离散数学 习题答案
- 格式:doc
- 大小:713.34 KB
- 文档页数:18
精品文档离散数学习题答案习题一及答案:( P14-15 )14、将下列命题符号化:( 5)李辛与李末是兄弟解:设 p:李辛与李末是兄弟,则命题符号化的结果是p( 6)王强与刘威都学过法语解:设 p:王强学过法语; q:刘威学过法语;则命题符号化的结果是p q ( 9)只有天下大雨,他才乘班车上班解:设 p:天下大雨; q:他乘班车上班;则命题符号化的结果是q p( 11)下雪路滑,他迟到了解:设 p:下雪; q:路滑; r :他迟到了;则命题符号化的结果是( p q)r15、设 p: 2+3=5.q:大熊猫产在中国 .r:太阳从西方升起 .求下列复合命题的真值:( 4)(p q r )(( p q)r )解: p=1, q=1,r=0 ,(p q r )(110)1,((p q)r )((11)0)(00)1(p q r )(( p q)r ) 1 1119、用真值表判断下列公式的类型:( 2)( p p)q解:列出公式的真值表,如下所示:p q p qp) ( p p)q( p001111011010100101110001由真值表可以看出公式有 3 个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值:精品文档( 4)( p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:( p q)1p0q0q0所以公式的成真赋值有: 01,10, 11。
习题二及答案:( P38)5、求下列公式的主析取范式,并求成真赋值:( 2)(p q) (q r )解:原式( p q) q r q r( p p) q r( p q r ) ( p q r )m3m7,此即公式的主析取范式,所以成真赋值为011, 111。
6、求下列公式的主合取范式,并求成假赋值:( 2)( p q) ( p r )解:原式( pp r ) ( p q r )( p q r )M 4,此即公式的主合取范式,所以成假赋值为 100。
数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。
C.2是偶数。
D.铅球是方的。
2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。
1-1,1-2(1) 解:a) 是命题,真值为T。
b) 不是命题。
c) 是命题,真值要根据具体情况确定。
d) 不是命题。
e) 是命题,真值为T。
f) 是命题,真值为T。
g) 是命题,真值为F。
h) 不是命题。
i) 不是命题。
(2) 解:原子命题:我爱北京天安门。
A(3) 解:a) (┓P ∧R)→Qb) Q→Rc) ┓Pd) P→┓Q(4) 解:a)设Q:我将去参加舞会。
R:我有时间。
P:天下雨。
Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。
b)设R:我在看电视。
Q:我在吃苹果。
R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。
R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。
(5) 解:a) 设P:王强身体很好。
Q:王强成绩很好。
P∧Qb) 设P:小李看书。
Q:小李听音乐。
P∧Qc) 设P:气候很好。
Q:气候很热。
P∨Qd) 设P: a和b是偶数。
Q:a+b是偶数。
P→Qe) 设P:四边形ABCD是平行四边形。
Q :四边形ABCD的对边平行。
PQf) 设P:语法错误。
Q:程序错误。
R:停机。
(P∨ Q)→ R(6) 解:a) P:天气炎热。
Q:正在下雨。
P∧Qb) P:天气炎热。
R:湿度较低。
P∧Rc) R:天正在下雨。
S:湿度很高。
R∨Sd) A:刘英上山。
B:李进上山。
A∧Be) M:老王是革新者。
N:小李是革新者。
M∨Nf) L:你看电影。
M:我看电影。
┓L→┓Mg) P:我不看电视。
Q:我不外出。
R:我在睡觉。
P∧Q∧Rh) P:控制台打字机作输入设备。
Q:控制台打字机作输出设备。
P∧Q1-3(1)解:a) 不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b) 是合式公式c) 不是合式公式(括弧不配对)d) 不是合式公式(R和S之间缺少联结词)e) 是合式公式。
(2)解:a) A是合式公式,(A∨B)是合式公式,(A→(A∨B)) 是合式公式。
习题二谓词逻辑一、选择题1、下列哪个式子不是谓词演算的合式公式( )A. (x)(A(x,2)∧B(y))B. (x)(A(x)∧B(x,y))C. ((x)∧(y))→(A(x,y)∧B(x,y))D. (x)(A(x)→B(y))2、设个体域是整数集,则下列命题的真值为真的是()A.∀x∃y (xy=1)B. ∃x∀y(x+y=y)C.∃x∀y(x+y=x)D. ∀x∃y(y=2x)3、设B是不含变元x的公式,谓词公式(x)(A(x)→B)等价于( )A.(x)A(x)→BB. (x)A(x)→BC. A(x)→BD.(x)A(x)→(x)B4、谓词公式(x)(P(x)∨(y)R(y))→Q(x)中的x( ).A.只是约束变元B.只是自由变元C.既非约束变元又非自由变元D.既是约束变元又是自由变元5、谓词公式(x)P(x,y)∧(x)(Q(x,z)→(x)(y)R(x,y,z))中量词x的辖域是().A.(x)Q(x,z)→(x)(y)R(x,y,z))B.Q(x,z)→(y)R(x,y,z)C.Q(x,z)→(x)(y)R(x,y,z)D.Q(x,z)6、在论域D={a,b}中与公式()A(x)等价的不含存在量词的公式是()A. B.C. D.7、设M(x):x是人;F(x):x要吃饭.用谓词公式表达下述命题:所有的人都要吃饭,其中错误的表达式是().A.B.C.D.8、设个体域A={a,b},公式xP(x)∧xS(x)在A中消去量词后应为().A.P(x)∧S(x) B.P(a)∧P(b)∧(S(a)∨S(b))C.P(a)∧S(b) D.P(a)∧P(b)∧S(a)∨S(b)9、按照约束变元的改名规则,∀xP(x) →∃yR(x,y)不可改写成(). A.∀mP(m) →∃yR(x,y) B.∀xP(x) →∃zR(x,z)C.∀xP(x) →∃xR(x,x) D.∀xP(x) →∃nR(x,n)10、∀ x∀y(P(x,y)∧Q(y,z))∧(∃x)p(x,y),下面的描述中错误的是()A.(∀ x)的辖域是(∀ y)(P(x,y)∧Q(y,z))B.z是该谓词公式的约束变元C.(∃ x)的辖域是P(x,y)D. x是该谓词公式的约束变元二、填空题1、设P(x):x非常聪明;Q(x):x非常能干;a:小李;则命题“小李非常聪明和能干”的为谓词表达式为_______.2、使公式(x)( y)(A(x)∧B(y))(x)A(x)∧(y)B(y)成立的条件是______不含有y,______不含有x.3、公式(x)A(x)→B(y)的前束范式为______.4、公式x(P(x)→Q(x,y)∨zR(y, z))→S(x)中的自由变元为________________,约束变元为________________.5、令R(x):x是实数,Q(x):x是有理数。
离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q) ⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p) ⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔(⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p)) ⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1) (2) 主合取范式为: ⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7) 矛盾式的主析取范式为 0 (3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1 ⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)xF∀,在(a)中为假命题,在(b)中为真命题。
离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
第一章命题逻辑内容:命题及命题联结词、命题公式的基本概念,真值表、基本等价式及永真蕴涵式,命题演算的推理理论中常用的直接证明、条件证明、反证法等证明方法。
教学目的:1. 熟练掌握命题、联结词、复合命题、命题公式及其解释的概念。
2. 熟练掌握常用的基本等价式及其应用。
3. 熟练掌握(主)析/合取范式的求法及其应用。
4. 熟练掌握常用的永真蕴涵式及其在逻辑推理中的应用。
5. 熟练掌握形式演绎的方法。
教学重点:1 .命题的概念及判断2 .联结词,命题的翻译3. 主析(合)取范式的求法4. 逻辑推理教学难点:1. 主析(合)取范式的求法2. 逻辑推理1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。
1.1.2 命题的表示命题通常使用大写字母 A , B,…,Z或带下标的大写字母或数字表示,如A i, [10], R等,例如A1:我是一名大学生。
A1:我是一名大学生.[10]:我是一名大学生。
R:我是一名大学生。
1.2命题联结词1.2.1否定联结词「P1.2.2合取联结词A1.2.3 析取联结词V1.2.4 条件联结词—125126 与非联结词T性质:(1)P T P=「( PAP)二「P;(2)(P T Q)T( P T Q) -「( P T Q) - PAQ;(3)( P T P)T( Q TQ) -「P T「Q= P V Q。
127 或非联结词J性质:(1) P J P=「( P V Q) =「P;(2)( P J Q );( P J Q) =「( P J Q) = P V Q;(3)( P J P)J( Q J Q) =「P Q=P V-Q) = PAQ1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2 )如果P是公式,则「P是公式;(3)如果P、Q是公式,则PAQ、PVQ、P > Q、P Q都是公式;(4)当且仅当能够有限次的应用(1)、(2)、(3)所得到的包括命题变元、联结词和括号的符号串是公式。
离散数学 习题 参考答案1、构造公式(p ∧q)∨ (¬p ∧¬q)、p↔q 的真值表。
2、构造公式¬(p ∨q)与¬p ∧¬q 的真值表。
3、构造公式 p 、p ∧p 、p ∨p 的真值表。
4、构造公式 p ∨(q ∧r)、(p ∨q)∧(p ∨r)的真值表。
5、构造公式 p ∨(p ∧r)、p 的真值表。
6、构造公式 p ∧(p ∨r)、p 的真值表。
7、构造公式 p↔q 、¬q↔¬p 的真值表。
8、构造公式(p→q)∧(p→¬q)、¬p 的真值表。
9、构造公式 p 、¬¬p 的真值表。
10、构造公式 p ∨¬p 、p ∧¬p 的真值表 略一、分别用等算演算与真值表法,判断下列公式是否存在主析取范式或主合取范式,若有,请写出来。
(1)(¬p→q)→(¬q ∨p) (2)(¬p→q)→(q ∧r)(3)(p ∨(q ∧r))→(p ∨q ∨r) (4) ¬(q→¬p)∧¬p (5)(p ∧q)∨(¬p ∨r) (6)(p→(p ∨q))∨r (7)(p ∧q)∨r(8) (p→q)∧(q→r) (9) (p ∧q)→q (10) ¬(r↔p)∧p ∧q存在主析取范式=成真赋值对应的小项的析取 =m 00∨m 10∨m 11=(¬p ∧¬q)∨(p ∧¬q)∨(p ∧q)主析取范式=成假赋值对应的大项的合取 =M 01=p ∨¬q等值演算:(¬p→q)→(¬q ∨p) ⇔¬ (¬¬p ∨q)∨(p ∨¬q) ⇔¬ (p ∨q)∨(p ∨¬q) ⇔ (¬p ∧¬q)∨(p ∨¬q) ⇔ (¬p ∨(p ∨¬q))∧(¬q ∨(p ∨¬q)) ⇔ (¬p ∨p ∨¬q)∧(¬q ∨p ∨¬q) ⇔ (1∨¬q)∧(p ∨¬q) ⇔ (p ∨¬q)这是大项,故为大项的合取,称为主合取范式(¬p→q)→(¬q ∨p) ⇔ (p ∨¬q) ⇔ (p)∨(¬q) ⇔ (p ∧1)∨( 1∧¬q)⇔ (p ∧(q ∨¬q))∨( (p ∨¬p)∧¬q) ⇔ (p ∧q)∨ (p ∧¬q)∨(p ∧¬q)∨(¬p ∧¬q) ⇔ (p ∧q)∨ (p ∧¬q)∨(¬p ∧¬q)因为一个公式的值不是真,就是假,因此当我们得到一个公的取值为真的情况时,剩下的组合是取值为假, 因此当得到小项的析取组成的主析取范式后,可以针对剩下的组合写出主合取范式。
如当我们得到(¬p→q)→(¬q ∨p)的大项之合取(p ∨¬q)后,使(p ∨¬q)为假时(p,q)的值为(0,1),故其标记为M 01,剩余的取值为(0,0),(1,0),(1,1),故小项之析取为m 00∨m 10∨m 11。
反之,若先得到其小项的析取,也可得到其大项的合取。
反正这两者将其所有组合瓜分完毕。
主析取范式=m 000∨m 001∨m 011∨m 111=(¬p ∧¬q ∧¬r)∨(¬p ∧¬q ∧r)∨(¬p ∧q ∧r)∨(p ∧q ∧r)主合取范式=M 010∧M 100∧M 101∧M 110=(p ∨¬q ∨r)∧(¬p ∨q∨r)∧(¬p ∨q ∨¬r)∧(¬p ∨¬q ∨r)=(¬p ∧¬q ∧¬r)∨(¬p ∧¬q ∧r)∨(¬p ∧q ∧¬r)∨(¬p ∧q ∧r)∨(p ∧¬q ∧¬r)∨(p ∧¬q ∧r)∨(p ∧q ∧¬r)∨(p ∧q ∧r)由于没为假的指派,所以没有为假赋值,所对应的大项合取构成的合取,即没有主合取范式。
¬(p ∨(q ∧r))∨(p ∨q ∨r)=(¬p ∧¬(q ∧r))∨(p ∨q ∨r)=((¬p ∧¬q)∨ (¬p ∧¬r))∨(p ∨q ∨r) = (¬p ∧¬q)∨ (¬p ∧¬r)∨p ∨q ∨r=¬(p ∨q)∨(¬p ∧¬r)∨p ∨q ∨r=1永真没有成真的赋值,从而没有对应的小项,因此没有小项构成的主析取范式永假式即矛盾式,为假指派对应的大项合取=(p ∨q)∧(p ∨¬q)∧(¬p ∨q)∧(¬p ∨¬q) 原式=¬(¬q ∨¬p)∧¬p=(q ∧p) ∧¬p=0主析取范式 (¬p ∧¬q ∧¬r)∨( ¬p ∧¬q ∧r)∨( ¬p ∧q ∧¬r)∨( ¬p ∧q ∧r)∨(p ∧¬q ∧r)∨(p ∧q ∧¬r)∨(p ∧q ∧r) 主合取范式 M 100=¬p ∨q ∨r原式=((p ∧q)∨¬p)∨r=((p ∨¬p)∧(¬p ∨q))∨r=(1∧(¬p ∨q))∨r=¬p ∨q ∨r 这就是大项也 剩下的赋值对应的就是小项永真式,只有小项组成的主析取范式。
没有为假的赋值,所以没有成假赋值对应的大项的合取,即没有主合取范式。
原式=(¬p ∨ (p ∨q))∨r=(1∨q)∨r=1主析取范式=m 001∨m 011∨m 101∨m 110∨m 111=(¬p ∧¬q ∧r)∨( ¬p ∧q ∧r)∨( p ∧¬q ∧r)∨(p ∧q ∧¬r)∨(p ∧q ∧r)主合取范式=M 000∧M 010∧M 100=(p ∨q ∨r)∧ (p ∨¬q ∨r)∧(¬p ∨q ∨r) (p ∧q)∨r=(p ∧q ∧1)∨(1∧1∧r) =(p ∧q ∧(¬r ∨r))∨( (¬p ∨p)∧ (¬q ∨q)∧r) =(p ∧q ∧¬r)∨ (p ∧q ∧r)∨ (¬p ∧¬q ∧r)∨( ¬p ∧q ∧r) ∨ (p ∧¬q ∧r)(p ∧q)∨r=(p ∨r) ∧(q ∨r)=(p ∨0∨r) ∧(0∨q ∨r) =(p ∨(¬q ∧q)∨r) ∧((¬p ∧p)∨q ∨r) =(p ∨¬q ∨r) ∧ (p∨q ∨r) ∧(¬p ∨q ∨r) ∧(p ∨q ∨r) =(p ∨¬q ∨r) ∧ (p ∨q ∨r) ∧(¬p ∨q ∨r)000001011111=(¬p ∧¬q ∧¬r)∨(¬p ∧¬q ∧r)∨(¬p ∧q ∧r)∨(p ∧q ∧r) 主合取范式=M 010∧M 100∧M 101∧M 110==(p ∨¬q ∨r)∧(¬p ∨q ∨r)∧(¬p ∨q ∨¬r)∧(¬p ∨¬q ∨r) (p→q)∧(q→r)=(¬p ∨q)∧(¬q ∨r) =(¬p ∨q ∨0)∧(0∨¬q ∨r) =(¬p ∨q ∨(¬r ∧r))∧( (¬p ∧p)∨¬q ∨r) =(¬p ∨q ∨¬r)∧ (¬p ∨q ∨r) ∧(¬p ∨¬q ∨r)∧( p ∨¬q ∨r) (p→q)∧(q→r)=(¬p ∨q)∧(¬q ∨r) =(¬p ∧¬q)∨ (¬p ∧r)∨ (q ∧¬q)∨ (q ∧r) =(¬p ∧¬q ∧1)∨ (¬p ∧1∧r)∨(1∧q ∧r) =(¬p ∧¬q ∧(¬r ∨r))∨ (¬p ∧(¬q ∨q)∧r)∨( (¬p ∨p)∧q ∧r) =(¬p ∧¬q ∧¬r)∨ (¬p ∧¬q ∧r)∨ (¬p ∧¬q ∧r)∨ (¬p ∧q ∧r)∨ ( ¬p ∧q ∧r)∨( p ∧q∧r) =(¬p ∧¬q ∧¬r)∨ (¬p ∧¬q ∧r)∨ (¬p ∧q ∧r)∨( p ∧q ∧r) ∧q)∨(p ∧¬q)∨(p∧q)没有为假的指派,所以没有由大项的合取构成的主合取范式 (p ∧q)→q =¬(p ∧q)∨q =(¬p ∨¬q)∨q =¬p ∨¬q ∨q =1110主合取范式=M000∧ M001∧ M010∧ M011∧ M100∧ M101∧M111= (p∨q∨r)∧(p∨q∨¬r)∧(p∨¬q∨r)∧(p∨¬q∨¬r)∧( ¬p∨q∨r)∧( ¬p∨q∨¬r)∧( ¬p∨¬q∨¬r)¬(r↔p)∧p∧q=¬((¬p∨r)∧(p∨¬r))∧p∧q=((p∧¬r) ∨(¬p∧r))∧p∧q=(p∧¬r∧p∧q) ∨(¬p∧r∧p∧q)=(p∧q ∧¬r)¬(r↔p)∧p∧q=¬((p∧r)∨(¬p∧¬r))∧p∧q= ((¬p∨¬r)∧(p∨r))∧p∧q= (¬p∨¬r)∧(p∨r)∧p∧q= (¬p∨¬r)∧((p∨r)∧p)∧q= (¬p∨¬r)∧p∧q= (¬p∨(¬q∧q)∨¬r)∧(p∨(¬q∧q)∨(¬r∧r))∧( (¬p∧p)∨q ∨(¬r∧r))=(¬p∨¬q∨¬r)∧(¬p∨q∨¬r)∧(p∨¬q∨¬r)∧(p∨¬q∨r)∧(p∨q∨¬r)∧(p∨q∨r) ∧∧( ¬p∨q∨¬r) ∧( ¬p∨q∨r) ∧( p∨q∨¬r) ∧( p∨q∨r) = (p∨q∨r) ∧(p∨q∨¬r)∧(p∨¬q∨r)∧(p∨¬q∨¬r)∧( ¬p∨q∨r) ∧(¬p∨q∨¬r)∧(¬p∨¬q∨¬r)=M000 ∧M001∧M010∧M011∧M100∧M101∧M111二、应用题1、某次课间休息时,1位同学作为主持人与另外3位同学进行猜数游戏,主持人说这个数是30、50、70中的某一个,你们三位同学各猜一次,然后主持人分析每人猜数的结果,从而最终确定是哪个数。