选修四 第二讲 创新演练经典化
- 格式:doc
- 大小:685.50 KB
- 文档页数:4
第2课时 圆的参数方程[核心必知]如图,设圆O 的半径是r ,点M 从初始位置M 0(t =0时的位置)出发,按逆时针方向在圆O 上作匀速圆周运动,点M 绕点O 转动的角速度为ω,以圆心O 为原点,OM 0所在的直线为x 轴,建立直角坐标系.(1)在t 时刻,M 转过的角度是θ,点M 的坐标是(x ,y ),那么θ=ωt (ω为角速度).设|OM |=r ,那么由三角函数定义,有cos ωt =x r ,sin ωt =yr,即圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos ωt ,y =r sin ωt (t 为参数).其中参数t 的物理意义是:质点做匀速圆周运动的时刻.(2)若取θ为参数,因为θ=ωt ,于是圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数).其中参数θ的几何意义是:OM 0(M 0为t =0时的位置)绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.[问题思考]1.方程⎩⎪⎨⎪⎧x =R cos θ,y =R sin θ(θ为参数,0≤θ<2π)是以坐标原点为圆心,以R 为半径的圆的参数方程,能否直接由圆的普通方程转化得出?提示:以坐标原点为圆心,以R 为半径的圆的标准方程为x 2+y 2=R 2,即(x R )2+(yR )2=1,令⎩⎨⎧xR =cos θ,yR=sin θ,则⎩⎪⎨⎪⎧x =R cos θ,y =R sin θ.2.若圆心在点M 0(x 0,y 0),半径为R ,则圆的参数方程是什么?提示:圆的参数方程为⎩⎪⎨⎪⎧x =x 0+R cos θ,y =y 0+R sin θ.(0≤θ<2π)点M 在圆(x -r )2+y 2=r 2(r >0)上,O 为原点,x 轴的正半轴绕原点旋转到OM 形成的角为φ,以φ为参数.求圆的参数方程.[精讲详析] 本题考查圆的参数方程的求法,解答此题需要借助图形分析圆上点M (x ,y )的坐标与φ之间的关系,然后写出参数方程.如图所示,设圆心为O ′,连接O ′M①当M 在x 轴上方时,∠MO ′x =2φ.∴⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ.②当M 在x 轴下方时,∠MO ′x =-2φ,∴⎩⎪⎨⎪⎧x =r +r cos (-2φ),y =-r sin (-2φ). 即⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ.③当M 在x 轴上时,对应φ=0或φ=±π2.综上得圆的参数方程为⎩⎪⎨⎪⎧x =r +r cos 2φ,y =r sin 2φ.(φ为参数且-π2≤φ≤π2)(1)由于选取的参数不同,圆有不同的参数方程.一般地,同一条曲线,可以选取不同的变数为参数,因此得到的参数方程也可以有不同的形式,形式不同的参数方程表示的曲线却可以是相同的,另外在建立曲线的参数方程时,要注明参数及参数的取值范围.(2)确定圆的参数方程,必须根据题目所给条件,否则,就会出现错误,如本题如果把参数方程写成⎩⎪⎨⎪⎧x =r +r cos φ,y =r sin φ.φ的意义就改变了.1.设y =tx (t 为参数),则圆x 2+y 2-4y =0的参数方程是________. 解析:把y =tx 代入x 2+y 2-4y =0 得x =4t 1+t 2,y =4t 21+t 2, ∴参数方程为⎩⎪⎨⎪⎧x =4t1+t 2,y =4t 21+t2.答案:⎩⎨⎧x =4t1+t 2,y =4t 21+t2(t 为参数)已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线?[精讲详析] 本题主要考查圆的参数方程的应用及轨迹的求法.解答本题需设出PQ 的中点M 的坐标为(x ,y ),然后利用已知条件中的参数分别表示x ,y ,从而求出轨迹方程,根据方程说明轨迹的形状.设中点为M (x ,y ),⎩⎪⎨⎪⎧x =2+cos θ2,y =0+sin θ2,即⎩⎨⎧x =1+12cos θ,y =12sin θ.它是圆的参数方程,表示以(1,0)为圆心,以12为半径的圆.解决此类问题的关键是利用已知圆的参数方程中所含的参数表示出所求点的坐标,求得参数方程,然后根据参数方程说明轨迹所表示的曲线.2.设点M (x ,y )在圆x 2+y 2=1上移动,求点Q (x (x +y ),y (x +y ))的轨迹的参数方程. 解:设M (cos θ,sin θ)(0≤θ<2π),点Q (x 1,y 1),则⎩⎪⎨⎪⎧x 1=cos θ(cos θ+sin θ),y 1=sin θ(cos θ+sin θ),(θ为参数) 即为所求的参数方程.已知点P (x ,y )是圆⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数)上的动点,(1)求3x +y 的取值范围;(2)若x +y +a ≥0恒成立,求实数a 的取值范围.[精讲详析] 本题考查圆的参数方程的求法及不等式的恒成立问题,解决本题需要正确求出圆x 2+y 2=2y 的参数方程,然后利用参数方程求解问题(1)、(2).(1)∵P 在圆⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ上,∴3x +y =3cos θ+sin θ+1=2sin (θ+π3)+1∴-2+1≤3x +y ≤2+1.即3x +y 的取值范围为[-1,3]. (2)∵x +y +a =cos θ+sin θ+1+a ≥0, ∴a ≥-(cos θ+sin θ)-1.又-(cos θ+sin θ)-1=-2sin (θ+π4)-1≤2-1,∴a ≥2-1即a 的取值范围为[2-1,+∞).(1)解决此类问题的关键是根据圆的参数方程写出点的坐标,并正确确定参数的取值范围.(2)利用圆的参数方程求参数或代数式的取值范围的实质是利用正、余弦函数的有界性.3.设方程⎩⎨⎧x =1+cos θ,y =3+sin θ(θ为参数)表示的曲线为C ,求在曲线C 上到原点O 距离最小的点P 的坐标.解:∵OP 2=(1+cos θ)2+(3+sin θ)2=5+23sin θ+2cos θ=5+4sin (θ+π6).当θ=2k π+43π,k ∈Z 时,OP 最小,此时点P 的坐标为(12,32).高考模拟中常利用圆的参数方程考查直线与圆、圆与圆的位置关系.本考题将直线的极坐标方程与圆的参数方程相结合,考查直线与圆的交点问题,属低档题.[考题印证]已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ=1,则直线l 和圆C 的交点的直角坐标为________.[命题立意] 本题主要考查圆的参数方程与直线的极坐标方程.[解析] 由圆的参数方程知圆心的坐标为(0,1),半径r =1,由直线l 的极坐标方程可知直线l 的方程为y =1,则根据图象可知直线l 和圆C 的交点为(-1,1),(1,1).答案:(-1,1),(1,1)一、选择题1.圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0) 解析:选D 圆的普通方程为(x -2)2+y 2=4. 故圆心坐标为(2,0).2.直线3x -4y -9=0与圆⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( )A .相切B .相离C .直线过圆心D .相交但不过圆心解析:选D 圆的普通方程为x 2+y 2=4,∴圆心坐标为(0,0),半径r =2,点(0,0)到直线3x -4y -9=0的距离为d =|-9|32+42=95<2,∴直线与圆相交,而(0,0)点不在直线上. 3.P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:选A 设P (2+cos α,sin α),代入得: (2+cos α-5)2+(sin α+4)2=25+sin 2α+cos 2α-6cos α+8sin α=26+10sin(α-φ)(tan φ=34,φ为锐角).∴最大值为36.4.设Q (x 1,y 1)是单位圆x 2+y 2=1上一个动点,则动点P (x 21-y 21,x 1y 1)的轨迹方程是( ) A.⎩⎪⎨⎪⎧x =cos 2θ,y =sin 2θ B.⎩⎪⎨⎪⎧x =12cos 2θ,y =sin 2θC.⎩⎪⎨⎪⎧x =cos 2θ,y =12sin 2θD.⎩⎨⎧x =12cos 2θ,y =12sin 2θ解析:选C 设x 1=cos θ,y 1=sin θ.P (x ,y )则⎩⎪⎨⎪⎧x =x 21-y 21=cos 2θ,y =x 1y 1=12sin 2θ,即⎩⎪⎨⎪⎧x =cos 2θ,y =12sin 2θ.二、填空题5.参数方程⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数)表示的图形是________.解析:∵⎩⎪⎨⎪⎧x =cos α,y =1+sin α,且cos 2α+sin 2α=1,∴x 2+(y -1)2=1.∴该参数方程表示以(0,1)为圆心,以1为半径的圆. 答案:圆6.已知圆C ⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ与直线x +y +a =0有公共点,则实数a 的取值范围为________.解析:将圆C 的方程代入直线方程,得 cos θ-1+sin θ+a =0,即a =1-(sin θ+cos θ)=1-2sin(θ+π4).∵-1≤sin(θ+π4)≤1,∴1-2≤a ≤1+ 2. 答案:[1-2,1+2]7.P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数)上任意一点,则P 到直线x -y +4=0的距离的最小值是________.解析:由P 在曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α上可得P 的坐标为(2+cos α,sin α).由点到直线的距离公式得d =|cos α-sin α+6|2=|2cos (α+π4)+6|2,当cos (α+π4)=-1时,d 最小,d min =-2+62=-1+3 2.答案:-1+3 28.已知动圆x 2+y 2-2ax cos θ-2by sin θ=0(a ,b 是正常数,且a ≠b ,θ为参数),则圆心的轨迹的参数方程为________.解析:设P (x ,y )为动圆的圆心,由x 2+y 2-2ax cos θ-2by sin θ=0得:(x -a cos θ)2+(y -b sin θ)2=a 2cos 2θ+b 2sin 2θ.∴⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ.答案:⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ三、解答题9.已知圆的方程为x 2+y 2=2x ,写出它的参数方程. 解:x 2+y 2=2x 的标准方程为(x -1)2+y 2=1, 设x -1=cos θ,y =sin θ,则参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(0≤θ<2π).10.已知实数x ,y 满足x 2+(y -1)2=1,求t =x +y 的最大值. 解:方程x 2+(y -1)2=1表示以(0,1)为圆心,以1为半径的圆.∴其参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ.(θ为参数)∴t =x +y =cos θ+sin θ+1 =2sin(θ+π4)+1∴当sin (θ+π4)=1时t max =2+1.11.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数,且0≤θ≤2π),点M 是曲线C 1上的动点.(1)求线段OM 的中点P 的轨迹的参数方程;(2)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若直线l 的极坐标方程为ρcos θ-ρsin θ+1=0(ρ>0),求点P 到直线l 距离的最大值.解:(1)曲线C 1上的动点M 的坐标为(4cos θ,4sin θ),坐标原点O (0,0),设P 的坐标为(x ,y ),则由中点坐标公式得x =12(0+4cos θ)=2cos θ,y =12(0+4sin θ)=2sin θ,所以点P 的坐标为(2cos θ,2sin θ),因此点P 的轨迹的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数,且0≤θ≤2π).(2)由直角坐标与极坐标关系⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得直线l 的直角坐标方程为x -y +1=0,又由(1)知点P 的轨迹为圆心在原点,半径为2的圆,因为原点(0,0)到直线x -y +1=0的距离为|0-0+1|12+(-1)2=12=22, 所以点P 到直线l 距离的最大值为2+22.。
高中化学学习材料唐玲出品1.茫茫黑夜中,航标灯为航海员指明了方向。
航标灯的电源必须长效、稳定。
我国科技工作者研制出以铝合金、PtFe合金网为电极材料的海水电池。
在这种电池中,下列描述正确的是( )①铝合金理论上不会被消耗②铝合金是负极③海水是电解液④铝合金电极发生还原反应A.②③B.②④C.①②D.①④解析:选A。
较活泼的铝合金为负极(②对、①不对),PtFe合金网为正极,海水是电解液(③对),负极上发生氧化反应(④错)。
2.如图为氢氧燃料电池原理示意图,按照此图的提示,下列叙述不.正确的是( )A.a电极是负极B.b电极的电极反应为:4OH--4e-===2H2O+O2↑C.氢氧燃料电池是一种具有应用前景的绿色电源D.氢氧燃料电池是一种不需要将还原剂和氧化剂全部储藏在电池内的新型发电装置解析:选B。
分析氢氧燃料电池原理示意图可知a极为负极,其电极反应为:2H2-4e-===4H+,b极为正极,其电极反应为:O2+2H2O+4e -===4OH-,电池总反应式为:2H2+O2===2H2O。
H2为还原剂,O2为氧化剂,H2、O2不需全部储藏在电池内。
3.一种燃料电池中发生的化学反应为:在酸性溶液中甲醇与氧作用生成水和二氧化碳。
该电池负极发生的反应是( )A.CH3OH(g)+O2(g)-2e-===H2O(l)+CO2(g)+2H+(aq)B.O2(g)+4H+(aq)+4e-===2H2O(l)C.CH3OH(g)+H2O(l)-6e-===CO2(g)+6H+(aq)D.O2(g)+2H2O(l)+4e-===4OH-解析:选C。
该原电池的负极反应物为甲醇,负极反应式中不应该出现氧化剂,而A、B、D 项中电极反应物中均出现氧化剂氧气,所以A、B、D不正确。
4.碱性电池具有容量大、放电电流大的特点,因而得到广泛应用。
锌锰碱性电池以氢氧化钾溶液为电解液,电池总反应式为:Zn(s)+2MnO2(s)+H2O(l)===Zn(OH)2(s)+Mn2O3(s),下列说法错误的是( )A .电池工作时,锌失去电子B .电池正极的电极反应式为2MnO 2(s)+H 2O(l)+2e -===Mn 2O 3(s)+2OH -(aq)C .电池工作时,电子由正极通过外电路流向负极D .外电路中每通过0.2 mol 电子,锌的质量理论上减小6.5 g解析:选C 。
高中化学学习材料金戈铁骑整理制作一、选择题(本题包括7小题,每小题3分,共21分)1.[双选题]下列有关工业合成氨的叙述中正确的是() A.温度升高,不利于提高合成氨的反应速率B.工业上选择合适的条件,可以使氮气全部转化为氨C.合成氨反应化学平衡的移动受到温度、反应物浓度、压强等因素的影响D.使用铁触媒,可以使氮气和氢气化合的速率明显加快解析:A项,升温能加快合成氨反应速率;B项,合成氨反应为可逆反应,不可能将反应物全部转化为生成物。
答案:CD2.工业上合成氨一般采用700 K左右的温度,其原因是()①适当提高氨的合成速率②提高H2的转化率③提高氨的产率④催化剂在700 K时活性最大A.只有①B.①②C.②③④D.①④解析:从影响化学反应速率和催化剂的活性两方面考虑。
答案:D3.当反应N2(g)+3H2(g)2NH3(g)达到平衡后,若将容器体积扩大,则此时反应速率的变化情况是()解析:若扩大容器体积c(反应物)和c(生成物)均减小,则v正、v逆均减小,v逆减小的程度小,v正减小的程度大,故v逆>v正,平衡逆向移动。
答案:D4.(2012·临沂高二检测)对于反应N2(g)+3H2(g) 2NH3(g),在一密闭容器中加入一定量的N2和H2,达到平衡时气体压强为p1,迅速缩小体积使气体压强为p2,一段时间后达到新的平衡,此时气体的压强为p3,则p1、p2、p3的大小关系() A.p2>p1>p3B.p2>p3>p1C.p2>p1>p3D.p2>p1=p3解析:根据勒夏特列原理,改变某一外界条件,平衡只能向着减弱这种改变的方向移动。
答案:B5.[双选题]在一定条件下,当单独改变可逆反应N2(g)+3H2(g) 2NH3(g)(放热反应)的下列条件后,有关的叙述中错误的是() A.加入催化剂,v(正)、v(逆)都发生变化,且变化的倍数相等B.增大压强,v(正)、v(逆)都增大,且v(正)增大的倍数大于v(逆)增大的倍数C.降低温度,v(正)、v(逆)都减小,且v(正)减小的倍数大于v(逆)减小的倍数D.加入氩气,v(正)、v(逆)都增大,且v(正)增大的倍数大于v(逆)增大的倍数解析:C项,降低温度时,v(正)减小的倍数小于v(逆)减小的倍数,平衡正向移动;D 项,v(正)、v(逆)均不变。
(1)建立直角坐标系,设曲线上任一点P 坐标为(x ,y ); (2)选取适当的参数;(3)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式; (4)证明这个参数方程就是所要求的曲线的方程.过点P (-2,0)作直线l 与圆x 2+y 2=1交于A 、B 两点,设A 、B 的中点为M ,求M 的轨迹的参数方程.[解] 设M (x ,y ),A (x 1,y 1),B (x 2,y 2),直线l 的方程为x =ty -2.由⎩⎪⎨⎪⎧x =ty -2,x2+y2=1消去x 得(1+t 2)y 2-4ty +3=0. ∴y 1+y 2=4t 1+t2,则y =2t 1+t2.x =ty -2=2t21+t2-2=-21+t2,由Δ=(4t )2-12(1+t 2)>0得t 2>3.∴M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =-21+t2,y =2t1+t2(t 为参数且t 2>3).在求出曲线的参数方程后,通常利用消参法得出普通方程.一般地,消参数经常采用的是代入法和三角公式法.但将曲线的参数方程化为普通方程,不只是把其中的参数消去,还要注意x ,y 的取值范围在消参前后应该是一致的,也就是说,要使得参数方程与普通方程等价,即它们二者要表示同一曲线.已知曲线的参数方程为⎩⎨⎧x =1+2cos t ,y =-2+2sin t(0≤t ≤π),把它化为普通方程,并判断该曲线表示什么图形?[解] 由曲线的参数方程⎩⎪⎨⎪⎧x =1+2cos t ,y =-2+2sin t ,得⎩⎪⎨⎪⎧x -1=2cos t ,y +2=2sin t. ∵cos 2t +sin 2t =1, ∴(x -1)2+(y +2)2=4. 由于0≤t ≤π, ∴0≤sin t ≤1.从而0≤y +2≤2,即-2≤y ≤0.∴所求的曲线的参数方程为(x -1)2+(y +2)2=4(-2≤y ≤0). 这是一个半圆,其圆心为(1,-2),半径为2.已知参数方程⎩⎨⎧x =⎝⎛⎭⎫t +1t sin θ, ①y =⎝⎛⎭⎫t -1t cos θ, ②(t ≠0).(1)若t 为常数,θ为参数,方程所表示的曲线是什么? (2)若θ为常数,t 为参数,方程所表示的曲线是什么? [解] (1)当t ≠±1时,由①得sin θ=xt +1t ,由②得cos θ=yt -1t .∴x2⎝⎛⎭⎫t +1t 2+y2⎝⎛⎭⎫t -1t 2=1.它表示中心在原点,长轴长为2⎪⎪⎪⎪t +1t ,短轴长为2⎪⎪⎪⎪t -1t ,焦点在x 轴上的椭圆. 当t =±1时,y =0,x =±2sin θ,x ∈[-2,2], 它表示在x 轴上[-2,2]的一段线段. (2)当θ≠kπ2(k ∈Z )时,由①得x sin θ=t +1t .由②得y cos θ=t -1t.平方相减得x2sin 2θ-y2cos2θ=4,即x24sin2θ-y24cos2θ=1,它表示中心在原点,实轴长为4|sin θ|,虚轴长为4|cos θ|,焦点在x 轴上的双曲线. 当θ=k π(k ∈Z )时,x =0,它表示y 轴; 当θ=k π+π2(k ∈Z )时,y =0,x =±⎝⎛⎭⎫t +1t . ∵t +1t ≥2(t >0时)或t +1t≤-2(t <0时),∴|x |≥2.∴方程为y =0(|x |≥2),它表示x 轴上以(-2,0)和(2,0)为端点的向左、向右的两条射线.求直线的参数方程,根据参数方程参数的几何意义,求直线上两点间的距离,求直线的倾斜角,判断两直线的位置关系;根据已知条件求圆的参数方程,根据圆的参数方程解决与圆有关的最值、位置关系等问题.设曲线C 的参数方程为⎩⎨⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为( )A .1B .2C .3D .4 [解析] 曲线C 的标准方程为:(x -2)2+(y +1)2=9, 它表示以(2,-1)为圆心,半径为3的圆,因为圆心(2,-1)到直线x -3y +2=0的距离d =|2+3+2|10=71010,且3-71010<71010,故过圆心且与l平行的直线与圆相交的两点为满足题意的点.[答案] B(北京高考)直线⎩⎨⎧x =2+t ,y =-1-t ,(t 为参数)与曲线⎩⎨⎧x =3cos α,y =3sin α,(α为参数)的交点个数为________.[解析] 直线的普通方程为x +y -1=0,圆的普通方程为x 2+y 2=32,圆心到直线的距离d =22<3,故直线与圆的交点个数是2.[答案] 2求直线⎩⎨⎧x =-1+2t ,y =-2t 被曲线⎩⎨⎧x =1+4cos θ,y =-1+4sin θ截得的弦长.[解] 直线⎩⎪⎨⎪⎧x =-1+2t ,y =-2t ,的普通方程为x +y +1=0曲线⎩⎪⎨⎪⎧x =1+4cos θ,y =-1+4sin θ,即圆心为(1,-1),半径为4的圆则圆心(1,-1)到直线x +y +1=0的距离 d =|1-1+1|12+12=22.设直线被曲线截得的弦长为t ,则t =242-⎝⎛⎭⎫222=62,∴直线被曲线截得的弦长为62.直线⎩⎨⎧x =-1+t2,y =32t(t 为参数)与圆x 2+y 2=a (a >0)相交于A 、B 两点,设P (-1,0),且|P A |∶|PB |=1∶2,求实数a 的值.[解] 法一:直线参数方程可化为:y =3(x +1)联立方程⎩⎨⎧y =3(x +1),x2+y2=a ,消去y ,得:4x 2+6x +3-a =0.设A (x 1,y 1)、B (x 2,y 2)(不妨设x 1<x 2),则Δ=36-16(3-a )>0,①x 1+x 2=-32,②x 1·x 2=3-a4,③|P A||PB|=-1-x1x2+1=12,④ 由①②③④解得a =3.法二:将直线参数方程代入圆方程得 t 2-t +1-a =0设方程两根为t 1、t 2,则Δ=1-4(1-a )>0⇒a >34.t 1+t 2=1,t 1·t 2=1-a .(*)由参数t 的几何意义知 |P A||PB|=-t1t2=12或|P A||PB|=-t2t1=12. 由t1t2=-12,解得a =3.能根据条件求椭圆、双曲线、抛物线的参数方程,并利用圆锥曲线的参数方程解最值、直线与圆锥曲线的位置关系等问题.已知点P (3,2)平分抛物线y 2=4x 的一条弦AB ,求弦AB 的长. [解] 设弦AB 所在的直线方程为⎩⎪⎨⎪⎧x =3+tcos α,y =2+tsin α(t 为参数), 代入方程y 2=4x 整理得t 2sin 2α+4(sin α-cos α)t -8=0.①∵点P (3,2)是弦AB 的中点,由参数t 的几何意义可知,方程①的两个实根t 1、t 2满足关系 t 1+t 2=0,sin α-cos α=0, ∴0≤α<π, ∴α=π4.∴|AB |=|t 1-t 2|=(t1+t2)2-4t1t2=4·8sin2π4=8.过点B (0,-a )作双曲线x 2-y 2=a 2右支的割线BCD ,又过右焦点F 作平行于BD 的直线,交双曲线于G 、H 两点.求证:|BC||GF|·|BD||FH|=2.[证明] 当a >0时,设割线的倾斜角为α,则它的参数方程为⎩⎪⎨⎪⎧x =tcos α,y =-a +tsin α(t 为参数).①则过焦点F 平行于BD 的直线GH 的参数方程为⎩⎨⎧x =2a +tcos α,y =tsin α(t 为参数).② 将①代入双曲线方程,得t 2cos 2α+2at sin α-2a 2=0. 设方程的解为t 1,t 2,则有|BC |·|BD |=|t 1t 2|=⎪⎪⎪⎪2a2cos 2α, 同理,|GF |·|FH |=⎪⎪⎪⎪a2cos 2α. ∴|BC||GF|·|BD||FH|=2, 当a <0时,同理可得上述结果.一、选择题1.极坐标方程ρ=cos θ和参数方程⎩⎨⎧x =-1-t ,y =2+3t(t 为参数)所表示的图形分别是( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线解析:选A 由ρ=cos θ,得x 2+y 2=x ,∴ρ=cos θ表示一个圆.由⎩⎪⎨⎪⎧x =-1-t y =2+3t 得到3x +y =-1,表示一条直线.2.设r >0,那么直线x cos θ+y sin θ=r (θ是常数)与圆⎩⎨⎧x =rcos φ,y =rsin φ(φ是参数)的位置关系是( )A .相交B .相切C .相离D .视r 的大小而定 解析:选B 圆心到直线的距离d =|0+0-r|cos 2θ+sin 2θ=|r |=r ,故相切.3.双曲线⎩⎪⎨⎪⎧x =3tan θ,y =sec θ(θ为参数),那么它的两条渐近线所成的锐角是( )A .30°B .45°C .60°D .75°解析:选C 由⎩⎨⎧x =3tan θy =sec θ⇒y 2-x23=1,两条渐近线的方程是y =±33x ,所以两条渐近线所夹的锐角是60°.4.若动点(x ,y )在曲线x24+y2b2=1(b >0)上变化,则x 2+2y 的最大值为( )A.⎩⎪⎨⎪⎧b24+4 (0<b<4),2b (b≥4)B.⎩⎪⎨⎪⎧b24+4(0<b<2),2b (b≥2)C.b24+4 D .2b解析:选A 设动点的坐标为(2cos θ,b sin θ),代入x 2+2y =4cos 2θ+2b sin θ= -(2sin θ-b 2)2+4+b24,当0<b <4时,(x 2+2y )max =b24+4, 当b ≥4时,(x 2+2y )max =-(2-b 2)2+4+b24=2b .二、填空题5.直线⎩⎨⎧x =1+tsin 70°,y =2+tcos 70°(t 为参数)的倾斜角的大小为________.解析:原参数方程变为⎩⎪⎨⎪⎧x =1+tcos 20°y =1+tsin 20°(t 为参数),故直线的倾斜角为20°.答案:20° 6.已知直线l 1:⎩⎨⎧x =1+3t ,y =2-4t(t 为参数)与直线l 2:2x -4y =5相交于点B ,又点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3t y =2-4t代入2x -4y =5得t =12,则B (52,0),而A (1,2),得|AB |=52.答案:527.圆的渐开线参数方程为:⎩⎨⎧x =π4cos φ+π4φsin φ,y =π4sin φ-π4φcos φ(φ为参数).则基圆的面积为________.解析:易知,基圆半径为π4.∴面积为π·(π4)2=116π3.答案:116π38.(重庆高考)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线⎩⎨⎧x =t2,y =t3(t 为参数)相交于A ,B 两点,则|AB |=________.解析:ρcos θ=4化为直角坐标方程为x =4 ①,⎩⎪⎨⎪⎧x =t2,y =t3,化为普通方程为y 2=x 3 ②, ①、②联立得A (4,8),B (4,-8),故|AB |=16. 答案:16三、解答题9.经过P (-2,3)作直线交抛物线y 2=-8x 于A 、B 两点. (1)若线AB 被P 平分,求AB 所在直线方程; (2)当直线的倾斜角为π4时,求|AB |.解:设AB 的参数方程是⎩⎪⎨⎪⎧x =-2+tcos α,y =3+tsin α(t 为参数)代入抛物线方程,整理得t 2sin 2α+(6sin α+8cos α)t -7=0. 于是t 1+t 2=-6sin α+8cos αsin 2α,t 1t 2=-7sin 2α.(1)若p 为AB 的中点,则t 1+t 2=0. 即6sin α+8cos α=0⇒tan α=-43.故AB 所在的直线方程为y -3=-43(x +2).即4x +3y -1=0.(2)|AB |=|t 1-t 2|=(t1+t2)2-4t1t2 = (6sin α+8cos αsin 2α)2-4(-7sin 2α)=2sin 2α16+12sin 2α,又α=π4,∴|AB |=2sin 2π416+12sin (2×π4)=87.10.已知对于圆x 2+(y -1)2=1上任意一点P (x ,y ),不等式x +y +m ≥0恒成立,求实数m 的取值范围. 解:圆x 2+(y -1)2=1的参数方程可写为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ. ∵x +y +m ≥0恒成立,∴cos θ+1+sin θ+m ≥0恒成立.∵sin θ+1+cos θ=2sin (θ+π4)+1≥1-2,∴m ≥-(1-2).即m 的取值范围为[2-1,+∞). 11.设P 为椭圆弧x225+y29=1(x ≥0,y≥0)上的一动点,又已知定点A (10,6),以P 、A 为矩形对角线的两端点,矩形的边平行于坐标轴,求此矩形的面积的最值.解:设P (5cos θ,3sin θ)(0≤θ≤π2),则矩形面积为S =(10-5cos θ)(6-3sin θ)=15[4+sin θcos θ-2(sin θ+cos θ)], 令t =sin θ+cos θ,则sin θcos θ=t2-12,∴S =152(t -2)2+452.∵t ∈[1,2], ∴当t =1,即P (5,0)或P (0,3)处有最大值,最大值为30; 当t =2,即P (522,322)处有最小值,最小值为1352-302.(时间:90分钟 满分:120分)一、选择题(本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.方程⎩⎨⎧x =sin θ,y =cos 2θ(θ为参数)表示的曲线上的一个点的坐标是( )A .(2,-7)B .(1,0) C.⎝⎛⎭⎫12,12 D.⎝⎛⎭⎫13,23 解析:选C 由y =cos 2θ得y =1-2sin 2θ, ∴参数方程化为普通方程是y =1-2x 2(-1≤x ≤1), 当x =12时,y =1-2×(12)2=12,故选C.2.直线⎩⎨⎧x =1+2t ,y =2+t(t 为参数)被圆x 2+y 2=9截得的弦长为( )A.125B.1255C.955D.9510 解析:选B ⎩⎪⎨⎪⎧x =1+2t ,y =2+t⇒⎩⎨⎧x =1+5t×25,y =1+5t×15,把直线⎩⎪⎨⎪⎧x =1+2t ,y =2+t 代入x 2+y 2=9得(1+2t )2+(2+t )2=9,5t 2+8t -4=0.|t 1-t 2|=(t1+t2)2-4t1t2=(-85)2+165=125,弦长为5|t 1-t 2|=1255.3.直线⎩⎨⎧x =1-15t ,y =-1+25t(t 为参数)的斜率是( )A .2 B.12C .-2D .-12解析:选C 由⎩⎨⎧x =1-15t , ①y =-1+25t , ②①×2+②得2x +y -1=0, ∴k =-2.4.若圆的参数方程为⎩⎨⎧x =-1+2cos θ,y =3+2sin θ(θ为参数),直线的参数方程为⎩⎨⎧x =2t -1,y =6t -1(t 为参数),则直线与圆的位置关系是( )A .过圆心B .相交而不过圆心C .相切D .相离解析:选B 直线与圆的普通方程分别为3x -y +2=0与(x +1)2+(y -3)2=4, 圆心(-1,3)到直线的距离 d =|-3-3+2|10=410=2105,而d <2且d ≠0,故直线与圆相交而不过圆心.5.参数方程⎩⎨⎧x =cos2θ,y =sin θ(θ为参数)所表示的曲线为( )A .抛物线的一部分B .一条抛物线C .双曲线的一部分D .一条双曲线解析:选A x +y 2=cos 2θ+sin 2θ=1,即y 2=-x +1. 又x =cos 2θ∈[0,1],y =sin θ∈[-1,1], ∴为抛物线的一部分. 6.点P (x ,y )在椭圆(x -2)24+(y -1)2=1上,则x +y 的最大值为( )A .3+5B .5+5C .5D .6解析:选A 椭圆的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ(θ为参数), x +y =2+2cos θ+1+sin θ=3+5sin (θ+φ), ∴(x +y )max =3+5.7.过点(3,-2)且与曲线⎩⎨⎧x =3cos θ,y =2sin θ(θ为参数)有相同焦点的椭圆方程是( )A.x215+y210=1B.x2152+y2102=1 C.x210+y215=1 D.x2102+y2152=1 解析:选A 化为普通方程是x29+y24=1.∴焦点坐标为(-5,0),(5,0),排除B 、C 、D.8.已知过曲线⎩⎨⎧x =3cos θ,y =5sin θ⎝⎛⎭⎫θ为参数且0≤θ≤π2上一点P 与原点O 的距离为13,则P 点坐标为( ) A.⎝⎛⎭⎫332,52 B.⎝⎛⎭⎫322,522C.⎝⎛⎭⎫32,532D.⎝⎛⎭⎫125,125解析:选A 设P (3cos θ,5sin θ),则|OP |2=9cos 2θ+25sin 2θ=9+16sin 2θ=13, 得sin 2θ=14.又0≤θ≤π2,∴sin θ=12,cos θ=32.∴x =3cos θ=332.y =5sin θ=52.∴P 坐标为(332,52).9.设曲线⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ与x 轴交点为M 、N ,点P 在曲线上,则PM 与PN 所在直线的斜率之积为( )A .-34B .-43C.34D.43解析:选A 令y =0得sin θ=0,∴cos θ=±1. ∴M (-2,0),N (2,0).设P (2cos θ,3sin θ). ∴k PM ·k PN =3sin θ2cos θ+2·3sin θ2cos θ-2=3sin 2θ4(cos 2θ-1)=-34.10.曲线⎩⎨⎧x =asin θ+acos θ,y =acos θ+asin θ(θ为参数)的图形是( )A .第一、三象限的平分线B .以(-a ,-a )、(a ,a )为端点的线段C .以(-2a ,-2a )、(-a ,-a )为端点的线段和以(a ,a )、(2a ,2a )为端点的线段D .以(-2a ,-2a )、(2a ,2a )为端点的线段解析:选D 显然y =x ,而x =a sin θ+a cos θ=2a sin(θ+π4),-2|a |≤x ≤2|a |.故图形是以(-2a ,-2a )、(2a ,2a )为端点的线段. 二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.(广东高考)已知曲线C 的极坐标方程为ρ=2cosθ.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.解析:极坐标方程化为直角坐标方程为(x -1)2+y 2=1,令⎩⎪⎨⎪⎧cos θ=x -1,sin θ=y ,即⎩⎪⎨⎪⎧x =cos θ+1,y =sin θ(θ为参数). 答案:⎩⎨⎧x =cos θ+1,y =sin θ(θ为参数)12.设直线l 1的参数方程为⎩⎨⎧x =1+t ,y =a +3t(t 为参数),直线l 2的方程为y =3x -4,若直线l 1与l 2间的距离为10,则实数a 的值为________.解析:将直线l 1的方程化为普通方程得3x -y +a -3=0,直线l 2方程即3x -y -4=0,由两平行线的距离公式得|a -3+4|10=10⇒|a +1|=10⇒a =9或a =-11.答案:9或-1113.直线y =2x -12与曲线⎩⎨⎧x =sin φ,y =cos 2φ(φ为参数)的交点坐标为________.解析:⎩⎪⎨⎪⎧x =sin φ,y =cos 2φ⇒⎩⎪⎨⎪⎧x =sin φ, ①y =1-2sin 2φ, ②将①代入②中,得y =1-2x 2(-1≤x ≤1), ∴2x 2+y =1.由⎩⎪⎨⎪⎧y =2x -12,2x2+y =1,解之得⎩⎨⎧x =12,y =12或⎩⎨⎧x =-32,y =-72(舍去).答案:(12,12)14.(陕西高考)如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为________.解析:由题意得圆的方程为⎝⎛⎭⎫x -122+y 2=14,圆心⎝⎛⎭⎫12,0在x 轴上,半径为12,则其圆的参数方程为⎩⎨⎧x =12+12cos α,y =12 sin α(α为参数),注意α为圆心角,θ为同弧所对的圆周角,则有α=2θ,有⎩⎨⎧x =12+12cos 2θ,y =12sin 2θ,即⎩⎪⎨⎪⎧x =cos2θ,y =sin θcos θ(θ为参数). 答案:⎩⎨⎧x =cos2θ,y =sin θcos θ(θ为参数)三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)求直线⎩⎨⎧x =1+45t ,y =-1-35t (t 为参数)被曲线ρ=2cos(θ+π4)所截的弦长.解:将方程⎩⎨⎧x =1+45t ,y =-1-35t ,ρ=2cos (θ+π4)分别化为普通方程3x +4y +1=0,x 2+y 2-x +y =0,圆心C (12,-12),半径为22,圆心到直线的距离d =110,弦长=2r2-d2=212-1100=75. 16.(12分)(辽宁高考)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =cos φ,y =sin φ(φ为参数),曲线C 2的参数方程为⎩⎨⎧x =acos φ,y =bsin φ(a >b >0,φ为参数).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点间的距离为2,当α=π2时,这两个交点重合.(1)分别说明C 1,C 2是什么曲线,并求出a 与b 的值; (2)设当α=π4时,l 与C 1,C 2的交点分别为A 1,B 1,当α=-π4时,l 与C 1,C 2的交点分别为A 2,B 2,求四边形A 1A 2B 2B 1的面积.解:(1)C 1,C 2的普通方程分别为x 2+y 2=1和x29+y 2=1.因此C 1是圆,C 2是椭圆.当α=0时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a ,0),因为这两点间的距离为2,所以a =3.当α=π2时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1.(2)C 1,C 2的普通方程分别为x 2+y 2=1和x29+y 2=1.当α=π4时,射线l 与C 1交点A 1的横坐标为x =22,与C 2交点B 1的横坐标为x ′=31010.当α=-π4时,射线l 与C 1,C 2的两个交点A 2,B 2分别与A 1,B 1关于x 轴对称,因此四边形A 1A 2B 2B 1为梯形,故四边形A 1A 2B 2B 1的面积为(2x′+2x )(x′-x )2=25. 17.(12分)已知经过A (5,-3)且倾斜角的余弦值是-35的直线,直线与圆x 2+y 2=25交于B 、C 两点.(1)求BC 中点坐标;(2)求过点A 与圆相切的切线方程及切点坐标.解:(1)直线参数方程为⎩⎨⎧x =5-35t ,y =-3+45t (t 为参数),代入圆的方程得t 2-545t +9=0.∴t M =t1+t22=275,则x M =4425,y M =3325,中点坐标为M (4425,3325).(2)设切线方程为⎩⎪⎨⎪⎧x =5+tcos α,y =-3+tsin α(t 为参数),代入圆的方程得t 2+(10cos α-6sin α)t +9=0.Δ=(10cos α-6sin α)2-36=0,cos α=0或tan α=815.∴过A 点切线方程为x =5,8x -15y -85=0. 又t 切=-b2a=3sin α-5cos α,t 1=3,t 2=-3.将t 1,t 2代入切线的参数方程知,相应的切点为(5,0),(4017,-7517).18.(14分)在双曲线x 2-2y 2=2上求一点P ,使它到直线x +y =0的距离最短,并求这个最短距离. 解:设双曲线x22-y 2=1上一点P (2sec α,tan α)(0≤α<2π,且α≠π2,α≠32π),则它到直线x +y=0的距离为d =|2sec α+tan α|2=|2+sin α|2|cos α|.于是d 2=2+22sin α+sin2α2cos2α,化简得,(1+2d 2)sin 2α+22sin α+2(1-d 2)=0.∵sin α是实数,∴Δ=(22)2-8(1+2d 2)(1-d 2)≥0, ∴d ≥22. 当d =22时,sin α=-22, ∴α=54π或74π,这时x 0=-2,y 0=1.或x 0=2sec 74π=2,y 0=tan 74π=-1.故当双曲线上的点P 为(-2,1)或(2,-1)时, 它到直线x +y =0的距离最小,这个最小值为22. 模块综合检测(时间:90分钟 满分:120分)一、选择题(本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线l 的参数方程为⎩⎨⎧x =1+3t ,y =2-4t(t 为参数),则直线l 的倾斜角的余弦值为( )A .-45B .-35C.35D.45解析:选B 由l 的参数方程可得l 的普通方程为4x +3y -10=0,设l 的倾斜角为θ,则tan θ=-43,由1cos 2θ=sin 2θ+cos 2θcos 2θ=tan 2θ+1,得cos 2θ=925,又π2<θ<π, ∴cos θ=-35.2.柱坐标⎝⎛⎭⎫2,π3,1对应的点的直角坐标是( ) A .(3,-1,1) B .(3,1,1) C .(1,3,1) D .(-1,3,1)解析:选C 由直角坐标与柱坐标之间的变换公式 ⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z ,可得⎩⎪⎨⎪⎧x =1,y =3,z =1.3.在极坐标系中,点A 的极坐标是(1,π),点P 是曲线C :ρ=2sin θ上的动点,则|P A |的最小值是( )A .0 B.2 C.2+1 D.2-1解析:选D A 的直角坐标为(-1,0),曲线C 的直角坐标方程为x 2+y 2=2y ,即x 2+(y -1)2=1,|AC |=2,则|P A |min =2-1.4.直线⎩⎨⎧x =sin θ+tsin 15°,y =cos θ-tsin 75°(t 为参数,θ是常数)的倾斜角是( )A .105°B .75°C .15°D .165° 解析:选A 参数方程⎩⎪⎨⎪⎧x =sin θ+tsin 15°,y =cos θ-tsin 75°⇒⎩⎪⎨⎪⎧x =sin θ+tcos 75°,y =cos θ-tsin 75°, 消去参数t 得,y -cos θ=-tan 75°(x -sin θ), ∴k =-tan 75°=tan (180°-75°)=tan 105°. 故直线的倾斜角是105°.5.双曲线⎩⎪⎨⎪⎧x =tan θ,y =21cos θ(θ为参数)的渐近线方程为( )A .y =±22xB .y =±12xC .y =±2xD .y =±2x解析:选D 把参数方程化为普通方程得y24-x 2=1,渐近线方程为y =±2x .6.已知直线⎩⎨⎧x =2-tsin 30°,y =-1+tsin 30°(t 为参数)与圆x 2+y 2=8相交于B 、C 两点,O 为原点,则△BOC 的面积为( )A .27 B.30 C.152 D.302解析:选C ⎩⎪⎨⎪⎧x =2-tsin 30°,y =-1+tsin 30⇒⎩⎨⎧x =2-12t =2-22t′,y =-1+12t =-1+22t′(t ′为参数).代入x 2+y 2=8,得t ′2-32t ′-3=0, ∴|BC |=|t ′1-t ′2|=(t′1+t′2)2-4t′1t′2 =(32)2+4×3=30,弦心距d =8-304=22,S △BCO =12|BC |·d =152.7.已知点P 的极坐标为(π,π),则过点P 且垂直于极轴的直线的极坐标方程为( ) A .ρ=π B .ρ=cos θ C .ρ=πcos θ D .ρ=-πcos θ解析:选D 设M (ρ,θ)为所求直线上任意一点,由图形知OM cos ∠POM =π, ∴ρcos (π-θ)=π.∴ρ=-πcos θ.8.直线l :y +kx +2=0与曲线C :ρ=2cos θ相交,则k 满足的条件是( ) A .k ≤-34 B .k ≥-34C .k ∈RD .k ∈R 且k ≠0解析:选A 由题意可知直线l 过定点(0,-2),曲线C 的普通方程为x 2+y 2=2x ,即(x -1)2+y 2=1.由图可知,直线l 与圆相切时,有一个交点,此时|k +2|k2+1=1,得-k =34.若满足题意,只需-k ≥34.即k ≤-34即可.9.参数方程⎩⎪⎨⎪⎧x =1+sin θ,y =cos 2⎝⎛⎭⎫π4-θ2(θ为参数,0≤θ<2π)所表示的曲线是( ) A .椭圆的一部分 B .双曲线的一部分C .抛物线的一部分,且过点⎝⎛⎭⎫-1,12 D .抛物线的一部分,且过点⎝⎛⎭⎫1,12 解析:选D 由y =cos 2(π4-θ2)=1+cos (π2-θ)2=1+sin θ2,可得sin θ=2y -1,由x =1+sin θ得x 2-1=sin θ,∴参数方程可化为普通方程x 2=2y , 又x =1+sin θ∈[0,2].10.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14B.3-34C.2-34D.13解析:选B 三条直线的直角坐标方程依次为y =0,y =3x ,x +y =1,如图.围成的图形为△OPQ ,可得 S △OPQ =12|OQ |·|y P |=12×1×33+1=3-34. 二、填空题(本大题共4个小题,每小题5分,满分20分.把答案填写在题中的横线上) 11.(江西高考)设曲线C 的参数方程为⎩⎨⎧x =t ,y =t2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.解析:消去曲线C 中的参数t 得y =x 2,将x =ρcos θ,y =ρsin θ代入y =x 2中,得ρ2cos 2θ=ρsin θ,即ρcos 2θ-sin θ=0.答案:ρcos 2θ-sin θ=012.(安徽高考)在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π6(ρ∈R )的距离是________.解析:将ρ=4sin θ化成直角坐标方程为x 2+y 2=4y ,即x 2+(y -2)2=4,圆心为(0,2).将θ=π6(ρ∈R )化成直角坐标方程为x -3y =0,由点到直线的距离公式可知圆心到直线的距离d =|0-23|2=3.答案:3 13.(广东高考)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x = 2 cos t ,y =2sin t(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为________.解析:曲线C 的普通方程为:x 2+y 2= (2 cos t )2+(2 sin t )2=(cos 2t +sin 2t )=2,由圆的知识可知,圆心(0,0)与切点(1,1)的连线垂直于切线l ,从而l 的斜率为-1,由点斜式可得直线l 的方程为y -1=-(x -1),即x +y -2=0.由ρcos θ=x ,ρsin θ=y ,可得l 的极坐标方程为ρcos θ+ρsin θ-2=0.答案:ρcos θ+ρsin θ-2=0或ρ(cos θ+sin θ)=2 14.(湖北高考)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎨⎧x =acos φ,y =bsin φ(φ为参数,a >b >0).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin⎝⎛⎭⎫θ+π4=22m (m 为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆 O 相切,则椭圆C 的离心率为________.解析:由题意知,椭圆C 的普通方程为x2a2+y2b2=1,直线l 的直角坐标方程为x +y =m ,圆O 的直角坐标方程为x 2+y 2=b 2,设椭圆C 的半焦距为c ,则根据题意可知,|m |=c ,|m|2=b ,所以有c =2b ,所以椭圆C的离心率e =c a =c b2+c2=63.答案:63三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(12分)(新课标全国卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =2+2sin α(α为参数),M 是C 1上的动点,P 点满足OP ―→=2OM ―→,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.解:(1)设P (x ,y ),则由条件知M (x 2,y2).由于M 点在C 1上,所以⎩⎨⎧x2=2cos α,y 2=2+2sin α.即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.(α为参数)(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ1=8sin θ. 射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以|AB |=|ρ2-ρ1|=23. 16.(12分)(福建高考)在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N的极坐标分别为(2,0),⎝⎛⎭⎫233,π2,圆C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解:(1)由题意知,M ,N 的平面直角坐标分别为(2,0),(0,233),又P 为线段MN 的中点, 从而点P 的平面直角坐标为(1,33), 故直线OP 的平面直角坐标方程为y =33x . (2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0),(0,233),所以直线l 的平面直角坐标方程为3x +3y -23=0. 又圆C 的圆心坐标为(2,-3),半径r =2,圆心到直线l 的距离d =|23-33-23|3+9=32<r ,故直线l 与圆C 相交.17.(12分)已知某圆的极坐标方程为ρ2-42ρcos(θ-π4)+6=0,求:(1)圆的普通方程和参数方程;(2)在圆上所有的点(x ,y )中x ·y 的最大值和最小值.解:(1)原方程可化为ρ2-42ρ(cos θcos π4+sin θsin π4)+6=0,即ρ2-4ρcos θ-4ρsin θ+6=0.①因为ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ,所以①可化为x 2+y 2-4x -4y +6=0,即(x -2)2+(y -2)2=2,此方程即为所求圆的普通方程.设cos θ=2(x -2)2,sin θ=2(y -2)2,所以参数方程为⎩⎨⎧x =2+2c os θ,y =2+2sin θ(θ为参数). (2)由(1)可知xy =(2+2cos θ)·(2+2sin θ) =4+22(cos θ+sin θ)+2cos θ·sin θ =3+22(cos θ+sin θ)+(cos θ+sin θ)2.②设t =cos θ+sin θ,则t =2sin (θ+π4),t ∈[-2,2].所以xy =3+22t +t 2=(t +2)2+1.当t =-2时xy 有最小值为1; 当t =2时,xy 有最大值为9. 18.(14分)曲线的极坐标方程为ρ=21-cos θ,过原点作互相垂直的两条直线分别交此曲线于A 、B 和C 、D 四点,当两条直线的倾斜角为何值时,|AB |+|CD |有最小值?并求出这个最小值.解:由题意,设A (ρ1,θ),B (ρ2,π+θ),C (ρ3,θ+π2), D (ρ4,θ+32π). 则|AB |+|CD |=(ρ1+ρ2)+(ρ3+ρ4)=21-cos θ+21+cos θ+21+sin θ+21-sin θ=16sin 22θ. ∴当sin 22θ=1即θ=π4或θ=34π时,两条直线的倾斜角分别为π4,3π4时,|AB |+|CD |有最小值16.。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
课时提能演练(二)一、选择题(本题包括6小题,每小题5分,共30分)1.(2012·潍坊高二检测)当前世界范围内都在积极发展新能源和可再生能源,走可持续发展之路。
下列有关做法违背可持续发展精神的是( )A.将氢气、酒精设计成燃料电池,是因为燃料电池具有较高的能量利用率,同时氢气、酒精等燃料可再生B.大力开发丰富的煤炭资源,并将煤进行气化处理,提高煤的综合利用率,可减少对石油的依赖C.开发和利用太阳能、生物质能、风能等,如在我国西部和沿海地区兴建太阳能、风力发电站等D.合理开发利用海底可燃冰有助于缓解化石能源紧缺问题2.(2012·杭州高二检测)已知反应:①101 kPa时,2C(s)+O2(g)====2CO(g) ΔH=-221 kJ·mol-1;②稀溶液中,H+(aq)+OH-(aq)====H2O(l)ΔH=-57.3 kJ·mol-1。
下列结论正确的是( )A.碳的燃烧热ΔH=-110.5 kJ·mol-1B.①的反应热为221 kJ·mol-1C.0.5 mol稀硫酸与1 mol稀NaOH溶液反应放出的热量为57.3 kJD.稀醋酸与稀NaOH溶液反应生成1 mol水,放出57.3 kJ热量3.1.5 g火箭燃料二甲基肼(CH3—NH—NH—CH3)完全燃烧,放出50 kJ热量,则二甲基肼的燃烧热为( )A.1 000 kJ·mol-1B.1 500 kJ·mol-1C.2 000 kJ·mol-1D.3 000 kJ·mol-14.据报道,有一集团拟将在太空建立巨大的集光装置,把太阳光变成激光用于分解海水制氢,其反应可表示为2H2O 2H2↑+O2↑。
有下列几种说法:①水分解反应是放热反应;②氢气是一级能源;③使用氢气作燃料有助于控制温室效应;④若用生成的氢气与空气中多余的二氧化碳反应生成甲醇储存起来,可改善生存条件。
2019-2020学年度最新高中数学人教A 版选修4-4创新应用教学案:第二讲第2节第2课时双曲线、抛物线的参数方程-含答案[核心必知]1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =a sec φ,y =b tan φ,规定参数φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=1的参数方程是⎩⎪⎨⎪⎧x =b tan φ,y =a sec φ.2.抛物线的参数方程(1)抛物线y 2=2px 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,t ∈R .(2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.[问题思考]1.在双曲线的参数方程中,φ的几何意义是什么?提示:参数φ是点M 所对应的圆的半径OA 的旋转角(称为点M 的离心角),而不是OM 的旋转角.2.如何由双曲线的参数方程判断焦点的位置?提示:如果x 对应的参数形式是a sec φ,则焦点在x 轴上; 如果y 对应的参数形式是a sec φ,则焦点在y 轴上.3.若抛物线的参数方程表示为⎩⎨⎧x =2ptan 2α,y =2p tan α.则参数α的几何意义是什么?提示:参数α表示抛物线上除顶点外的任意一点M ,以射线OM 为终边的角.在双曲线x 2-y 2=1上求一点P ,使P 到直线y =x 的距离为 2.[精讲详析] 本题考查双曲线的参数方程的应用,解答本题需要先求出双曲线的参数方程,设出P 点的坐标,建立方程求解.设P 的坐标为(sec φ,tan φ),由P 到直线x -y =0的距离为2得|sec φ-tan φ|2=2得|1cos φ-sin φcos φ|=2,|1-sin φ|=2|cos φ| 平方得1-2sin φ+sin 2φ=4(1-sin 2φ), 即5sin 2φ-2sin φ-3=0. 解得sin φ=1或sin φ=-35.sin φ=1时,cos φ=0(舍去). sin φ=-35时,cos φ=±45.∴P 的坐标为(54,-34)或(-54,34).参数方程是用一个参数表示曲线上点的横纵坐标的,因而曲线的参数方程具有消元的作用,利用它可以简化某些问题的求解过程,特别是涉及到最值、定值等问题的计算时,用参数方程可将代数问题转化为三角问题,然后利用三角知识处理.1.求证:等轴双曲线平行于实轴的弦为直径的圆过双曲线的顶点. 证明:设双曲线为x 2-y 2=a 2,取顶点A (a ,0),弦B ′B ∥Ox ,B (a sec α,a tan α),则B ′(-a sec α,a tan α). ∵k B ′A =a tan α-a sec α-a ,k BA =a tan αa sec α-a ,∴k B ′A ·k BA =-1.∴以BB ′为直径的圆过双曲线的顶点.连接原点O 和抛物线2y =x 2上的动点M ,延长OM 到P 点,使|OM |=|MP |,求P 点的轨迹方程,并说明它是何曲线.[精讲详析] 本题考查抛物线的参数方程的求法及其应用.解答本题需要先求出抛物线的参数方程并表示出M 、P 的坐标,然后借助中点坐标公式求解.设M (x 、y )为抛物线上的动点,P (x 0,y 0)在抛物线的延长线上,且M 为线段OP 的中点,抛物线的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2,由中点坐标公式得⎩⎪⎨⎪⎧x 0=4t ,y 0=4t 2,变形为y 0=14x 20,即x 2=4y .表示的为抛物线.在求曲线的轨迹和研究曲线及方程的相关问题时,常根据需要引入一个中间变量即参数(将x ,y 表示成关于参数的函数),然后消去参数得普通方程.这种方法是参数法,而涉及曲线上的点的坐标时,可根据曲线的参数方程表示点的坐标2.已知抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t (t 为参数),设O 为坐标原点,点M 在抛物线C 上,且点M 的纵坐标为2,求点M 到抛物线焦点的距离.解:由⎩⎪⎨⎪⎧x =2t 2,y =2t得y 2=2x ,即抛物线的标准方程为y 2=2x . 又∵M 点的纵坐标为2, ∴M 点的横坐标也为2. 即M (2,2).又∵抛物线的准线方程为x =-12.∴由抛物线的定义知|MF |=2-(-12)=2+12=52.即点M 到抛物线焦点的距离为52.如果椭圆右焦点和右顶点分别是双曲线⎩⎪⎨⎪⎧x =4sec θ,y =3tan θ(θ为参数)的右顶点和右焦点,求该椭圆上的点到双曲线渐近线的最大距离.[精讲详析] 本题考查椭圆及双曲线的参数方程,解答本题需要先将双曲线化为普通方程并求得渐近线方程,然后根据已知条件求出椭圆的参数方程求解即可.∵x 216-y 29=1, ∴右焦点(5,0),右顶点(4,0). 设椭圆x 2a 2+y 2b 2=1,∴a =5,c =4,b =3.∴方程为x 225+y 29=1.设椭圆上一点P (5cos θ,3sin θ), 双曲线一渐近线为3x -4y =0,∴点P 到直线的距离d =|3×5cos θ-12sin θ|5=3|41sin (θ-φ)|5(tan φ=54).∴d max =3415.对于同一个方程,确定的参数不同, 所表示的曲线就不同,当题目条件中出现多个字母时,一定要注明什么是参数,什么是常量,这一点尤其重要.3.(广东高考)已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ≤π)和⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R ),它们的交点坐标为______________.解析:由⎩⎪⎨⎪⎧x =5cos θ,y =sin θ(0≤θ≤π)得x 25+y 2=1(y ≥0),由⎩⎪⎨⎪⎧x =54t 2,y =t (t ∈R )得x =54y 2.联立方程可得⎩⎨⎧x 25+y 2=1,x =54y 2则5y 4+16y 2-16=0,解得y 2=45或y 2=-4(舍去),则x =54y 2=1.又y ≥0,所以其交点坐标为(1,255).答案:(1,255)本课时的考点是双曲线或抛物线的参数方程与普通方程的互化.天津高考以抛物线的参数方程为载体考查抛物线定义的应用,属低档题.[考题印证](天津高考)已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt ,(t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .若|EF |=|MF |,点M 的横坐标是3,则p =________.[命题立意] 本题考查抛物线的参数方程与普通方程的互化及抛物线定义的应用.[解析] 由题意知,抛物线的普通方程为y 2=2px (p >0),焦点F (p 2,0),准线x =-p2,设准线与x 轴的交点为A .由抛物线定义可得|EM |=|MF |,所以△MEF 是正三角形,在Rt △EF A 中,|EF |=2|F A |,即3+p2=2p ,得p =2.答案:2一、选择题1.下列参数方程(t 为参数)与普通方程x 2-y =0表示同一曲线的方程是( )A.⎩⎪⎨⎪⎧x =|t |,y =tB.⎩⎪⎨⎪⎧x =cos t ,y =cos 2tC.⎩⎪⎨⎪⎧x =tan t ,y =1+cos 2t 1-cos 2tD.⎩⎪⎨⎪⎧x =tan t ,y =1-cos 2t 1+cos 2t解析:选D 注意参数范围,可利用排除法.普通方程x 2-y =0中的x ∈R ,y ≥0.A 中x =|t |≥0,B 中x =cos t ∈[-1,1],故排除A 和B.而C 中y =2cos 2t 2sin 2t =cot 2t =1tan 2t =1x 2,即x 2y =1,故排除C.2.下列双曲线中,与双曲线⎩⎨⎧x =3sec θ,y =tan θ(θ为参数)的离心率和渐近线都相同的是( )A.y 23-x 29=1B.y 23-x 29=-1 C.y 23-x 2=1 D.y 23-x 2=-1 解析:选B 由x =3sec θ得,x 2=3cos 2θ=3(sin 2θ+cos 2θ)cos 2θ=3tan 2θ+3, 又∵y =tan θ,∴x 2=3y 2+3,即x 23-y 2=1.经验证可知,选项B 合适.3.过点M (2,4)且与抛物线⎩⎪⎨⎪⎧x =2t 2,y =4t 只有一个公共点的直线有( )条( )A .0B .1C .2D .3解析:选C 由⎩⎪⎨⎪⎧x =2t2y =4t 得y 2=8x .∴点M (2,4)在抛物线上.∴过点M (2,4)与抛物线只有一个公共点的直线有2条.4.方程⎩⎪⎨⎪⎧x =2t -2-t ,y =2t+2-t (t 为参数)表示的曲线是( ) A .双曲线 B .双曲线的上支 C .双曲线下支 D .圆解析:选B 将参数方程的两个等式两边分别平方,再相减,得: x 2-y 2=(2t -2-t )2-(2t +2-t )2=-4, 即y 2-x 2=4.又注意到2t >0,2t +2-t ≥22t ·2-t =2,即y ≥2.可见与以上参数方程等价的普通方程为: y 2-x 2=4(y ≥2).显然它表示焦点在y 轴上,以原点为中心的双曲线的上支. 二、填空题5.(陕西高考)圆锥曲线⎩⎪⎨⎪⎧x =t 2,y =2t (t 为参数)的焦点坐标是________.解析:代入法消参,得到圆锥曲线的方程为y 2=4x ,则焦点坐标为(1,0).答案:(1,0)6.已知抛物线C :⎩⎪⎨⎪⎧x =2t 2,y =2t (t 为参数)设O 为坐标原点,点M 在C 上运动(点M 与O不重合),P (x ,y )是线段OM 的中点,则点P 的轨迹普通方程为________.解析:抛物线的普通方程为y 2=2x ,设点P (x ,y ),点M 为(x 1,y 1)(x 1≠0),则x 1=2x ,y 1=2y .∵点M 在抛物线上,且点M 与O 不重合, ∴4y 2=4x ⇒y 2=x .(x ≠0) 答案:y 2=x (x ≠0)7.双曲线⎩⎨⎧x =23tan α,y =6sec α(α为参数)的两焦点坐标是________.解析:双曲线⎩⎪⎨⎪⎧x =23tan α,y =6sec α(α为参数)的标准方程为y 236-x 212=1,焦点在y 轴上,c 2=a 2+b 2=48. ∴焦点坐标为(0,±43). 答案:(0,±43)8.(广东高考)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________.解析:由⎩⎪⎨⎪⎧x =t ,y = t ,得y =x ,又由⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ,得x 2+y 2=2.由⎩⎪⎨⎪⎧y =x ,x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1, 即曲线C 1与C 2的交点坐标为(1,1). 答案:(1,1)三、解答题9.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),A 、B 是双曲线同支上相异两点,线段AB 的垂直平分线与x 轴相交于点P (x 0,0),求证:|x 0|>a 2+b 2a.证明:设A 、B 坐标分别为(a sec α,b tan α),(a sec β,b tan β),则中点为M (a2(sec α+sec β),b2(tan α+tan β)),于是线段AB 中垂线方程为y -b2(tan α+tan β) =-a (sec α-sec β)b (tan α-tan β)[x -a 2(sec α+sec β)].将P (x 0,0)代入上式,∴x 0=a 2+b 22a (sec α+sec β).∵A 、B 是双曲线同支上的不同两点, ∴|sec α+sec β|>2. ∴|x 0|>a 2+b 2a.10.过点A (1,0)的直线l 与抛物线y 2=8x 交于M 、N 两点,求线段MN 的中点的轨迹方程.解:设抛物线的参数方程为⎩⎪⎨⎪⎧x =8t 2,y =8t (t 为参数),可设M (8t 21,8t 1),N (8t 22,8t 2),则k MN =8t 2-8t 18t 22-8t 21=1t 1+t 2.又设MN 的中点为P (x ,y ),则⎩⎪⎨⎪⎧x =8t 21+8t 222,y =8t 1+8t 22.∴k AP =4(t 1+t 2)4(t 21+t 22)-1. 由k MN =k AP 知t 1·t 2=-18,又⎩⎪⎨⎪⎧x =4(t 21+t 22),y =4(t 1+t 2),则y 2=16(t 21+t 22+2t 1t 2)=16(x 4-14)=4(x -1). ∴所求轨迹方程为y 2=4(x -1).11.已知圆O 1:x 2+(y -2)2=1上一点P 与双曲线x 2-y 2=1上一点Q ,求P 、Q 两点距离的最小值.解:设Q (sec θ,tan θ),|O 1P |=1, 又|O 1Q |2=sec 2θ+(tan θ-2)2 =(tan 2θ+1)+(tan 2θ-4tan θ+4) =2tan 2θ-4tan θ+5 =2(tan θ-1)2+3.当tan θ=1,即θ=π4时,|O 1Q |2取最小值3,此时有|O 1Q |min = 3. 又|PQ |≥|O 1Q |-|O 1P | ∴|PQ |min =3-1.。
专题讲座(二)化学平衡图象问题一、速率-时间图象(vt图象)解题策略:分清正反应、逆反应及二者的相对大小,分清“突变”和“渐变”;正确判断化学平衡的移动方向;熟记浓度、压强、温度、催化剂等对化学平衡移动的影响规律。
Ⅰ.v′(正)突变,v′(逆)渐变,且v′(正)>v′(逆),说明是增大了反应物的浓度,使v′(正)突变,且平衡正向移动。
Ⅱ.v′(正)、v′(逆)都是突然减小的,且v′(正)>v′(逆),说明平衡正向移动,该反应的正反应可能是放热反应或气体总体积增大的反应。
Ⅲ.v′(正)、v′(逆)都是突然增大的且增大程度相同,说明该化学平衡没有发生移动,可能是使用了催化剂,也可能是对反应前后气体总体积不发生变化的反应压缩体积(即增大压强)所致。
二、百分含量(或转化率)-时间-温度(或压强)图象解题策略——“先拐先平数值大”。
在化学平衡图象中,先出现拐点的反应则先达到平衡,先出现拐点的曲线表示的温度较高(如图Ⅰ中T2>T1)、压强较大(如图Ⅱ中P2>P1)或使用了催化剂(如图Ⅲ中a使用了催化剂)。
Ⅰ.表示T2>T1,正反应是放热反应,温度升高,平衡逆向移动。
Ⅱ.表示p2>p1,A的转化率减小,说明正反应是气体总体积增大的反应,压强增大,平衡逆向移动。
Ⅲ.生成物C的百分含量不变,说明平衡不发生移动,但反应速率a>b,故a使用了催化剂;也可能该反应是反应前后气体总体积不变的可逆反应,a增大了压强(压缩体积)。
三、百分含量(或转化率)-压强-温度图象解题策略——“定一议二”。
在化学平衡图象中,包括纵坐标、横坐标和曲线所表示的三个变量,分析方法是确定其中一个变量,讨论另外两个变量之间的关系。
如Ⅰ中确定压强为105 Pa或107 Pa,则生成物C的百分含量随温度T的升高而逐渐减小,说明正反应是放热反应;再确定温度T不变,作横坐标的垂线,与压强线出现两个交点,分析生成物C的百分含量随压强P的变化可以发现,压强增大,生成物C的百分含量增大,说明正反应是气体总体积减小的反应。
1.读图,完成下列问题。
(1)图A城市为________,判断依据是___________________________________。
(2)A城市的空间形态为____________,这种形态的成因是____________。
(3)该城市在今后发展中的优缺点分别是什么?
解析:此题以重庆为切入点考查城市的空间形态。
重庆地处长江和嘉陵江的交汇处,又是丘陵山区,地形的崎岖不平使城市的发展在地域上失去了完整性。
城市用地被分割为几个有一定规模的部分,各部分有相互独立的活动中心和道路系统,相互之间有一定的空间距离,但由较便捷的通道组合成一个整体。
答案:(1)重庆地处长江与嘉陵江交汇处
(2)组团型地理环境
(3)优点:城市接近大自然,可相对减少市内的绿地建设用地,且较容易处理城市近期和远期发展之间的关系。
缺点:由于各部分城区需采用统一的道路、供水、供电系统,将大大增加各种管线和道路长度,从而增加城市的建设投资及经营管理费用。
2.读图,完成下列问题。
(1)反映城市群体组织结构变化的是图________,其形态特征从散点状到串珠状再演变到________。
(2)反映城市的内部结构演变的是图________。
(3)图A、B反映的是____________现象的两种表现形式:一是__________________,二是____________________。
(4)图B中①工业区形成的原因可能是_____________________________________。
解析:依据图例和图的结构可以判断出,图A反映了城市群体组织结构变化,而图B 则反映了城市的内部结构演变。
答案:(1)A组团状(2)B
(3)城市化城市数量不断增多城市规模不断扩大
(4)接近主要交通干道,保护环境
3.读云南丽江古城主要街区分布图,结合下面材料,回答下列问题。
丽江古城地处滇西北高原,是一座历史悠久、风光如画的少数民族城镇。
该城始建于宋末元初,至今仍为区域政治、商贸、文教重镇。
丽江古城因其科学的城建方法、古朴的民族风格和浓郁的地域特色而闻名于世,1997年被联合国教科文组织列入世界文化遗产名录。
随着旅游业的飞速发展,过于浓厚的商业气息正在日益损害丽江的生态平衡和传统的文化特色。
水是丽江的灵魂,然而过多的人流量造成古城水系自身净化能力严重下降,曾经清澈碧透、直接作为古城居民饮用水的丽江河水,如今水质已下降到三类水标准以下。
外来商业文化也在逐渐地挤压本地文化空间,走在丽江古城大街上,你所看到的是一幅与
真实的纳西人生活无关或变异了的旅游商品交易图。
大批外地人口搬进古城,大量原住居民搬出古城,造成古城人口和文化的双重置换。
丽江古城正日益丧失其古朴、宁静和单纯。
联合国有关专家再次考察丽江古城文化现状后认为:“外地人取代本地人的现象,使丽江古城文化面临危机。
”甚至尖锐地指出,丽江古城原住居民大批迁出古城是因为他们在旅游发展中获益甚微,生存环境并未得到实质性改善。
(1)为了使古城风貌和历史文化得到完整的保留,丽江政府在城市的保护和发展方面应着重采取什么措施?
(2)丽江古城悠久的历史、如画的风光、古朴的民族风格和浓郁的地域特色吸引了大量的游客,随着旅游业的发展,古城保护和发展将会产生哪些矛盾?
解析:仔细阅读材料,有些问题的答案就出现在材料中,这是正确回答问题的基础。
同时结合知识储备,把一些问题进行概括、总结,用规范的学科语言表述出来。
答案:(1)颁布保护条例和建立专门的管理机构;保护古城区,开发新城区;对古城内的建筑群进行分类保护;注重对地区非物质文化遗产的保护。
(2)过多的人流量造成古城水污染严重;外来的商业文化可能取代本地文化;外地人取代本地人,造成古城人口和文化的双重置换。
4.阅读材料,回答下列问题。
材料1:近些年来随着经济的快速发展,城市化过程也飞速加快,在城市化推进过程中,如何做好城乡特色景观和传统文化的保护是个极为重要的问题。
材料2:右图为苏州城市西北部局部图,前面是寒山寺风景区,运
河、老式民居、枫桥、寒山寺等古迹历历在目,远处则是高楼林
立的苏州新区,这里集中了200多家高新技术企业,已成为国际
重要的信息产业基地。
(1)城乡特色景观和传统文化是城乡个性的重要体现。
列举在
城市规划和发展过程中,需要重点保护的特色景观和传统文化。
(至
少六条)
(2)据材料2说明怎样协调城乡发展和城乡特色景观及传统文化保护的关系。
解析:城乡特色景观和传统文化是历史的继承,又是延续民族发展的脉络,城镇发展必须突出地方传统特色,突出区域文化特点。
在城市规划和发展过程中,需要重点保护的特色景观和传统文化有城市历史文物、旧时典型街区景观、古建筑、古树、老字号、名人故居、革命纪念地、地方传统艺术、民间工艺美术、装饰与服饰、著名的学校、博物馆和展览馆等。
同时要搞好新旧城市协调发展,既保护旧城景观,又促进区域经济发展。
答案:(1)在城市规划和发展过程中,需要重点保护的特色景观和传统文化有:城市历史文物、旧时典型街区景观、古建筑、古树、老字号、名人故居、革命纪念地、地方传统
艺术、民间工艺美术、装饰与服饰、著名的学校、博物馆和展览馆等。
(2)新旧城协调、同步发展,既保护城乡特色景观和传统文化,又使新区得到进一步的发展,保护、发展两不误。