟料中主要矿物为SAC34和C2S,烧成温度若再升高,即当温度达1400℃时,SAC34部分分解,熟料中SAC34反而减少,出现C2AS和C12A7矿物,还有微量f-CaO存在。
对不同烧成温度下形成熟料中SO3和SAC34的测定结果表明,随着烧成温度的提高,熟料中SO3不断减少,在1200℃时,熟料中SO3为11.27%,此时CaSO4除生成有用矿物SAC34外,还与C2S反应生成复盐2C2S·CaSO4,即2C2S+CaSO4→2C2S·CaSO4。
当烧成温度在1400℃时,原已形成的SAC34部分分解,SO3则挥发逸出,熟料中SO3仅剩6.59%,熟料的SA/>3.82,SO3已不足与CaO和Al2O3完全形成C4A3S,故有其他矿物生成。
熟料中SAC34含量的变化开始时随烧成温度的升高而增多,在1300~1350℃时,SAC34的生成量最大,但烧成温度到1400℃后,熟料中SAC34明显减少。
对工厂熟料物相检定结果显示,煅烧温度较低的低烧熟料中同样含有2C2S·CaSO4和C2AS等矿物,这种熟料在窑内约在1200℃左右煅烧而成。
在1300~1350℃范围内烧成的正常熟料中主要含有C4A3S和C2S矿物。
而熔块料则在过烧情况下形成,估计烧成温度≥1400℃,发现有C2AS和C12A7及微量f-CaO存在。
水泥制造过程中的主要质量控制点是什么水泥作为建筑行业中不可或缺的重要材料,其质量的优劣直接关系到建筑物的安全性和耐久性。
要确保水泥的质量稳定可靠,就需要在制造过程中严格把控各个环节。
那么,水泥制造过程中的主要质量控制点究竟是什么呢?首先,原材料的选择和质量控制是至关重要的第一步。
水泥的主要原料包括石灰石、黏土、铁矿粉等。
这些原材料的化学成分、物理性质以及杂质含量都会对水泥的质量产生深远影响。
例如,石灰石中的碳酸钙含量要达到一定标准,黏土的塑性和黏性要适中,铁矿粉的含铁量要符合要求。
在采购原材料时,必须对其进行严格的检验和分析,确保其质量符合生产要求。
同时,还要注意原材料的储存和管理,避免受潮、混入杂质或者发生变质。
接下来是生料的制备过程。
生料是由原材料经过破碎、配料、粉磨等工艺制成的。
在这个环节中,配料的准确性是关键。
需要根据预定的水泥配方,精确控制各种原材料的比例。
如果配料不准确,就会导致生料成分的偏差,进而影响水泥的质量。
此外,粉磨的细度也会对生料的质量产生影响。
粉磨得过粗,生料反应不充分;粉磨得过细,不仅增加能耗,还可能导致生料的团聚和结块。
生料进入窑中进行煅烧是水泥制造的核心环节之一。
煅烧的温度、时间和气氛控制都极为重要。
温度过低或时间不足,生料无法完全反应,会产生大量的游离氧化钙等有害物质,影响水泥的安定性;温度过高或时间过长,则可能导致熟料的过烧,降低水泥的强度。
同时,窑内的气氛控制也很关键,要保证有足够的氧气参与反应,避免还原气氛的出现,以免影响熟料的质量。
熟料冷却也是一个不容忽视的环节。
快速冷却可以使熟料中的矿物形成细小均匀的晶体结构,提高熟料的质量和活性。
如果冷却速度过慢,熟料中的矿物会长大,晶体结构变得不均匀,从而降低水泥的强度和性能。
在水泥的粉磨过程中,粉磨的细度和均匀性是重点关注的方面。
粉磨细度直接影响水泥的水化反应速度和强度发展。
过粗的水泥颗粒难以充分水化,影响早期强度;过细的水泥颗粒则容易产生收缩裂缝,并且增加生产成本。
影响回转窑操作的几个重要参数窑的任务就是煅烧熟料,而组成熟料的矿物都是通过固相反应形成的,因此要搞好窑的操作,就必须把握好影响熟料固相反应的因素。
这个道理大家都懂,在各种资料上也都有讲解,但在实际操作中却往往被忽视。
这里也只是把他们提炼出来,再次作一提醒,以引起操作者的重视。
一、生料细度不难理解,生料磨的越细,颗粒尺寸越小,比表面积越大,组分之间的接触面就越大,同时表面质点的自由能也越大,使得扩散和反应机会增多、能力增强,因此固相反应加快。
但是,生料磨的越细,其粉磨电耗就越高,细度磨到多少合适,应该根据各厂的实际情况,找一个最佳的平衡点。
就现在一般的分解窑来讲,对于烧成熟料,小于100um的方解石和小于55u m的粗粒石英是没有任何问题的,因此过细的粉磨没有意义,我们的重点应放在抓少数大颗粒上,做到既要能烧又要省电。
大多数水泥厂的生料细度以考核0.08mm筛余为主,而实际上起主要影响的却是0.2mm筛余,应该抓住这个重点。
按通常的经验:当0.2mm筛余≦1.5%时,0.08mm筛余以控制在12%以下为好;当0.2mm筛余控制≦1.0%时,0.08mm筛余可以放宽到15%;当0.2mm筛余控制≦0.5%时,0.08mm筛余可以放宽到18%;二、液相量水泥熟料的主要矿物硅酸三钙是通过液相烧结进行的。
在高温液相作用下,硅酸二钙和游离氧化钙都逐步溶解于液相中,以离子的形式发生反应,形成硅酸三钙,水泥熟料逐渐烧结,物料由疏松状态转变为色泽灰黑、结构致密的熟料。
在硅酸盐水泥熟料中,由于含有氧化镁、氧化钠、氧化钾、硫酐、氧化钛等易熔物,其最低共熔温度约为1250℃。
随着温度的升高和时间的延长,液相量会增加,液相黏度会减小,使参与反应的离子更易扩散和结合,也就是说液相在熟料的形成过程中起着非常重要的作用,而且受到水泥熟料化学成分和烧成温度的影响。
既然液相量与化学成分有关,那么在配料上将如何控制呢?根据以往的经验,先定义为1450℃下(比较接近于生产实际)的液相量,液相量按下式计算:L=3.0A+2.25F+M+R式中L、A、F、M、R分别表示水泥熟料的液相量、氧化铝、氧化铁、氧化镁、氧化钠和氧化钾的合量。
培训材料熟之三料质量控制及煅烧方面的影响因素一、熟料质量控制的重要性1、熟料质量是确保水泥质量的核心,熟料质量达不到要求,难以磨制优质的水泥产品。
其中配料和煅烧是决定熟料质量的关键。
2、从生料到熟料,是一个化学反应过程。
化学反应,最基本的核心就是要求参预化学反应的物质间的比例要满足理论要求。
参预化学反应的某一物质的量,不得过剩或者不足,否则,化学反应形成的结果,不是当初设计的结果。
因此,熟料生产过程实际上要求是很精细的,不是表面上的那种粗糙现象。
3、设计合理的熟料率值,通过良好的煅烧,才干生产出优质的水泥熟料。
1、原料磨工艺变化现代水泥企业,以节能高效为主要导向,装备和工艺流程日益简化和高效。
2、原料磨由过去的球磨机改为现代立磨,原料磨工艺装备的改变,对产品质量的影响。
3、球磨机的工艺特点,决定了生料细度更加均匀,900 孔细度小,只在 3.0%以内, 1800 孔细度在 12%以内。
立磨的生料细度粗, 900 孔细度在 6.0-8.0%, 1800 孔细度在 22%摆布。
由上看出,现代水泥工业改成立磨后,生料的颗粒级配产生了较大的变化,立磨的生料粗大颗粒占比例明显上升,中等颗粒的比例,也较球磨机增加了一倍。
4、现代水泥工业、细度标准的变化。
80 年代,国家旋窑管理规程对细度有控制要求,最开始的标准规定生料细度小于等于 10%,作为一次水泥工艺管理的标准来执行,其后更改为 12%。
后来随着先进水泥工艺发展,生料细度作为一次过程控制指标,再也不强制执行,由企业根据自身生产需要自行控制。
质量体系认证,也将细度标准作为企业自行制定来审核,细度标准被企业自身不断放松标准。
按照现行立磨的生产工艺,生料细度按 10%、12%、16% 等等标准,已经无法满足当前立磨工艺的要求,根据立磨的特点及与窑的产能关系,细度只能控制在 20-22%之间,即使控制较好的工厂细度也在 8 摆布。
但是 , 目前的细度控制指标,不表示细度粗对煅烧没有影响。