辽宁省营口市2015-2016年八年级上数学期末试卷及答案
- 格式:doc
- 大小:183.00 KB
- 文档页数:5
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
2015-2016学年度⼈教版⼋年级上学期数学期末试卷及答案(2套)2015-2016学年度⼋年级上学期数学期末试卷(⼀)⼀、选⼀选, ⽐⽐谁细⼼(本⼤题共12⼩题, 每⼩题3分, 共36分, 在每⼩题给出的四个选项中, 只有⼀项是符合题⽬要求的) 1.计算)A.2B.±2C.-2D.4 2.计算23()ab 的结果是() A.5abB.6abC.35a bD.36a b3,则x 的取值范围是() A.x >5B.x ≥5C.x ≠5D.x ≥04.如图所⽰,在下列条件中,不能..判断△ABD ≌△BAC 的条件是( ) A.∠D =∠C ,∠BAD =∠ABCB.∠BAD =∠ABC ,∠ABD =∠BACC.BD =AC ,∠BAD =∠ABCD.AD =BC ,BD =AC5.如图,六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴,若∠AFE+∠BCD =280°,则∠AFC+∠BCF 的⼤⼩是() A.80°B.140°C.160°D.180°6.下列图象中,以⽅程220y x --=的解为坐标的点组成的图象是()7.任意给定⼀个⾮零实数,按下列程序计算,最后输出的结果是()FEDCBAA.mB.1m +C.1m -D. 2m 8.已知⼀次函数(1)y a x b =-+的图象如图所⽰,那么a 的取值范围是( )A.1a >B.1a <C.0a >D.0a <9.若0a >且2x a =,3y a =,则x ya -的值为()A.1-B.1C.23D.3210.如图,已知△ABC 中,∠ABC=45°,AC=4,H 是⾼AD 和BE 的交点,则线段BH 的长度为()B.C.5D.411.如图,是某⼯程队在“村村通”⼯程中修筑的公路长度y (⽶)与时间x (天)之间的关系图象.根据图象提供的信息,可知该公路的长度是( )⽶. A.504 B.432 C.324 D.72012.直线y=kx+2过点(1,-2),则k 的值是() A .4 B .-4 C .-8 D .8⼆、填⼀填,看看谁仔细(本⼤题共10⼩题,每⼩题3分,共30分,请你将最简答案填在“ ”上)13.⼀个等腰三⾓形的⼀个底⾓为40°,则它的顶⾓的度数是 . 14.观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;……(第10题图)(第11题图)根据前⾯各式的规律可得到12(1)(1)n n n x x x x x ---+++++=… .15.计算: -28x 4y 2÷7x 3y =16.如图所⽰,观察规律并填空:.17.若a 42a y=a 19,则 y=_____________. 18.计算:(52)20083(-25)20093(-1)2007=_____________. 19.已知点A (-2,4),则点A 关于y 轴对称的点的坐标为_____________. 20. 2-2的相反数是,绝对值是 .21. 0.01的平⽅根是_____,-27的⽴⽅根是______,1_ _. 22. 16的平⽅根为_________.三、解⼀解,试试谁更棒(本⼤题共9⼩题,共72分.)17.(本题4分)计算:(8)()x y x y --.18.(本题5分)分解因式:3269x x x -+.19.(本题5分)已知:如图,AB=AD,AC=AE,∠BAC=∠DAE.求证:BC=DE.20.(4)先化简在求值,2()()()y x y x y x y x +++--,其中x = -2,y = 12.21.(本题5分)2008年6⽉1⽇起,我国实施“限塑令”,开始有偿使⽤环保购物袋.为了满⾜市场需求,某⼚家⽣产A B ,两种款式的布质环保购物袋,每天共⽣产4500个,两EDCBA种购物袋的成本和售价如下表,设每天⽣产A种购物袋x个,每天共获利y元.(1)求出y与x的函数关系式;(2)如果该⼚每天最多投⼊成本10000元,那么每天最多获利多少元?=的图象l是第⼀、三象限的23.(本题10分)如图,在平⾯直⾓坐标系中,函数y x⾓平分线.实验与探究:由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线l的对称点B'、C'的位置,并写出它们的坐标: B'、C';归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平⾯内任⼀点P(m,n)关于第⼀、三象限的⾓平分线l的对称点P'的坐标为;参考答案及评分标准⼀、选⼀选,⽐⽐谁细⼼(每⼩题3分,共36分)⼆、填⼀填, 看看谁仔细(每⼩题3分,共12分)13. 100°. 14.11n x+-. 15. x >-2 . 16.105°三、解⼀解, 试试谁更棒(本⼤题共9⼩题,共72分)17.解:(8)()x y x y --=2288x xy xy y --+ ……………………………4分 =2298x xy y -+ ……………………………6分18.解:3269x x x -+=2(69)x x x -+ ……………………………3分 =2(3)x x - ……………………………6分 19.证明:∵∠BAD=∠CAE ∴∠BAC=∠DAE ……………………………1分在△BAC 和△DAE 中BA DA BAC DAE AC AE =??∠=∠??=?∴△BAC ≌△DAE …………………………………………………………4分∴BC=DE …………………………………………………………………6分20.解:原式22222x xy y x y x ??=-++-÷?? 222x xy x ??=-÷??22x y =- ………………………………………………5分当11,2x y =-=,原式=-3 ………………………………………………7分 21.解:⑴5152S x =-+ (06)x << ………………………………………4分⑵由515102x -+=,得x=2 ∴P 点坐标为(2,4) …………………………………………………8分22.解:(1)根据题意得:=(2.3-2)(3.53)(4500)y x x +--=0.2+2250x - ………………………………4分(2)根据题意得:23(4500)10000x x +-≤解得3500x ≥元0.20k =-< ,y ∴随x 增⼤⽽减⼩∴当3500x =时,0.2350022501550y =-?+=答:该⼚每天⾄多获利1550元. ………………………………………8分 23.解:(1)如图:(3,5)B ',(5,2)C '- …………………………………2分(2)(n,m) ………………………………………………………………3分 (3)由(2)得,D(0,-3) 关于直线l 的对称点D '的坐标为(-3,0),连接D 'E 交直线l 于点Q ,此时点Q 到D 、E 两点的距离之和最⼩ …………………4分设过D '(-3,0) 、E(-1,-4)的设直线的解析式为b kx y +=,则304k b k b -+=??-+=-?,.∴26k b =-??=-?,.∴26y x =--.由26y x y x =--??=?,.得22x y =-??=-?,.∴所求Q 点的坐标为(-2,-2)………………………………………9分24.解:⑴AFD DCA ∠=∠(或相等) ……………………………………2分(2)AFD DCA ∠=∠(或成⽴) ……………………………………3分理由如下:由△ABC ≌△DEF∴AB DE BC EF ==,,ABC DEF BAC EDF ∠=∠∠=∠,ABC FBC DEF CBF ∴∠-∠=∠-∠ ABF DEC ∴∠=∠在ABF △和DEC △中,AB DE ABF DEC BF EC =??∠=∠??=?,,,ABF DEC BAF EDC ∴∠=∠△≌△,BAC BAF EDF EDC FAC CDF ∴∠-∠=∠-∠∠=∠, AOD FAC AFD CDF DCA ∠=∠+∠=∠+∠AFD DCA ∴∠=∠ ………………………………………………………8分(3)如图,BO AD ⊥. …………………………………………………9分………………………………………………10分25.解:⑴等腰直⾓三⾓形 ………………………………………………1分∵2220a ab b -+= ∴2()0a b -= ∴a b =∵∠AOB=90° ∴△AOB 为等腰直⾓三⾓形 …………………4分⑵∵∠MOA+∠MAO=90°,∠MOA+∠MOB=90° ∴∠MAO=∠MOB ∵AM ⊥OQ ,BN ⊥OQ ∴∠AMO=∠BNO=90°在△MAO 和△BON 中MAO MOB AMO BNO OA OB ∠=∠??∠=∠??=?∴△MAO ≌△NOB ∴OM=BN,AM=ON,OM=BN∴MN=ON-OM=AM-BN=5 ……………………………………8分⑶PO=PD 且PO ⊥PDADO F CB (E ) G如图,延长DP 到点C ,使DP=PC,连结OP 、OD 、OC 、BC在△DEP 和△CBP DP PC DPE CPB PE PB =??∠=∠??=?∴△DEP ≌△CBP ∴CB=DE=DA,∠DEP=∠CBP=135°在△OAD 和△OBC DA CB DAO CBO OA OB =??∠=∠??=?∴△OAD ≌△OBC∴OD=OC,∠AOD=∠COB ∴△DOC 为等腰直⾓三⾓形∴PO=PD ,且PO ⊥PD. ……………………………………………12分2015-2016学年度⼋年级上学期数学期末试卷(⼆)⼀、选择题: 1.在0,31-, π,9这四个数中,是⽆理数的是() A .0 B .-31C. πD. 92.下列乘法中,不能运⽤平⽅差公式进⾏运算的是()A .(x +a )(x -a )B .(a+b )(-a -b )C .(-x -b )(x -b )D .(b +m )(m -b )3.在下列运算中,计算正确的是()A. a a a 326?=B. a a a 824÷=C. ()a a 235=D. ()ab a b 2224= 4. 如图,DEF ABC ??≌,点A 与D ,点B 与E 分别是对应顶点,BC=5cm ,BF=7cm ,则EC 的长为()A. 1cmB. 2cmC. 3cmD. 4cm5、点P (3,2)关于x 轴的对称点'P 的坐标是()A .(3,-2)B .(-3,2)C .(-3,-2)D .(3,2)AD G6.某同学⽹购⼀种图书,每册定价20元,另加书价的5%作为快递运费。
2015---2016学年度上学期八年级期末考试题数学试题答案、1:3 17、-1 18、25或65 19、-4 20、18(作CH ⊥FC 交AD 的延长线于H ,∠AEK=∠CEH=60°,△CBF ≌△ACH )三、21,原式=()x x y x x y x 3221-÷⎥⎦⎤⎢⎣⎡--- 1分 =()()x x y x x y x x x 322-÷⎥⎦⎤⎢⎣⎡--- 1分 =()xx y x x x 322-÷-- 1分=()232-⨯--x xy x x x 1分=yx -31分 当x=3,y=2时,原式=32333=-=-y x 2分 22、(1)图画正确 2分 C 1(3,-2) 1分(2)(2,0),(4,0),(5,1)(4,4),(2,4)(1,3)写出两个 2分(3)252分23、(1)46-a 4分 (2)1242+-a a 4分24、证明:(1)作BH ⊥AC 于H ,∵CD ⊥AB ∴∠BDC=∠CHB=90° 1分 ∵AB=AC ∴∠ABC=∠ACB 1分 ∴△BDC ≌△CHB ∴BD=CH , 1分 ∵CE=2BD ∴CH=HE ,∴BH 垂直平分CE ,∴BC=BE 1分 (2)∵BE=AE ∴∠A=∠EBA ∵BE=BC ∴∠BEC=∠BCE 1分∴∠BEC=∠A+∠EBA=2∠A ,∴∠BCE=2∠A , 1分 ∵AB=AC ∴∠ABC=∠ACB=2∠A , 1分 ∵∠A+∠ABC+∠ACB=180°∴5∠A=180°∴∠A=36° 1分25、(1)解:设购买一个A 品牌的足球需要x 元,根据题意得 22515002000⨯+=x x 2分 解得:x=50 1分经检验x=50是原分式方程的解。
1分 x+25=75答:购买一个A 品牌的足球需要50元,一个B 品牌的足球需要75元。
2015-2016学年八年级上学期期末考试数学试题2016.1.8 一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A.1,2,3 B.5,12,13 C.4,5,7 D.9,10,112.在实数722-、0、3-、506、π、..101.0中,无理数的个数是 ( ) A.2个 B.3个 C.4个 D.5个3.4的平方根是( )A . 4B .-4C . 2D . ±2 4.下列平方根中, 已经化简的是( )A. 31B. 20C. 22D. 1215.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为 ( )A.1B.2C.3D.46. 点P (-1,2)关于y 轴对称的点的坐标为 ( ) A.(1,-2) B.(-1,-2) C.(1,2) D.(2,1)7. 矩形具有而菱形不一定具有的性质是 ( ) A. 对角线互相平分 B.对角线相等 C. 四条边都相等 D. 对角线互相垂直8.下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离D. 经过旋转,对应角相等,对应线段一定相等且平行9. 鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的 ( ) A.平均数 B.众数 C.中位数 D.众数或中位数10. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A. B. C. D.二、填空题(每小题3分,共30分)11.在Rt △ABC 中,∠C=90°a=3,b=4,则c= 。
12.一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于 13.在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为。
2015-2016学年度第一学期末测试一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个。
A.1 B2 C.3 D.42.与3-2相等的是( ) A.91B.91- C.9D.-9 3.当分式21-x 有意义时,x 的取值范围是( ) A.x <2 B.x >2 C.x ≠2 D.x ≥2 4.下列长度的各种线段,可以组成三角形的是( ) A.1,2,3 B.1,5,5 C.3,3,6 D.4,5,6 5.下列式子一定成立的是( )A.3232a a a =+B.632a a a =•C. ()623a a = D.326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B.7 C.8 D.97.空气质量检测数据pm2.5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=0.000001米,2.5微米用科学记数法可表示为( )米。
A.2.5×106 B.2.5×105 C.2.5×10-5 D.2.5×10-68.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()。
A.50°B.80°C.50°或80°D.40°或65°9.把多项式x32分解因式结果正确的是()x+x-2A.2)12(2xx- D.)1x C.)xx(-xx B.2)1(+x-xx)(1(+10.多项式x()22中,一定含下列哪个因式()。
x+x--2A.2x+1B.x(x+1)2C.x(x2-2x)D.x(x-1)11.如图,在△ABC中,∠BAC=110°,MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是()A.20°B.40°C.50°D.60°12.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为()A.0.8B.1 C .1.5 D.4.213.如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是()A.12B.10C.8D.614. 如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则拼成的矩形的面积是()cm2.A .a a 522+ B.3a+15 C .(6a+9) D .(6a+15)15.艳焕集团生产某种精密仪器,原计划20天完成全部任务,若每天多生产4个,则15天完成全部的生产任务还多生产10个。
学生学业质量调查分析与反馈八 年 级 数 学(试卷分值100分,考试时间100分钟,考试形式:闭卷, )一、选一选,比比谁细心(本大题共8个小题,每小题2分,共16分. 在每小题给出的 四个选项中,只有一项是符合题目要求的,把这个正确的选项填在下面表格的相应位置)1.下列图形中,不是..轴对称图形的是( ▲ )ABCD2.下列调查中,适合普查的是( ▲ ) A .中学生最喜爱的电视节目 B .某张试卷上的印刷错误 C .质检部门对各厂家生产的电池使用寿命的调查 D .中学生上网情况3.在22、4π、722 、1.732、16这五个数中,无理数有( ▲ )个A .1B .2C .3D .44. 已知等腰三角形中一个角等于100o ,则它的顶角是( ▲ ) A .40oB .50oC .80oD .100o5.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+1图象上的两点,则a 与b 的 大小关系是( ▲ ) A .a >bB .a =bC .a <bD .以上都不对6.在元旦联欢会上, 3名小朋友分别站在△ABC 三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢坐到凳子上谁获胜,为使游戏公平,则凳子应放置的最适当的位置是在△ABC 的( ▲ ) A .三边中线的交点B .三条角平分线的交点C .三边垂直平分线的交点D .三边上高的交点7.若正比例函数y=kx (k≠0)的图象在第二、四象限,则一次函数y=x+k 的图象大致是( ▲ )ABCD8.在平面直角坐标系中,对于平面内任意一点(y x ,),若规定以下两种变换f 和g : ①f (y x ,)=(x y ,)如f (2,3)=(3,2) ②g (y x ,)=(y x --,)如g (2,3)=(﹣2,﹣3).按照以上变换有:f (g (2,3))=f (﹣2,﹣3)=(﹣3,﹣2),那么g (f (﹣6,7)) 等于( ▲ )A .(7,6)B .(7,﹣6)C .(﹣7,6)D .(﹣7,﹣6) 二、填一填,看看谁仔细(本大题共10小题,每小题2分,共20分) 9.3的平方根是 _____________.10.取2=1.4142135623731…的近似值,若要求精确到0.01,则≈2___________. 11.据统计,近几年全世界森林面积以每年约1700万公顷的速度消失,为了预测未来20年世界森林面积的变化趋势,可选用__________统计图来表示收集到的数据.(条形、扇形、折线中选填一个)12.如图,AC ⊥CB ,AD ⊥DB ,要使ΔABC ≌ΔABD ,可补充的一个条件是 ;第12题图 第13题图13.如图,已知函数)0(≠+=a b ax y 和)0(≠=k kx y 的图像交于点P ,则根据图像可得,二元一次方程组⎩⎨⎧=+=kxy bax y 的解是________________ .14.如图,在△ABC 中,AD ⊥BC 于点D ,BD=CD ,若BC=6, AD=5,则图中阴影部分的面积为________________.15.一个三角形三边长的比为3:4:5,它的周长是24cm .这个三角形的面积为_________ cm 2. 16.下列事件:①从装有1个红球和2个黄球的袋子中摸出的1个球是白球;②随意调查1位青年,他接受过九年制义务教育;③花2元买一张体育彩票,喜中500万大奖;④抛掷1个小石块,石块会下落.估计这些事件的可能性大小,并将它们的序号按从小到大排列:____________________________.17.小聪用刻度尺画已知角的平分线,如图,在∠MAN 两边上分别量取AB = AC ,AE = AF ,连接FC 、EB 交于点D ,作射线AD ,则图中全等的三角形共有____________对.第14题图 第17题图 第18题图18.如图,点M 是直线32+=x y 上的动点,过点M 作平行于y 轴的直线交x 轴于点N ,在y 轴上取一点P ,使△MNP 为等腰直角三角形,请写出符合条件的点P 坐标____________________________.三、解答题(本大题共有7小题,共64分.解答时应写出文字说明、推理过程或演算步骤) 19.计算:(每小题4分,共8分)(1)求x 的值: (x-1)2=25 (2)计算:4127)5(32+---20. (本题满分9分)为保证中小学生每天锻炼一小时,东台市某中学开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2).(1)某班同学的总人数为人;(2)请根据所给信息在图(1)中将表示“乒乓球”项目的图形补充完整;(3)扇形统计图(2)中表示”篮球”项目扇形的圆心角度数为.21.(本题满分9分) 如图是规格为8×8的正方形网格,每个小方格都是边长为1的正方形,请在所给网格中按下列要求操作:(1)在网格中建立平面直角坐标系,使A点坐标为(﹣2,4);(2)在第二象限内的格点(网格线的交点)上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是______________;(3)画出△ABC关于关于y轴对称的△A′B′C′.22.(本题满分8分)如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=8,△CBD周长为13,求BC的长.23.(本题满分10分)数学实验:画∠AOB=90°,并画∠AOB 的平分线OC.(1)将一块足够大的三角尺的直角顶点落在OC 的任意一点P 上,使三角尺的两条直角边分别与OA 、OB 交于点E 、F (如图①).度量PE 、PF 的长度,PE ____PF (填>, <,=) (2)将三角尺绕点 P 旋转(如图②),①PE 与PF 相等吗?若相等请进行证明,若不相等请说明理由. ②若2OP ,请直接写出四边形OEPF 的面积:________________.24. (本题满分10分) 甲、乙两人商定举行一次远足活动, A 、B 两地相距10 千米,甲从 A 地出发匀速步行到 B 地,乙从 B 地出发匀速步行到 A 地.两人同时出发,相向而行,设步行时间为x 小时,甲、乙两人离 A 地的距离分别为1y 千米、2y 千米,1y 、2y 与x 的函数关系图像如图所示,根据图像解答下列问题: (1)直接写出1y 、2y 与x 的函数关系式;(2)求甲、乙两人出发后,几小时相遇?相遇时乙离 A 地多少千米? (3)甲、乙两人首次相距 4 千米时所用时间是多少小时?25.(本题满分10分)如图,在平面直角坐标系xOy中,已知点A(-1,0),点B(0,2),点C(3,0),直线a为过点D(0,-1)且平行于x轴的直线.(1)直接写出点B关于直线a对称的点E的坐标_______;(2)若P为直线a上一动点,请求出△PBA周长的最小值和此时P点坐标;(3)若M为直线a上一动点,且S△ABC=S△MAB,请求出M点坐标.2015-2016第一学期八年级数学期末考试答案一、选一选,比比谁细心二、填一填,看看谁仔细9.3±;10.1.41;11.折线;12.答案不唯一;13.⎩⎨⎧-=-=24y x ;14.215;15.24;16.①③②④;17.4; 18.(0,0),(0,43),(0,-3),(0,1).三、解答题19.(1)-4,6(一个2分);(2)4127)5(32+--- =5—(—3)+21(3分)对一个得1分 =8.5 (4分) 20.(1)50; (3分)(2)略,条形图上应标注5或有水平虚线表示对准纵坐标5;(3分) (3)144°. (3分)21. 解答: 解:(1)如图所示,建立平面直角坐标系;(3分) (2)点C 的坐标为(﹣1,1);(3分) (3)△A'B'C'如图所示.(3分)22.(1)∵AB=AC ,∠A=50°∴∠ABC=∠C=65°……………………..2分又∵DE 垂直平分AB∴ DA=DB ,∴∠ABD=∠A=50° ……………………..4分∴∠DBC=15° ……………………..5分(2)∵DE 垂直平分AB∴ DA=DB ,∴ DB+DC=DA+DC=AC …………………..7分又∵AB=AC=8,△CBD 周长为13∴BC=5 …………………..8分23.(1) = ………………..2分(2)解:①PE=PF ……………….3分过点P 作PM ⊥OA ,PN ⊥OB ,垂足是M ,N ,则∠PME=∠PNF=90°,∵OP 平分∠AOB ,∴PM=PN ,∵∠AOB=∠PME=∠PNF=90°,∴∠MPN=90°,∵∠EPF=90°,∴∠MPE=∠FPN ,在△PEM 和△PFN 中⎪⎩⎪⎨⎧∠=∠=∠=∠NPF MPE PNPM PNF PME∴△PEM ≌△PFN ,∴PE=PF .……………………………………………………….8分 ②若2=OP ,请直接写出四边形OEPF 的面积:___1___.………..10分24.解:(1)y 1=4x (0≤x ≤2.5),y 2= -5x+10(0≤x ≤2);………..4分(2)根据题意可知:两人相遇时,甲、乙离A 地的距离相等,即y 2=y 1, 由此得一元一次方程-5x+10=4x ,解这个方程,得x=(小时), 当x=时,y 2=-5×+10=(千米)。
2015—2016学年度第一学期初二期末质量检测数学试卷2016.1考生须知1.本试卷共6页,共三道大题,30道小题,满分120分.考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.9的算术平方根是 A .3B .-3C .±3D .±312. 若2x -表示二次根式,则x 的取值范围是 A .x ≤2 B. x ≥ 2 C. x <2 D.x >2 3.若分式21+-x x 的值为0,则x 的值是 A .-2 B .-1 C . 0 D .14.剪纸是我国最古老的民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是轴对称图形的为5.在下列二次根式中是最简二次根式的是 A.12B.4C. 3D. 86.下列各式计算正确的是A .235+=B .43331-=C .233363⨯=D .2733÷=7.在一个不透明的箱子里,装有3个黄球、5个白球、2个黑球,它们除了颜色之外没有其他区别. 从箱子里随意摸出1个球,则摸出白球的可能性大小为A.0.2B.0.5C. 0.6D. 0.88.如图,一块三角形玻璃损坏后,只剩下如图所示的残片,对图中的哪些A B C D尺规作图:作一个角等于已知角. 已知:∠AO B.求作:一个角,使它等于∠AO B.数据测量后就可到建材部门割取符合规格的三角形玻璃 A .∠A ,∠B ,∠C B .∠A ,线段AB ,∠BC .∠A ,∠C ,线段ABD .∠B ,∠C ,线段AD9.右图是由线段AB ,CD ,DF ,BF ,CA 组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为 A .62°B .152°C .208°D .236°10.如图,直线L 上有三个正方形a b c ,,,若a c ,的面积分别为1和9,则b 的面积为A .8B .9 C.10 D.11二、填空题(本题共21分,每小题3分) 11.如果分式23x +有意义,那么x 的取值范围是____________. 12.若实数x y ,满足2-2(3)0x y +-=,则代数式+x y 的值是 .13.如果三角形的两条边长分别为23cm 和10cm ,第三边与其中一边的长相等,那么第三边的长为___________. 14.若a <1,化简2(1)1a --等于____________.15.已知112x y -=,则分式3232x xy yx xy y+---的值等于____________. 16.如图,在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 .17.阅读下面材料:在数学课上,老师提出如下问题:G FEDCB Acb aLDCBA ODCBA(1)作射线O ′A ′;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ; (3)以O ′为圆心,OC 为半径作弧C ′E ′,交O ′A ′于C ′; (4)以C ′为圆心,CD 为半径作弧,交弧C ′E ′于D ′; (5)过点D ′作射线O ′B ′.所以∠A ′O ′B ′就是所求作的角.小强的作法如下:老师说:“小强的作法正确.”请回答:小强用直尺和圆规作图'''A O B AOB ∠=∠,根据三角形全等的判定方法中的_______,得出△'''D O C ≌△DOC ,才能证明'''A O B AOB ∠=∠.三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分)18.计算:03982-3-2-+-().19.计算:18312-2⨯÷.20.计算:(21)(63)+⨯-.21.计算: 11(1)1a a a a+-+⋅+.22.如图,在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求BC 的长.E'O'D'C'B'A'23.解方程:12211x x x +=-+.24.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.25. 先化简:22211a a a a a a --⎛⎫-÷ ⎪+⎝⎭,然后从-1,0,1,2中选一个你认为合适的a 值,代入求值.26.小红家最近新盖了房子,室内装修时,木工师傅让小红爸爸去建材市场买一块长3m ,宽2.2m 的薄木板用来做家居面,到了市场爸爸看到满足这个尺寸的木板有点大,买还是不买爸爸犹豫了,因为他知道他家门框高只有2m,宽只有1m ,他不知道这块木板买回家后能不能完整的通过自家门框.请你替小红爸爸解决一下难题,帮他算一算要买的木板能否通过自家门框进入室内.(备用图可供做题参考,薄木板厚度可以忽略不计)27.列方程解应用题李明和王军相约周末去怀柔图书馆看书,请根据他们的微信聊天内容求李明乘公交、王军骑自行车每小时各行多少公里?FED CBA 备用图HGF EDCBA门框薄木板28.已知:如图,ABC△中,45ABC∠=°,CD AB⊥于D,BE平分ABC∠,且BE AC⊥于E,与CD相交于点F H,是BC边的中点,连结DH与BE相交于点G.(1)判断AC与图中的那条线段相等,并证明你的结论;(2)若CE 的长为3,求BG的长.29.已知:在△ABC中,D为BC边上一点,B,C两点到直线AD的距离相等.(1)如图1,若△ABC是等腰三角形,AB=AC,则点D的位置在;(2)如图2,若△ABC是任意一个锐角三角形,猜想点D的位置是否发生变化,请补全图形并加以证明;(3)如图3,当△ABC是直角三角形,∠A=90°,并且点D满足(2)的位置条件,用等式表示线段AB,AC,AD之间的数量关系并加以证明.CBA图1AB C图2AB C图3HG F EDCBA图3lC ABP A 'D30.请阅读下列材料:问题:如图1,点,A B 在直线l 的同侧,在直线l 上找一点P ,使得AP BP +的值最小.小明的思路是:如图2所示,先做点A 关于直线l 的对称点A ',使点',A B 分别位于直线l 的两侧,再连接A B ',根据“两点之间线段最短”可知A B '与直线l 的交点P 即为所求.A 'P BAll图2图1AB请你参考小明同学的思路,探究并解决下列问题: (1)如图3,在图2的基础上,设AA '与直线l 的交点为C ,过点B 作BD ⊥l ,垂足为D . 若1CP =,1AC =,2PD =,直接写出AP BP +的值; (2)将(1)中的条件“1AC =”去掉,换成“4BD AC =-”,其它条件不变,直接写出此时AP BP +的值;(3)请结合图形,求()()223194m m -++-+的最小值.数学试卷答案及评分参考2016.1一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 题 号 1 2 3 4 5 6 7 8 9 10 答 案 ABDBCDBBCC二、填空题(本题共21分,每小题3分) 题 号11121314151617答 案3x ≠-2+323cm -a 143SSS三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分) 18.解:原式=3-22-1+………………4分 =2………………………………5分19.解:原式=22412-2÷………………3分 =12-22………………………………4分 =122………………………………5分 20.解:原式=12663-+-………………3分=123-……………………………4分 =233-=3………………………………5分21.解:原式=211a a a-+…………………………3分=2a a…………………………4分a =…………………………5分22.解:∵△ABD 是等边三角形,∴∠B =∠BAD =∠AD B =60°, ∵AB =2,∴BD=AD=2.………………………2分∵∠BAC =90°,∴∠DA C =90°﹣60°=30°.………………………3分∵∠AD B =60°,∴∠C =30°.………………………4分 ∴AD =DC=2,∴B C=BD+DC=2+2=4. ∴BC 的长为4.………………………5分23.解:(1)2(1)2(1)(1)x x x x x ++-=+-. ················································· 2分 2212222x x x x ++-=-. ·························································· 3分 3x =. ································································ 4分 经检验3x =是原方程的解. 所以原方程的解是3x =. ····························································· 5分24.证明:∵AB ∥DE ∴∠B = ∠EDF ;在△ABC 和△F DE 中A F AB DFB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩…………………………3分 ∴△ABC ≌△FDE (ASA),…………………4分∴BC=DE. …………………………………5分25.解:原式=a 2-2a +1a ÷ 1-a 2a 2+a………………………………1分=(a -1)2a ·a (a +1)(1-a ) (a +1) …………………………3分=1-a …………………………………………………4分 当a=2时,原式=1-a=1-2=-1………………………5分26.解:连结HF ,…………..…………………1分 依题意∵FG=1,GH=2,∴在Rt △FGH 中,根据勾股定理:FH=2222=1+2=5FG HG +…………..…………………2分又∵BC=2.2= 4.84,…………..…………………3分 ∴FH >BC ,…………..…………………4分∴小红爸爸要买的木板能通过自家门框进入室内 …………..…………………5分 27.列方程解应用题解:设王军骑自行车的速度为每小时x 千米,则李明乘车的速度为每小时3x 千米. ………..…………………1分 根据题意,得3012032x x+=………..…………………3分解方程,得20x =………..…………………4分经检验,20x =是所列方程的解,并且符合实际问题的意义. 当20x =时,332060.x =⨯=答:王军骑自行车的速度为每小时20千米,李明乘车的速度为每小时60千米. ………..…5分28.(1)证明:CD AB ⊥∵,∴90BDC ∠=°, ∵45ABC ∠=°,BCD ∴△是等腰直角三角形.BD CD =∴.………..…………………2分 ∵BE AC ⊥于E ,∴90BEC ∠=°,FED CBA 薄木板门框ABCDEF GH备用图ABCDEFGH∵BFD EFC ∠=∠,DBF DCA ∠=∠∴. Rt Rt DFB DAC ∴△≌△.BF AC =∴.………..…………………3分(2)解:BE ∵平分ABC ∠,22.5ABE CBE ∠=∠=︒∴. ∵BE AC ⊥于E ,∴90BEA BEC ∠=∠=°, 又∵BE=BE,Rt Rt BEA BEC ∴△≌△. CE AE =∴.………..…………………4分连结CG .BCD ∵△是等腰直角三角形,BD CD =∴. 又H 是BC 边的中点,C ⊥∴DH B DH ∴垂直平分BC ,BG CG =∴. 22.5EBC ∠=︒ ,22.5GCB ∴∠=︒∴45EGC ∠=°,∴Rt CEG △是等腰直角三角形, ∵CE 的长为3,∴EG=3,利用勾股定理得:222CE GE GC +=,∴222(3)(3)GC +=, ∴6GC =,∴BG 的长为6.………..…………………6分 29.解:(1)BC 边的中点. ………..…………………1分 (2)点D 的位置没有发生变化. ………..…………………2分 证明:如图,∵BE AD ⊥于点E ,CF AD ⊥于点F , ∴∠3=∠4=90°.又∵∠1=∠2,BE=CF,BED CFD ∴△≌△.∴BD=DC.即点D 是BC 边的中点 ………..…………………4分.(3)AB ,AC ,AD 之间的数量关系为2224AC AB AD +=..………..…………………5分 证明:延长AD 到点H 使DH=AD ,连接HC. ∵点D 是BC 边的中点,∴BD=DC. 又∵DH=AD ,∠4=∠5,ABD HCD ∴△≌△.∴∠1=∠3,AB=CH.∵∠A=90°,∴∠1+∠2=90°.∴∠2+∠3=90°.∴∠ACH=90°.∴222AC CH AH +=. 又∵DH=AD ,∴222(2)AC AB AD +=.∴2224AC AB AD +=.………..…………………7分4321FED CBA54321HA BCD30.(1)32;(2)5;(3)解:设1AC =,CP=m-3, ∵A A ′⊥L 于点C ,∴AP=()231m -+,设2BD =,DP=9-m, ∵BD ⊥L 于点D ,∴BP=2(9)4m -+,∴()()223194m m -++-+的最小值即为A ′B 的长.即:A ′B=()()223194m m -++-+的最小值.如图,过A ′作A ′E ⊥BD 的延长线于点E. ∵A ′E=CD=CP+PD= m-3+9-m=6, BE=BD+DE=2+1=3, ∴A ′B=()()223194m m -++-+的最小值=22BE A E '+ =936+ =35 ∴()()223194m m -++-+的最小值为35.EA'LPD C BA。
2015——2016学年度第一学期期末教学质量测试八年级数学试卷一.选择题(每小题2分,共20分)1.下列各数中,属于无理数的是( )(A )﹣1 (B )3.1415 (C )12(D 2. 若一个有理数的平方根与立方根是相等的,则这个有理数一定是 ( ) (A) 0 (B) 1 (C) 0或1 (D) 0和±1 3.下列命题中,逆命题是真命题的是( )(A )直角三角形的两锐角互余. (B )对顶角相等. (C )若两直线垂直,则两直线有交点. (D )若21,1x x ==则.4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )(A )40°. (B )100°. (C )50°或70°. (D )40°或100°. 5.如图,图中的尺规作图是作( )(A )线段的垂直平分线. (B )一条线段等于已知线段. (C )一个角等于已知角. (D )角平分线.6.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC=5cm, △ADC 的周长为17cm,则BC 的长为( )(A )7cm (B )10cm (C )12cm (D )22cm5题图 6题图 7题图7.如图是某手机店今年1—5月份音乐手机销售额统计图。
根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是( )(A )1月至2月 (B )2月至3月 (C )3月至4月 (D )4月至5月8. 若b 为常数,要使16x 2+bx+1成为完全平方式,那么b 的值是 ( )(A) 4 (B) 8 (C) ±4 (D) ±89题图 10题图9.如图,正方形网格中有△ABC ,若小方格边长为1,则△ABC 是( )(A )直角三角形. (B )锐角三角形. (C )钝角三角形. (D )以上都不对. 10.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )(A )48. (B )60. (C )76. (D )80.二、填空题(每小题2分,共18分)11.计算:25a a ⋅= .12.因式分解:24x y y -=__________________.13. 如图将4个长、宽分别均为a 、b 的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是__________________.13题图 14题图14.将一张长方形的纸片ABCD 按如图所示方式折叠,使C 点落在/C 处,/BC 交AD 于点E ,则△EBD 的形状是__________________.15.某校对1200名女生的身高进行了测量,身高在 1.58m ~1.63m 这一小组的频率为0.25,则该组共有_________人16. 如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA长为半径画弧,与弧AB交于点C,则∠AOC=_________度16题图 17题图17.如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为_________cm18.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。
2015-2016学年度第一学期末测试一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个。
A.1 B2 C 。
3 D 。
42。
与3-2相等的是( )A.91B.91-C 。
9D.-9 3.当分式21-x 有意义时,x 的取值范围是( )A 。
x <2B 。
x >2C 。
x ≠2 D.x ≥2 4。
下列长度的各种线段,可以组成三角形的是( )A 。
1,2,3B 。
1,5,5 C.3,3,6 D 。
4,5,6 5。
下列式子一定成立的是( )A.3232a a a =+ B 。
632a a a =• C 。
()623a a = D.326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B.7 C.8 D.97.空气质量检测数据pm2.5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=0。
000001米,2。
5微米用科学记数法可表示为( )米。
A.2.5×106 B 。
2。
5×105 C 。
2.5×10-5 D.2。
5×10—68。
已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。
A 。
50° B 。
80° C 。
50°或80° D.40°或65° 9。
把多项式x x x +-232分解因式结果正确的是( )A 。
2)1(-x xB 。
2)1(+x xC 。
)2(2x x x - D.)1)(1(+-x x x 10.多项式x x x +--2)2(2中,一定含下列哪个因式( )。
A 。
2x+1 B.x(x+1)2C.x (x 2-2x ) D 。
x (x-1)11。
如图,在△ABC 中,∠BAC=110°,MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是( ) A.20° B.40° C 。
辽宁省营口市2015~2016学年度八年级上学期期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列四种图形中,是轴对称图形的为()A.平行四边形B.三角形C.圆D.梯形2.在,,,,中,分式的个数为()A.2 个B.3 个C.4 个D.5个3.计算﹣12a6÷(3a2)的结果是()A.﹣4a3 B.﹣4a8C.﹣4a4D.﹣a44.一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角()A.1 个B.2 个C.3 个D.4个5.若x+m与x+3的乘积中不含x 的一次项,则m的值为()A.0 B.1 C.3 D.﹣36.如图,在△ABC中,AB=AC,DE垂直平分AB,分别交AB、AC于点D、E,若∠EBC=30°,则∠A=()A.30°B.35°C.40°D.45°7.下列命题正确的是()A.到角两边距离相等的点在这个角的平分线上B.垂直于同一条直线的两条直线互相平行C.平行于同一条直线的两条直线互相平行D.等腰三角形的高线、角平分线、中线互相重合8.某机床厂原计划在一定期限内生产240 套机床,在实际生产中通过改进技术,结果每天比原计划多生产4套,并且提前5天完成任务.设原计划每天生产x套机床,根据题意,下列方程正确的是()A.B.C.D.9.如图,OM 平分∠AOB,MC∥OB,MD⊥OB 于D,若∠OMD=75°,OC=8,则MD的长为()A.2 B.3 C.4 D.510.无论x、y取任何值,多边形x2+y2﹣2x﹣4y+6的值总是()A.正数B.负数C.非正数D.非负数二、填空题(共8 小题,每小题3 分,满分24 分)11.已知等腰三角形两个内角度数之比是1:4,则这个等腰三角形的底角为.12.若(a m b n b)3=a9b15,那么m+n= .13.三角形的三边长分别为3cm,5cm,xcm,则x的取值范围是.14.如图,AB∥CF,E为DF 中点,AB=20,CF=15,则BD= .15.若一个多边形的内角和等于其外角和的2倍,则它是边形.16.若方程无解,则k的值为.17.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC 的周长为.已知PA分别在三、解答题(共8 小题,满分66 分) 19.计算:(1)﹣m 2n•(﹣mn 2)2 (x 2﹣2x )÷ (3)+(x+y )2﹣2(4)(ab ﹣b 2).20.分解因式: (1)ax 4﹣9ay 2 2x 3﹣12x 2+18x .21.解方程:.22.先化简再(1﹣),其中x=()﹣1+30.23.如图,在(1)求出△ABC 的面积;在图中作出△ABC 关于 y 轴的对称图形△A 1B 1C 1; (3)写出点A 1,B 1,C 1的坐标.24.如图,已知点P在AB上,∠APD=∠APC,∠DBA=∠CBA,求证:AC=AD.25.红红开车从营口到盘锦奶奶家去,她去时因有事要办经过外环公路,全程84千米,返回时经过辽河大桥,全程45千米,红红开车去时的平均速度是返回的1.2倍,所用时间却比返回时多20分钟,求红红返回时的车速.26.如图,△ABC 和△AED 为等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE.连接BE、CD交于点O,连接AO 并延长交CE为点H.求证:∠COH=∠EOH.辽宁省营口市2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(共10 小题,每小题3 分,满分30 分)1.下列四种图形中,是轴对称图形的为()A.平行四边形B.三角形C.圆D.梯形【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,依据定义即可得出结果.【解答】解:A、平行四边形不是轴对称图形,故本选项错误;B、三角形不一定是轴对称图形,故本选项错误;C、圆是轴对称图形,故本选项正确;D、梯形不一定是轴对称图形,故本选项错误.故选C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.在,,,,中,分式的个数为()A.2 个B.3 个C.4 个D.5个【考点】分式的定义.【分析】根据分式与整式的定义对各式进行逐一分析即可.【解答】解:,的分母中含有未知数,是分式;,,的分母中不含有未知数,是整式.故选A.【点评】本题考查的是分式的定义,熟知分母中含有未知数的式子叫分式是解答此题的关键.3.计算﹣12a6÷(3a2)的结果是()A.﹣4a3 B.﹣4a8C.﹣4a4D.﹣a4【考点】整式的除法.【分析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算.【解答】解:﹣12a6÷(3a2)=(﹣12÷3)•(a6÷a2)=﹣4a4.故选C.【点评】本题考查了单项式相除的除法法则,熟练掌握运算法则是解题的关键,在计算过程中要先确定符号.4.一个多边形的每一个顶点处取一个外角,这些外角中最多有钝角()A.1 个B.2 个C.3 个D.4个【考点】多边形内角与外角.【分析】根据多边形的外角和等于360°,所以外角中钝角最多有三个.【解答】解:∵多边形的外角和等于360°,∴外角中钝角最多有3个.故选C.【点评】本题主要考查多边形的外角和等于360°,熟练掌握外角和定理是解题的关键.5.若x+m与x+3的乘积中不含x 的一次项,则m的值为()A.0 B.1 C.3 D.﹣3【考点】多项式乘多项式.【分析】先根据已知式子,可找出所有含x的项,合并系数,令含x项的系数等于0,即可求m的值.(x+m)(x+3)=x2+(m+3)x+3m,【解答】解:∵乘积中不含x的一次项,∴m+3=0,∴m=﹣3.故选D.【点评】本题主要考查多项式乘以多项式的法则,注意不含某一项就是说含此项的系数等于0.6.如图,在△ABC中,AB=AC,DE垂直平分AB,分别交AB、AC于点D、E,若∠EBC=30°,则∠A=()A.30°B.35°C.40°D.45°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】设∠A为x,根据线段的垂直平分线的性质得到EA=EB,用x表示出∠BEC,根据等腰三角形的性质得到∠ABC=∠C,根据三角形内角和定理列出方程,解方程即可.【解答】解:设∠A 为x,∵DE 垂直平分AB,∴EA=EB,∴∠EBA=∠A=x,∴∠BEC=2x,∵AB=AC,∴∠ABC=∠C,∴30°+x+30°+2x=180°,解得,x=40°,故选:C.【点评】此题主要考查线段的垂直平分线的性质和三角形内角和定理的应用,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.下列命题正确的是()A.到角两边距离相等的点在这个角的平分线上B.垂直于同一条直线的两条直线互相平行C.平行于同一条直线的两条直线互相平行D.等腰三角形的高线、角平分线、中线互相重合【考点】命题与定理.【分析】利用前提条件的缺失可对A、B进行判断;根据平行线的性质对C进行判断;根据等腰三角形的性质对D 进行判断.【解答】解:A、在平面内,到角两边距离相等的点在这个角的平分线上,所以A选项的说法不正确;B、在同一平面内,垂直于同一条直线的两条直线互相平行,所以B 选项的说法不正确;C、平行于同一条直线的两条直线互相平行,所以C选项的说法正确;D、等腰三角形底边上的高线、顶角的角平分线和底边上的中线互相重合,所以D选项的说法不正确.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.某机床厂原计划在一定期限内生产240 套机床,在实际生产中通过改进技术,结果每天比原计划多生产4套,并且提前5天完成任务.设原计划每天生产x套机床,根据题意,下列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】应用题.【分析】关键描述语为:提前5天完成任务.等量关系为:原计划用的时间﹣5=实际用的时间.【解答】解:实际用的时间为:;原计划用的时间为:.方程可表示为:.故选B.【点评】找到关键描述语,找到等量关系是解决问题的关键.用到的等量关系为:工作时间=工作总量÷工作效率.9.如图,OM 平分∠AOB,MC∥OB,MD⊥OB 于D,若∠OMD=75°,OC=8,则MD的长为()A.2 B.3 C.4 D.5【考点】含30度角的直角三角形;角平分线的性质;等腰三角形的判定与性质.【分析】作ME⊥OB于E,根据直角三角形的性质求出∠MOD=15°,根据角平分线的定义求出∠AOB的度数,根据平行线的性质得到∠ECM=∠AOB=30°,根据直角三角形的性质求出EM,根据角平分线的性质得到答案.【解答】解:作ME⊥OB于E,∵MD⊥OB,∠OMD=75°,∴∠MOD=15°,∵OM平分∠AOB,∴∠AOB=2∠MOD=30°,∵MC∥OB,∴∠ECM=∠AOB=30°,∴EM=MC=4,∵OM平分∠AOB,MD⊥OB,ME⊥OB,∴MD=ME=4,故选:C.【点评】本题考查的是直角三角形的性质和角平分线的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半、角的平分线上的点到角的两边的距离相等是解题的关键.10.无论x、y 取任何值,多边形x2+y2﹣2x﹣4y+6 的值总是()A.正数B.负数C.非正数D.非负数【考点】配方法的应用;非负数的性质:偶次方.【分析】利用完全平方公式把多项式分组配方变形后,利用非负数的性质判断即可.【解答】解:∵x2+y2﹣2x﹣4y+6=(x2﹣2x+1)+(y2﹣4y+4)+1=(x﹣1)2+(y﹣2)2+1≥1>0,∴多项式的值总是正数.故选:A.【点评】此题考查了配方法的应用,以及非负数的性质,利用完全平方公式分组分解是解决问题的关键.二、填空题(共8 小题,每小题3 分,满分24 分)11.已知等腰三角形两个内角度数之比是1:4,则这个等腰三角形的底角为80°或30°.【考点】等腰三角形的性质.【专题】分类讨论.【分析】设两个角分别是x,4x,根据三角形的内角和定理分情况进行分析,从而可求得顶角的度数.【解答】设两个角分别是x,4x①当x是底角时,根据三角形的内角和定理,得x+x+4x=180°,解得,x=30°,4x=120°,即底角为30°;②当x是顶角时,则x+4x+4x=180°,解得,x=20°,底角为80°;所以该三角形的底角为80°或30°.故答案为:80°或30°.【点评】本题考查了等腰三角形的性质及三角形内角和定理;本题通过设适当的参数,根据三角形内角和定理建立方程求解.注意要分类讨论哪个角为顶角,哪个角为底角.12.若(a m b n b)3=a9b15,那么m+n= 7 .【考点】幂的乘方与积的乘方.【分析】利用积的乘方运算法则得出关于m,n的等式进而求出答案.【解答】解:∵(a m b n b)3=a9b15,∴3m=9,2(n+1)=15,解得:m=3,n=4,则m+n=7.故答案为:7.【点评】此题主要考查了积的乘方运算,正确利用积的乘方运算法则将原式变形是解题关键.13.三角形的三边长分别为3cm,5cm,xcm,则x 的取值范围是2<x<8.【考点】三角形三边关系.【分析】根据三角形的三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边可得5﹣3<x<5+3.【解答】解:由三角形的三边关系定理可得:5﹣3<x<5+3,即:2<x<8.故答案为:2<x<8.【点评】此题主要考查了三角形的三边关系定理,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.14.如图,AB∥CF,E 为DF 中点,AB=20,CF=15,则BD= 5 .【考点】全等三角形的判定与性质.【分析】根据平行的性质求得内错角相等,已知对顶角相等,又知E是DF的中点,所以根据ASA得出△ADE≌△CFE,从而得出AD=CF,已知AB,CF的长,那么BD的长就不难求出.【解答】解:∵AB∥FC,∴∠ADE=∠EFC,∵E是DF 的中点,∴DE=EF,在△ADE 与△CFE中,,∴△ADE≌△CFE,∴AD=CF,∵AB=20,CF=15,∴BD=AB﹣AD=20﹣15=5.故答案为:5.【点评】本题主要考查全等三角形的判定和性质,平行线的性质,解题的关键在于求证△ADE≌△CFE.15.若一个多边形的内角和等于其外角和的2 倍,则它是六边形.【考点】多边形内角与外角.【专题】常规题型.【分析】根据多边形的内角和公式与外角和定理列出方程,然后解方程即可.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=2×360°,解得n=6.故答案为:六.【点评】本题主要考查了多边形的内角和公式与外角和定理,熟记性质与定理是解题的关键,需要注意,任意多边形的外角和等于360°,与边数无关.16.若方程无解,则k的值为﹣2 .【考点】分式方程的解.【专题】计算题.【分析】先把方程两边乘以(x﹣3)得到2=x﹣3﹣k,则x=5+k,当x=3时,方程无解,即3=5+k,解关于k的方程即可.【解答】解:去分母得,2=x﹣3﹣k,∴x=5+k,当x=3时,方程无解,∴3=5+k,∴k=﹣2.故答案为﹣2.【点评】本题考查了分式方程的解:使分式方程左右两边成立的未知数的值叫分式方程的解;当分式方程化为整式方程,整式方程的解都是分式方程的增根,则原分式方程无解;当整式方程无解,原分式方程无解.17.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC 的周长为22cm .【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质求出AD=DC,根据△ABD 的周长求出AB+BC=14cm,即可求出答案.【解答】解:∵DE是AC的垂直平分线,AE=4cm,∴AC=2AE=8cm,AD=DC,∵△ABD 的周长为14cm,∴AB+AD+BD=14cm,∴AB+AD+BD=AB+DC+BD=AB+BC=14cm,∴△ABC 的周长为AB+BC+AC=14cm+8cm=22cm,故答案为:22cm【点评】本题考查了线段垂直平分线性质的应用,能运用性质定理求出AD=DC是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.18.已知【考点】全等三角形的判定与性质;坐标与图形性质.【分析】过P作PM⊥y轴于M,PN⊥x轴于N,得出四边形PMON是正方形,推出OM=OM=ON=PN=5,证△APM≌△BPN,推出AM=BN,求出OA+OB=ON+OM,代入求出即可.【解答】解:过P作PM⊥y轴于M,PN⊥x轴于N,如图所示:∵P(5,5),∴PN=PM=5,∵x 轴⊥y轴,∴∠MON=∠PNO=∠PMO=90°,∴∠MPN=360°﹣90°﹣90°﹣90°=90°,则四边形MONP是正方形,∴OM=ON=PN=PM=5,∵∠APB=90°,∴∠APB=∠MON,∴∠MPA=90°﹣∠APN,∠BPN=90°﹣∠APN,∴∠APM=∠BPN,在△APM 和△BPN中,,∴△APM≌△BPN(ASA),∴AM=BN,∴OA+OB=OA+0N+BN=OA+ON+AM=ON+OM=5+5=10故答案为:6.【点评】本题考查了全等三角形的性质和判定,三角形的内角和定理,坐标与图形性质,正方形的性质的应用;通过作辅助线构造三角形全等是解决问题的关键.三、解答题(共8 小题,满分66 分)19.计算:(1)﹣m2n•(﹣mn2)2(x2﹣2x)÷(3)+(x+y)2﹣2(ab﹣b2).【考点】整式的混合运算;分式的乘除法.【分析】(1)根据积的乘方和幂的乘方进行计算即可;根据多项式的乘除法法则进行计算即可;(3)根据平方差公式和完全平方公式进行计算即可;(4)根据整式除以分式的法则进行计算即可.【解答】解:(1)原式=﹣m2n•m2n4=﹣m4n5;原式=÷=x2﹣x﹣3;(3)原式=4x2﹣y2+x2+2xy+y2﹣4x2﹣2xy=x2;(4)原式=b(a﹣b)•=b.【点评】本题考查了整式的混合运算以及分式的乘除法,掌握运算性质是解题的关键.20.分解因式:(1)ax4﹣9ay22x3﹣12x2+18x.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式a,再利用平方差公式进行分解即可;首先提取公因式2x,再利用完全平方公式进行分解即可.(1)原式=a(x4﹣9y2)=a(x2﹣3y)(x2+3y);【解答】解:原式=2x(x2﹣6x+9)=2x(x﹣3)2.【点评】此题主要考查了提公因式法和公式法分解因式,关键是掌握因式分解的步骤:一个多项式有公因式首先提取公因式,然后再用公式法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.解方程:.【考点】解分式方程.【分析】观察可得最简公分母是3(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘3(x﹣1),得6x=3x﹣3﹣x,解得x=﹣.检验:把x=﹣代入3(x ﹣1)≠0. 故原方程的解为:x=﹣.【点评】考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.先化简再(1﹣),其中x=()﹣1+30.【考点】分式的化简求值;零指数幂;负整数指数幂.【分析】先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可. 【解答】解:原式= • =, 当x=3+1=4时,原式==2. 【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.如图,在平面直角坐标(1)求出△ABC 的面积; 在图中作出△ABC 关于 y 轴的对称图形△A 1B 1C 1; (3)写出点A 1,B 1,C 1的坐标.【考点】作图-轴对称变换.【分析】(1)利用长方形的面积剪去周围多余三角形的面积即可;首先找出A、B、C三点关于y轴的对称点,再顺次连接即可;(3)根据坐标系写出各点坐标即可.【解答】解:(1)如图所示:△ABC的面积:3×5﹣﹣﹣=6;如图所示:(3)A1,B1(1,0),C1(4,3).【点评】此题主要考查了作图﹣﹣轴对称变换,关键是找出对称点的位置,再顺次连接即可.24.如图,已知点P在AB上,∠APD=∠APC,∠DBA=∠CBA,求证:AC=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由平角的定义得到∠BPD=∠BPC,推出△BDP≌△BCP,根据全等三角形的性质得到BD=BC,证得△ADB≌△ACB,根据全等三角形的性质得到结论.【解答】证明:∵∠APD=∠APC,∴∠BPD=∠BPC,在△BDP 与△BCP中,,∴△BDP≌△BCP,∴BD=BC,在△ADB 与△ACB中,,∴△ADB≌△ACB,∴AC=AD.【点评】本题考查了全等三角形的判定和性质,平角的定义,熟练掌握全等三角形的判定和性质是解题的关键.25.红红开车从营口到盘锦奶奶家去,她去时因有事要办经过外环公路,全程84千米,返回时经过辽河大桥,全程45千米,红红开车去时的平均速度是返回的1.2倍,所用时间却比返回时多20分钟,求红红返回时的车速.【考点】分式方程的应用.【分析】利用路程÷速度=时间,结合开车去时所用时间比返回时多20分钟,得出等式进而求出答案.【解答】解:设红红返回时的车速为x千米/时,则去时的平均速度为1.2千米/时,根据题意可得:=+,解得:x=75,经检验得:x=75是原方程的根,答:红红返回时的车速为75km/h.【点评】此题主要考查了分式方程的应用,利用往返所用时间的差值得出等式是解题关键.26.如图,△ABC 和△AED 为等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE.连接BE、CD交于点O,连接AO 并延长交CE为点H.求证:∠COH=∠EOH.【考点】全等三角形的判定与性质.【专题】证明题.【分析】过点A分别作AF⊥BE于F,AG⊥CD于G.先证明△BAE≌△CAD,由全等三角形的性质得出AF=AG,得出OA平分∠BOD,再利用对顶角相等,即可得出结论.【解答】证明:过点A分别作AF⊥BE于F,AG⊥CD于G.如图所示:∵∠BAC=∠DAE,∴∠BAE=∠CAD,在△BAE 和△CAD中,,∴△BAE≌△CAD(SAS),∴BE=CD,∴AF=AG,∵AF⊥BE 于F,AG⊥CD 于G,∴OA平分∠BOD,∴∠AOD=∠AOB,∵∠COH=∠AOD,∠EOH=∠AOB,∴∠COH=∠EOH.【点评】本题考查了全等三角形的判定与性质、角平分线的判定方法;熟练掌握全等三角形的判定方法,证明AF=AG是解决问题的关键.。