Circumferential resonance modes of solid elastic cylinders excited
- 格式:pdf
- 大小:1.43 MB
- 文档页数:12
热应力分析 thermal stress analysis管道柔性分析 piping flexibility analysis荷载工况 load case力 force反力 reaction力矩 moment弯曲力矩 bending moment扭矩 torque外载 externally applied load荷载 load冷态荷载 cold load工作荷载 working load外力 external force内力 internal force力偶 couple of force管系 piping system位移 displacement附加位移 appendant displacement; externally imposed displacement角位移 angular rotation冷拉 cold spring自拉 self spring方向 direction元件 member节点 node节点号 node number自由 free固定点 fix point; anchor point刚性的 rigid柔性 flexibility塑性 plasticity热循环 thermal cycle剧烈循环条件 severe cyclic condition应力 stress弯曲应力 bending stress扭转应力 torsional stress轴向应力 axial stress剪切应力 shear stress拉应力 tension stress压应力 compression stress一次应力 primary stress二次应力 secondary stress位移(热胀)应力范围 displacement (thermal expansion) stress range许用应力范围 allowable stress range位移应力 displacement stress柔性应力 flexibility stress内压应力 internal pressure stress外压应力 external pressure stress纵向应力 longitudinal stress许用应力 allowable stress主应力 principal stress圆周应力 circumferential stress; hoop stress峰值应力 peak stress脉动应力 pulsating stress交变应力 alternating stress残余应力 residual stress热应力 thermal stress遛转半径 radius of gyration泊松比;横向变形系数 Poisson ratio弹性模量 modulus ofelasticity惯性矩 moment of inertia极惯性矩 polar moment of inertia断面系数 section modulus应力集中系数 coefficient of stress concentration 应力范围减小系数 stress range reduction factur 应力增大系数 stress intensification factor面内 in-plane面外 out-plane柔性系数 flexibility factor柔度特性 flexibility characteristic弹簧系数 spring constant热膨胀系数 thermal expansion coefficient安全系数 safety factor应变;变形 strain; deformation应变能 strain energy挠度;弯度 deflection地震 earthquake耐震等级 seismic class临时荷载 temporary load地震荷载 seismic load; earthquake load地震系数 seismic coemcient; seismic factor冲击荷载 shock load超载 superimposed load; excess load集中质量 lumped mass推力 thrust设计震度 design scismic coefficient设计响应谱 design response spectrum谱分析 spectrum analysis动态分析 dynamic analysis谐振分析 harmonic analysis固有振动型式 natural frequency mode阻尼振动 damped vibration机械振动 mechanical vibration音响振动 acoustic vibration自由振动 free vibration共振 resonance湍振 surging脉动 pulsation激振;激发 excitation衰减系数 decay factor; decay coefficient; attenuation constant固有频率 natural frequency周期 period波谷 wave trough波峰 wave crest振幅;波幅 amplitude水锤 water hammer。
测井3233 1logging job order sheet测井通知单34 2real time data实时资料35 3depth match校深36 4reservoir储层37 5contract合同38 6raw record data原始资料39 7quality rule质量标准40 8sensor传感器41 9gainning mud漏泥浆42 10 2 decimal places两位数43 11inclination井斜44 12azimmuth方位45 13slide造斜46 14abnormal curve非正式曲线47 15absolute permeabiliy绝对渗透率48 16abysmal deposit深海沉积49 17acceptance quality level验收质量标准50 18acoustic imaging声成像51 19porosity孔隙度52 20acoustic scanner tool声波扫描仪53 21acoustic signature log声波波列测井54 22active活动的,有效的55 23actual实际的,有效的,现行的56 24error误差5725resolution分辨率58 26DD(directional drilling定向钻井59 27exploration勘探60 28adjoining rock围岩61 29adjacent formation围岩62 30adjoining well邻井63 31adjustment well调整井6465bad finishing job复杂的打捞工作99 66bad parity奇偶错误100 67bailed (sand) sample捞出的砂样101 68balance平衡102 69bale (baling)打包103 70balling formation易泥包的地层,易在井壁形104成泥饼的地层105 71band sediment(oil pool)条带状沉积物(油藏)106 72barite重晶石107 73bar diagram直方图108 74bare裸的;无反应;仅仅109 75barrier layer(zone)阻挡层110 76base-line shift基线偏移111 77base price底价112 78bass粘土岩113 79bating井眼加深114 80beach海滩,海滨,湖滩115 81bed correction层厚校正116 82bed of interest目的层11783bed resolution分层能力118 84bed response地层响应119 85before calibration summary测前刻度记录120 86before log verification测前校验121 87belly band(buster)安全带122 88below zero低于零123 89bench section横剖面124 90best-fit line最佳拟合线125 91BHCS(borehole compensated sonic)井眼补偿声波测井126 92B-H curve(magnetization curve)磁化曲线127 93BHC-VD(sonic,variable density log)井眼补偿声波变密度测井128 94bond index胶结指数129 95borehole status井眼状况130 96BHT(bottom hole temperature)井底温度131 97BHTV(borehole televiewer)井下电视132 98big casing gun大套管射孔器133134connate water(saturation)原生水(饱和度)169 135connected graph连通图170 136connate fluid原生流体,残余流体171 137consistency一致性;稠度172 138consistancy check一致性检查173 139constant porosity line等孔隙度线174 140contact well logging贴井壁测井174 141container rock储层175 142continuity sand production连续出砂176 143continuity check通断检查177144continuous flow profile连续流量剖面178 145contour of oil sand油层等高线图,油层构造图179 146contrast对比;反差180 147conventional惯用的,常规的,约定的181 148conventional water injection正注182 149cooperation合作,协作183 150core bit取芯钻头184 151core container岩心筒185 152core intersection岩心断面186 153core recovery岩心收获率187 154core run取芯进尺188 155core sample岩样189 156coring gun井壁取芯器190 157coring operation(tool)取芯作业(工具)191 158corrected depth校正后的深度192 159correlation logging对比测井193 160country rock原岩,母岩,围岩194 161cross-section display剖面显示195 162crude data原始资料196 163curve plotter曲线绘图仪197 164curve scale曲线比例尺198 165curve separation曲线的幅度差199 166cyberlook快速直观解释,计算机解释结果200 167dielectric constant介电常数201 168domnhole calibration井下刻度202203DIFL Dual Induction-Focused Log 双感应-聚焦测井239204DIP High Resolution 4-Arm Diplog 高分辨率4臂倾角测井240205DLL Dual Laterolog 双侧向测井241206DPIL Dual Phase Induction Log 双相位感应测井207FMT Formation Multi-Tester 重复地层测试208GR Gamma Ray 自然伽玛209HDIL High Difinition Induction Log 高分辨率感应210HDLL High resolusion Dual Latero Log 高分辨率侧向211MAC Multipole Array Acoustilog 多极子阵列声波212MLL Micro Laterolog 微侧向测井213MRIL Megnetic Resonance Image Log 核磁共振214NEU Neutron Log 中子测井215RCI Reservoir Characterization Instrument 储层描述仪216ROCR Rotary Sidewall Coring Tool旋转井壁取心217SBT Segmented Bond Tool 扇区水泥胶结测井仪218SL Spectralog 自然伽玛能谱测井219SP Salt-Proximity Surver 自然电位220STAR Simultaneous Acoustic and Resistivity Imager 声电波成像仪221SWC Sidewall Corgun 井壁取心222VSP Vertical Seismic Profile 垂直地震剖面223XMAC Cross Multipole Array Acostilog 交叉多极子阵列声波224ZDL Compensated Z-Densilog 补偿Z-密度测井225AIT Array Induction Imager Tool 阵列感应成像仪226ARI Azimuthal Resistivity Imager 方位电阻率成像仪227HRLA High-Resolusion Laterolog Array Tool 高分辨率阵列侧向仪228FMI(Fullbore Formation Microscan Imager)微电阻率成像仪229IPL Integrated Porosity Lithology 综合孔隙度岩性测井仪230DSI Dipole Shear Sonic Imager 偶极子声波成像仪231CMR Combinable Megnetic Resonance Tool 核磁共振测井232MDT Modular Formation Dynamics Tester 模块式地层动态测试器233LWD Log While Drilling 随钻测井仪器234RAB Resistivity At the Bit 近钻头电阻率仪器235AND Azimuthal Density Neutron Tool 位密度中子仪236CDR Compensated Dual Resistivity 井眼补偿的双电阻率仪器237GST GeoSteering Tool 地质导向仪238CSI Combinable Seismic Imager 组合式地震成像仪1 A blessing in disguise. 塞翁失马(因祸得福)372 a case in point一个恰当的例子3 a close game势均力敌的比赛4 a day in the country郊区一日游5 A faint heart never wine fair lady不入虎穴,焉得虎子6 A faint heart never wine fair lad浪子回头金不换7 A miss is as good as a mile失之毫厘,谬以千里8 a place of interest名胜9 A tower of strength中流砥柱10 a wedding reception结婚宴会11admire to do sth. (美口)很想做某事12after a little过了一会儿13after class下课后14after school放学后15Curie居里(16Custom House海关大楼17Do as you would be done by others己所不欲,勿施与人18do one's bit尽自己的一份力量19January一月20February二月21March三月22April四月23May五月24June六月25July七月26August八月27September九月28October十月29November十一月30December十二月31Monday星期一32Tuesday星期二33wednesday星期三34Thursday星期四35Friday星期五36Saturday星期六admissible error容许误差AND方位密度中子仪data processing center数据处理中心advanced experience(technology)先进经验(技术)geophysical survey地球物理勘探AFP(abnormal formation pressure)异常地层压力after survey calibration summary测后刻度记录after tool check summary测后仪器检查记录after-treatment profile log油井(增产)处理后生产剖面AL block铝块aleurite粉砂aleurolite粉砂岩allowable error容许误差all-wave全波along-track resolution纵向分辨率amass聚积ambient influnence环境影响angular discordance角度不整合angular correction角度校正anisotorpic各向异性的anticline背斜4-arm caliper log四臂井径测井arrival-time curve波至时间曲线attention singal注意信号attenuation衰减;变细;稀释;熄灭,constant常数attitude of rock岩石产状audio logging声频测井,噪声测井 background activIty (correction)本底放射性(校正)back-up curve辅助曲线backup shoe推靠臂bad hole复杂井眼bad earth接地不良big hole大井眼bioarenite生物砂屑岩bioconstructed limestone生物灰岩biolithite(原地)生物灰岩bound water束缚水bow spring centralizer弓形扶正器brine water mud盐水泥浆build-up curve压力恢复曲线build section增斜井段cable continuity电缆通断情况cablehead马笼头cable winch电缆绞车calibrater刻度器calibration summary刻度记录caliper survey井径测量cancel取消;删去casing collar log CCL(套管接箍测井) casing running下套管cased hole套管井chart interpretation图版解释check for zero校对零点check list检验单,总表chloride氯化物clay粘土clayey sandstone泥质砂岩clean sandstone纯砂岩clean out修井compacted formation压实地层company standard企业标准comprehensive evaluation综合评价compression curve压缩曲线computation center计算中心computed log analysis计算机测井分析computed porosity计算的孔隙度conductance传导性dromned水淹的electrode system电极系empirical relationship经验关系error band误差范围normal moveout正常时差oil-bearing formation含油地层oil base油基oil cutting油侵oil-producting formation产油层oil saturation含油饱和度oil sheet薄油层oil shale油页岩oil-water interface油水界面on-site processing(interpretation)现场处理(解释)quicklook interpretation快速解释resistivity log电阻率测井rework返工sonic differential time声波时差master calibration主刻度production log生产井deck甲板masterlog气测carbohydrate碳水化合物carbon dioxide二氧化碳fresh water淡水salinity矿化度2CAL 2-Arm Caliper Log 2臂井径测井3CAL 3-Arm Caliper Log 3臂井径测井4CAL 4-Arm Caliper Log 4臂井径测井AC BHC Acoustilog 声波测井CBIL Circumferential Borehole Imaging Log井周成像测井CBL Acoustic Cement Bond Log 水泥胶结评价测井CDL Compensated Densilog 补偿密度测井CN Compensated Neutron Log补偿中子测井DAC Digital Array Acoustilog 数字阵列声波UBI Ultrasonic Borehole Imager 超声波井眼成像仪senic cycie skipping周波跳跃sea level海平面Sunday星期天。
actual weld-throat thick-ness焊缝厚度all-around weld整周焊缝all-around weld (整周焊缝)环焊缝angle butt weld斜对接焊angle weld角焊appearance of weld焊缝成形arc-seam weld电弧缝焊arc-spot weld电弧点焊arc-weld电弧焊aspect ratio of weld焊缝成形系数at weld edge在焊缝边上attachment weld连接焊缝automatic spot weld自动点焊法axis of a weld焊缝中心线; 焊接轴线axis of weld焊缝轴线; 焊接轴线back of weld焊缝背面backing groove of weld焊缝反面坡口backing weld底焊; 底焊焊缝bare metal arc weld裸焊条电弧焊bead weld珠焊; 堆焊bead-on-plate weld堆焊焊缝beading weld凸焊beam-to-beam weld梁间焊接; 梁式引线焊接block sequence weld分段多层焊bridge seam weld桥缝焊接; 桥线焊brize weld硬焊butt-weld碰焊; 平式焊接; 对头焊接butt-weld in the downhand position对接平焊butt-weld joint对头焊接butt-weld pipe mill对焊管轧机button spot weld按电钮点焊cap weld最后焊层; 盖面焊缝carbon content of weld materials焊接材料的碳含量cast-weld construction铸焊结构caulk weld填缝焊caulking weld密实焊缝chain intermittent fillet weld链式分段角焊; 并列间断角焊缝chain intermittent weld并列焊接circular weld环形焊缝circumferential weld环缝; 环焊缝cleft weld裂口焊closed weld底边无缝焊; 无间隙焊缝closed-chamber fusion weld闭室熔焊cluster weld丛聚焊缝coil weld卷板对接焊; 卷板对接焊; 板卷焊cold weld冷压接commutator-controlled weld换向控制焊接complete penetration butt weld贯穿对焊composite weld紧密焊缝; 强度密封焊缝concave filled weld凹形角焊缝concave filler weld凹角焊concave fillet weld凹面填角焊concave weld凹焊缝; 凹面焊; 凹形焊缝; 轻型焊connective weld联系焊缝continuous butt-weld mill连续式炉焊管机组continuous fillet weld连续(填)角焊缝; 连续角焊缝; 连续贴角焊continuous weld连续焊缝continuous weld process连续式炉焊管法contour weld特形焊接convex fillet weld凸角焊缝; 凸形角焊缝convex weld凸焊缝; 凸形焊缝copper weld wire包铜钢丝corner flange weld单卷边角焊缝corner weld角焊corner-flange weld卷边角焊缝; 卷边角焊缝crack of weld焊部裂纹cross weld十字交叉焊缝; 横向焊缝cross-wire weld十字焊crotch weld楔接锻接; 楔接焊接cup weld带盖板焊缝depth of weld焊接深度dissimilar weld metal不同的焊接金属; 不同金属的焊接distance between the toes of a weld焊缝宽度double groove weld双面坡口焊缝double-bevel groove weld双斜边坡口焊缝; 双斜坡口焊double-flanged butt weld双弯边对接焊缝double-V groove weld双斜边坡口焊缝; 双斜坡口焊downhand weld平焊缝duplex spot weld双点点焊接头edge joint weld边缘焊edge weld端接焊; 端接焊缝; 端面焊缝; 对边焊electric resistance weld mill电阻焊管机electric weld-pipe mill电焊管机electric-weld pipe mill电焊管机emporary weld临时点定焊缝excess weld metal焊缝补强金属; 补强; 补强焊料; 补强金属excess weld metal(焊缝的)余高explosive weld爆炸焊接face of weld焊缝表面; 焊接面fibrous weld纤维状焊缝field weld现场焊接filler weld填角焊缝fillet weld角焊缝; 填角焊; 贴角焊fillet weld in normal shear (搭接接头的)正面角焊缝fillet weld in parallel shear侧面角焊缝; 侧面填角焊fillet weld in the flat position角接平焊; 水平角焊缝fillet weld in the horizontal position横向角焊缝fillet weld size焊角尺寸; 填角焊缝尺寸flame weld火焰焊接flange weld卷边焊缝; 卷边焊缝flange-to-web weld卷边焊缝; 卷边焊缝flanged butt weld弯边对接焊flanged edge weld卷边焊; 卷边焊flash butt weld闪光焊flash weld闪速对焊flat faced fillet weld平顶角焊缝焊接flat fillet weld平角焊ing of fillet weld角焊缝平焊; 船形角焊flush fillet weld平角焊flush weld削平补强的焊缝; 平焊接; 无加强高的焊缝forge weld锻焊焊缝forged weld (焊后锻压的)锻压焊缝form factor of the weld焊缝成形系数formation of weld焊缝成形front fillet weld正侧面填角焊缝; 正面填角焊front(al) fillet weld正面角焊缝full fillet weld满角焊缝; 全角焊full penetration butt weld满对接焊full weld满焊full-fillet weld满角焊full-sized weld全尺寸焊缝full-strength weld (与母材等强)等强焊缝gap weld特殊点焊; 双极单点焊gas-pressure weld气压焊girth weld环形焊缝gravity weld倚焊groove weld坡口焊; 坡口焊缝; 有坡口焊缝; 凹槽焊groove-weld joint有坡口焊接接头hammer weld锻焊hand weld手焊焊缝height of reinforcement of weld加强焊缝高度helical-weld pipe螺旋焊管high performance weld flux高性能焊剂horizontal fillet weld横向角缝焊接horizontal weld横向焊缝horizontal-vertical fillet weld横向垂直角焊缝hot weld encapsulation热焊封袋hydraulic automatic weld液压自动焊接hydraulic weld process液压焊接法inclined weld斜焊inconel weld单面焊缝incorrect weld profile焊缝形状不对incorrect weld size焊缝尺寸不对induction weld mill感应焊管机inside corner weld内角焊接inside fillet weld内角焊接inside weld内焊缝insufficient or excess reinforcement of weld加强焊缝不足或过量intermittent fillet weld间断角缝焊接; 断续角焊缝intermittent weld断续焊; 断续焊缝jam weld对接焊; 对头焊接lap fillet weld搭接角焊缝laser (beam) weld (ing)激光焊lateral weld侧焊; 侧面焊缝leg of a fillet weld角焊缝; 角焊缝焊脚leg of fillet weld圆角焊肉厚length of weld焊缝长度light closing weld轻连续焊接light fillet weld轻型填角焊; 小填角焊light weld轻焊缝Lincoln weld埋弧自动焊longitudinal fillet weld纵向角焊longitudinal weld纵向焊缝longitudinal weld (焊接用语)纵缝loose weld脱焊main weld主焊缝mash seam weld压薄缝焊; 滚压焊mash weld点焊; 点压焊melt thru weld熔透焊缝melt-through weld透溶焊melten weld pool焊接熔池melting through weld熔透焊缝miter weld平顶角焊缝; 斜接角焊缝molten weld metal熔融焊接金属mulitple impulse weld多脉冲焊缝multilayer weld多层焊缝multipass weld多道焊缝multiple arc weld多弧焊缝multiple-electrode submerged arc weld多电极埋弧焊multiple-pass weld多道焊缝; 多路焊接multirun weld多道焊缝nonpressure thermit weld不加压热剂焊缝normal weld正常焊接oblique fillet weld斜交角焊缝; 斜角焊接one-pass weld单层焊缝open butt weld开口对接焊open weld留间隙焊缝; 空隙焊outside weld外焊缝over weld过焊overhead fillet weld仰焊角焊缝overhead weld仰焊oversize weld超尺寸焊缝oxygen weld氧气焊接parallel-arc weld并列弧焊patch weld补焊; 补孔焊缝Peltier's cross weld珀耳帖交叉焊接penetration weld熔透焊缝percussion weld冲击焊缝; 冲击焊接periphera weld环形焊缝pitch of weld焊缝接距; 焊线距plain butt weld无坡口对接焊; 平头对接焊缝plasma-arc weld等离子弧焊接plug weld塞焊焊缝point of weld焊接点point weld点焊poor weld劣质焊缝; 有缺陷的焊缝porous weld多孔焊缝; 疏松焊缝positioned weld平位焊缝; 暂焊post weld annealed (PWA)焊后退火poured weld铸焊焊缝powder weld process粉末焊接法practice weld试验焊缝pressure weld压焊pressure-controlled weld压力控制焊接pressure-tight weld气密焊; 密封焊道principal weld主要焊缝profile of fillet weld填角焊缝轮廓progress of weld焊向projection weld凸焊; 凸焊焊缝projection weld machine凸点电阻焊机pulsating weld脉冲接触焊push weld挤焊quilting weld钉焊reinforced butt weld补强的对接焊缝; 补强式对接焊缝reinforced weld加强焊接reinforcement of weld焊缝加厚; 补强金属; 加强焊缝resistance weld mill电阻焊管机resistance weld pipe电阻焊管resonance butt weld谐振式对接焊restarting a weld再引弧ripple weld鳞状焊缝rivet weld电铆; 电铆焊缝root face of weld焊缝根部钝边root gap of weld焊缝根部间隙root of weld焊缝根部; 焊根root opening of weld焊缝根部间隙root radius of weld焊缝坡口根部半径sagged weld下垂焊缝scarf weld楔口焊接seal weld填焊; 致密焊缝; 密封焊; 密封焊道; 密封焊缝sealing weld封焊seam weld滚焊semi-automatic arc weld半自动电弧焊sequence weld timer序列焊接时间调节器shallow weld浅焊shop weld工厂焊接shot weld点焊shoulder of weld焊缝根部钝边side fillet weld侧面角焊缝; 侧面填角焊缝; 侧面贴角焊side lap weld侧边搭接焊; 弯边搭焊缝side weld侧焊缝; 边焊single lap weld单搭接焊single strap butt weld单面盖板对接焊single-bevel groove weld单斜角槽焊single-fillet weld单边角接焊缝single-pass weld单道焊site weld现场焊接; 安装焊; 安装焊接size of a fillet weld焊角尺寸size of weld焊件的大小; 焊区尺寸skew weld斜焊skin weld表面焊接sleeve weld套筒焊接slip-weld hanger卡瓦焊接套管挂slot weld槽塞焊; 长孔焊; 开槽搭焊缝; 切口焊缝ing slotted weld槽焊slotted lap weld切口搭接焊smooth fillet weld平填角焊缝socket weld ends承插焊接端soft-weld铜镍焊条合金solvent weld溶剂焊接space of intermittent weld断续焊缝间距; 断续焊间距spiral weld螺旋形焊缝spiral weld-pipe mill螺旋焊管机spot weld焊点spot weld bonding胶结点焊spot weld nugget点焊熔核spreading weld宽缝焊接; 加宽的焊缝square butt weld平头对接焊缝square groove weld无坡口槽焊staggered intermittent fillet weld (ing)交错断续角焊staggered intermittent weld交错断续焊缝; 交错间断焊staggered plug weld交错塞焊standard reinforced fillet weld标准加强角焊缝stick-out weld未熔合点焊接头stitch-and-seam weld点线焊straight butt weld无坡口对接接头strapped weld搭板对接焊缝strength weld受载焊缝; 强固焊接; 承载焊缝; 高强度焊接structural weld强固焊缝surface of weld焊缝表面surface weld表面焊缝surface weld metal buildup表面焊缝金属的形成synthetic apparatus for weld thermal cycle焊接热循环模拟装置T weld丁字接头焊缝T-filled weld丁字形角焊T-fillet weld丁字接头角焊缝tack weld定位焊点; 定位焊缝; 临时点焊; 预焊; 平头焊接(welding)定位焊tandem arc weld前后弧焊temporary weld临时点固焊缝tension weld受拉焊缝test weld试焊throat depth (thickness) of fillet weld角焊缝厚度throat of fillet weld凹角焊喉; 填角焊缝喉长throat of weld凹角焊喉tight weld密封焊接; 致密焊缝tight-strong weld密实强固焊缝toe of the weld焊缝边界toe of weld焊趾toe weld趾部焊缝torch weld气焊焊缝total amount of weld fumes焊接发尘量transverse fillet weld横向角焊缝; 正面角焊transverse weld横向焊缝trial weld试验焊接undercut weld底切焊接undressed weld (增加焊缝)未加工焊缝unequal fillet weld焊脚不等的角焊缝unfitness of butt weld焊缝对口错边量union-melt weld埋弧焊unload weld非承载焊缝unspaced butted weld无间隙对接焊缝upgrading of boiler weld锅炉焊缝加强vertical fillet weld立焊角焊缝vertical weld立焊weak weld不强固焊缝weaving weld横向摆动焊缝weld焊; 焊接的; 补焊weld all around围焊weld appearance焊缝外观weld assembly焊接组件weld back-up焊缝背垫weld backing焊缝衬垫weld bead焊缝; 熔敷焊道weld bead height焊缝高度weld beading焊瘤weld bond熔合线weld bridge seam搭桥焊缝; 桥接焊缝weld cap焊帽weld center line焊缝中心线weld collar加强焊缝焊瘤weld crack焊接裂纹weld crater熔池weld crosswise交叉焊接weld decay焊缝腐蚀; 焊接接头晶间腐蚀; 焊接侵蚀; 焊接区晶间腐蚀weld decay (焊接后)敏化区腐蚀weld defect焊接缺陷weld delay time焊接延迟时间weld deposit堆焊weld deposits cleaning焊接熔敷金属清理weld edge焊缝边缘; 焊缝表面边缘weld edgewise沿边焊接weld flange connection焊接法兰连接weld flash焊瘤weld flaw焊接缺陷weld flush焊缝隆起weld fumes焊接烟尘weld gage焊缝检查规; 焊缝卡规weld gauge焊缝量规weld heat input焊接热输入; 焊接线能量weld holder焊接夹持架; 焊接架weld inspection焊缝质量检验; 焊接检查weld interface焊缝界面; 焊接界面weld interval焊接时间weld jig焊接夹具weld joint焊缝weld junction熔焊线; 熔合线weld layer焊接层weld line焊缝线; 焊缝轴线; 焊接线; 焊线weld machined flush削平补强的焊缝weld mesh crate焊接网格weld metal buildup surface金属堆焊表面weld metal composition焊接金属组成weld metal cracking焊缝裂纹weld metal zone焊缝金属区; 焊接金属熔化区weld nugget焊点熔核weld on bottom底焊weld overlap重叠区weld pass焊接通道weld penetration焊缝熔深; 焊透深度weld period焊接时间weld pitch焊缝距weld porosity焊缝气孔weld preheating焊前预热weld preparation焊缝坡口加工weld puddle熔池weld reinforcement焊缝补强; 焊缝加强; 焊接补强weld ripple焊缝波纹weld root焊件剖口; 焊接根weld root reinforcement焊缝反面加强weld rotation焊缝转角weld seam pipe焊缝管weld shape焊缝形状weld slope焊缝倾角weld spacing焊点距; 焊缝间距weld strain焊接应变weld strength焊接强度weld swell焊缝隆起weld thermal cycle焊接热循环weld trimmer焊缝清理机weld up焊补weld wheel conditioner焊轮调节器weld-form factor焊缝形状系数weld-fusion line焊缝熔合线weld-in nozzle焊入式喷嘴weld-interval timer焊接间隔记时器weld-shrunk cylinder包扎式圆筒weld-shrunk multilayered cylinder包扎式多层圆筒; 多层包扎式圆筒weld-throat thickness depth焊缝厚度window type restraint weld cracking test窗口拘束焊缝抗裂试验; 窗形拘束抗裂试验zigzag intermittent fillet weld锯齿形断续角焊缝; 锯齿形断续角焊缝AC & D. C. arc welding machine交直流弧焊机AC arc welding交流电弧焊AC gas metal-arc welding process交流熔化极气保护焊AC gas tungsten arc welding交流钨极气保护焊AC welding set交流焊机; 交流焊接变压器AC-dc welding machine交直流两用焊机acetylene welding气焊; 乙炔焊; 乙炔焊接acetylene welding torch乙炔焊炬; 乙炔接焊吹管air-acetylene welding空气-乙炔焊接all-position welding全位置焊接alloy steel gas welding rod合金钢气焊条alternating current arc welding交流电弧焊alternating current welding machine交流电焊机aluminium alloy arc welding electrode铝合金焊条aluminothermic welding铝热焊; 铸焊angle backwards welding后倾焊angle butt welding斜口对接焊angle forwards welding前倾焊annealing welding wave退火焊波antogenous welding氧炔焊apparatus for butt welding平接压焊夹具arc braze welding电弧钎焊arc flash welding电弧闪光焊arc spot welding电铆焊arc stud welding柱钉电弧焊; 螺柱电弧焊arc voltage feedback controlling arc welding弧压反馈电弧焊arc welding电弧焊; 电弧焊接; 弧焊arc welding electrode电弧焊条arc welding generator电弧焊接用发电机; 弧焊发电机arc welding generator with independent excitation自激弧焊发电机; 他激电焊发电机arc welding generator with self-excitation自激电焊发电机arc welding machine弧焊机; 电焊机; 电弧焊机arc welding mask电弧焊遮罩arc welding process电弧焊接工艺过程arc welding rectifier弧焊整流器arc welding robot弧焊机器人arc welding set电弧焊机组arc welding transformer弧焊变压器arc-welding electrode电弧焊用焊条arc-welding plant电焊厂arcogen welding电弧氧乙炔焊argon (shielded) arc welding氩弧焊接argon tungsten-arc welding钨极氩弧焊argon-arc welding氩弧焊argonaut welding自动氩弧焊atomic H welding氢原子焊atomic hydrogen welding原子氢焊atomic-hydrogen welding原子氢焊接austenite welding不锈钢焊接autogenous pressure welding自动压合热焊autogenous welding气焊automatic arc welding head自动电弧焊接机头automatic arc welding machine自动电焊机; 自动弧焊机automatic drying line for welding electrode电焊条自动烘焙线automatic slag pool welding自动电渣焊automatic spot welding自动点焊automatic submerged arc welding自动埋弧焊automatic submerged slag welding of rail钢轨automatic submerged-arc welding machine埋弧自动焊机automatic transverse welding横向自动焊automatic welding自动焊; 自动焊接automatic welding head自动焊头automatic welding machine自动焊接机automatic welding of circumferential seams环缝自动焊automatic welding process自动焊接工艺规程automation of welding焊接自动化back hand welding后退焊; 反手焊接back step welding反手焊接back ward welding反手焊接back welding底焊; 退焊法back-step welding分段退焊法backhand welding逆向焊; 右焊法; 后焊法; 向后焊backing welding打底焊backstep welding分段逆焊; 分段退焊; 反向焊; 逐步退焊法; 逆向焊backstep welding sequence分段退焊次序backward welding后倾焊; 后退焊; 向右焊balanced welding对称焊bare welding rod光焊条bare wire arc welding光焊丝电弧焊bead welding窄焊道焊接bench arc welding machine台式弧焊机bevel welding斜角焊blacksmith welding锻工焊接; 锻焊block sequence welding分段多层焊; 分段连续焊接block welding块焊接block welding sequence分段多层焊body welding machine罐身焊接机both sides welding双面焊接brass welding rod黄铜焊条braze welding钎焊; 钎焊接; 钎接; 铜焊braze-welding钎接焊bridge spot welding带接合板点焊; 单面衬垫点焊; 单面搭板点焊bridge welding桥接焊; 盖板焊brize welding硬焊build (built) up welding堆焊build-up welding堆焊building-up by welding堆焊butt resistance welding电阻对焊; 对接电阻焊butt seam welding对接滚焊butt seam welding machine对接缝焊机butt welding对接焊; 平对焊butt welding machine对接焊机butt welding process对接焊法butt-welding对接焊butt-welding machine对焊机capability of welding vertically upwards直上焊接能力capacitor-discharge welding电容放电焊接carbon arc welding碳弧焊; 碳极弧焊carbon in materials for welding焊接用材料中的碳carbon-dioxide arc welding二氧化碳保护焊carriage of automatic welding machine自动焊机走架cascade welding阶梯式焊; 山形多层焊cascade welding sequence串级叠置法cast welding铸焊cement-welding金属陶瓷焊接centralized installation of welding machine多站焊接chain intermittent fillet welding并列断续角焊缝; 链式断续角焊chemical welding化学焊circular seam welding环缝对接焊circular seam-welding machine环形滚焊机cleaning before welding焊接前的清理cleaning of welding deposits焊接沉积的清理closed butt gas pressure welding闭式加压气焊cold welding冷焊; 冷压焊cold-pressure welding冷压焊combined cutting and welding torch焊割两用炬combined cutting and-welding blow-pipe焊割两用炬combined thermit welding加压铸焊complete penetraction and fusion in welding全焊透condenser (discharge) spot-welding machine电容器放电点焊机condenser discharge spot welding电容储能点焊; 电容贮能点焊constant current welding machine恒流电焊机constant energy welding machine恒功率电焊机constant voltage welding machine恒压电焊机constant-current arc welding power source垂降特性弧焊电源constant-current welding source恒流式焊接电源constant-power welding source恒功率式焊接电源constant-pressure pressure welding恒压压力焊constant-temperature pressure welding恒温压力焊constant-voltage welding machine恒电压焊机constant-voltage welding source恒压式焊接电源; 平特性焊接电源consumable electrode welding熔化极电弧焊consumable guide electroslag welding自耗定向电渣焊contact welding接触焊continuous feed welding连续送丝电弧焊continuous welding连续焊; 连续焊接contour welding绕焊controlled arc welding可控电弧焊接controlled atmosohere arc welding充气室电弧焊controlled atmospere arc welding充气式电弧焊controlled tungsten-arc welding自动控制弧长的钨极电弧焊controlled-transfer welding可控过渡电弧焊convex fillet welding凸面角焊缝copper arc welding electrode铜焊条copper welding rod铜焊条copper-alloy arc welding electrode铜合金焊条copper-aluminium welding rod铜铝焊条copper-nickel welding rod铜镍焊条copper-silicon welding rod铜硅焊条copper-tin welding rod铜锡焊条copper-zinc welding rod铜锌焊条core welding-wire焊芯core wire for welding rod焊条芯线corrosion due to welding焊接腐蚀cosmetic welding盖面焊cover chain welding链节式药皮包丝焊接CO?2 arc welding machine二氧化碳弧焊机cracking test for automatic welding自动焊抗裂试验crankshaft flashbutt welding曲轴电阻弧花压焊cross welding横向焊缝cyc-arc welding圆环电弧焊deck welding重力焊deep fillet welding深角焊deep penetration welding深熔焊deep penetration welding electrode深熔焊条deep welding深焊die welding模焊; 冲模堆焊diesel engine driven DC arc welding machine柴油机驱动直流弧焊机differential-excited welding generator差激电焊发电机diffusion welding扩散焊接direct spot welding双面点焊direct welding双面点焊direction of welding焊接方位; 焊接方向discontinuous welding断续焊dot welding点焊double carbon-arc welding间接碳弧焊double side welding双面焊接down-hand welding俯焊downhand welding平焊downward welding in the inclined position下坡焊downward welding in the vertical position向下立焊dual-arc welding双弧焊edge seam welding端面接头滚焊edge welding边缘焊接edgewise welding沿边焊接electric and pressure welding电压力焊接electric arc spot welding电弧点焊electric arc welding generators电弧焊接发电机electric arc welding machine电弧焊机electric butt welding电阻接触焊electric resistance welding电阻焊接; 热电阻焊electric slag welding电渣焊electric spot welding电点焊electric welding电焊electric welding cast copper solder铸铜电焊条electric welding equipment电焊设备electric welding generator电焊发电机electric welding hammer电焊锤electric welding machine电焊机electric welding plant电焊厂electric welding pliers电焊钳electric welding rod电焊条electric welding strip电焊片electric-arc welding电弧焊electric-resistance seam-welding电阻缝焊electric-resistance seam-welding machine电阻缝焊机electrical arc welding电弧焊接electrical resistance welding tube电阻焊接管electrically heated welding torch电热焊枪electro-beam welding电子束焊接electro-gas (enclosed) welding气电立焊electro-slag welding电磁渣焊; 电渣焊electro-slag welding with plate electrode板极电渣焊electro-welding电焊electrode for arc welding电焊条; 电弧焊条electrode for vertical down welding向下立焊条electrode of vertical down welding立向下焊条electrode welding电弧焊electrogas welding气电焊; 电气焊electromagnetic percussive welding电磁冲击焊electromagnetic stored energy welding电磁储能焊electron beam welding电子束焊; 电子束焊接electron beam welding machine电子束焊接机electron-beam welding电子束焊接electron-beam welding machine电子束焊机electron-bombardment welding真空电子束焊electrons leaves welding电子束焊接electropercussive welding电冲击焊; 冲击焊; 储能焊electroslag welding电渣焊; 电阻焊electroslag welding machine电渣焊机electroslag welding with consumable nozzle熔嘴电渣焊electroslag welding with wire electrode丝极电渣焊electrostatic (percussive) welding电能储能焊接electrostatic percussing welding静电焊; 静电焊; 冲击焊; 储能焊electrostatic percussive welding静电冲击焊; 静电冲击焊enclosed welding强制成形焊接energy storage welding贮能焊; 储能焊; 脉冲焊接erecting welding装配焊接erection welding安装焊接eutectic welding低温焊exothermic welding铝热焊expanding or welding of tube with tubesheet管子与管板的胀接或焊接explosive welding (EW)爆炸焊eyelet welding孔焊; 小孔熔焊faster welding快速焊接feed rate of welding wire焊丝送进速度field of welding temperature焊接温度场field welding现场焊接; 工地焊接Filler arc welding菲拉电弧焊距fillet welding (填角焊)贴角焊fillet welding in the downhand position船形角焊fillet welding in the flat position船形焊fillet welding in the horizontal position横角焊fillet welding in the vertical position立角焊fine welding精密焊接fine wire welding细丝焊fire cracker welding躺焊fire welding锻焊; 锻接fixed welding machine固定式焊机fixed-position welding定位焊接flame welding熔气焊flare welding喇叭形坡口焊接flash butt welding闪光对焊; 闪光对接焊flash welding闪光电弧焊; 闪光焊; 闪焊; 火花电弧焊; 火花对焊flash-butt welding电阻闪光焊接flashover welding闪光焊flat position welding平焊; 顶面平卧焊flat position welding of fillet weld角焊缝平焊; 船形角焊flat welding平卧焊flexible welding rod软焊条flexible wire for electric welding电焊软线flow welding流注焊接; 浇焊fluid welding流焊flux-cored welding包芯焊条焊接fly-wheel type friction welding贮能摩擦焊; 储能摩擦焊flywheel friction welding惯性摩擦焊forehand welding向前焊; 向左焊; 左焊法; 左向焊; 正手焊forge welding锻焊; 锻接焊forward welding正手焊; 左焊法; 左向焊; 前进焊; 前倾焊; 向前焊friction welding摩擦焊; 摩擦焊接friction welding machine摩擦焊接机frontal fillet welding正面角焊full automatic welding全自动焊full-automatic arc welding全自动电弧焊full-fillet welding满角焊full-fusion thermit welding热剂铸焊full-fusion welding全熔合焊full-length welding满焊fusion pressure welding熔化压接fusion thermit welding热剂熔焊; 熔化铝热焊fusion type plasma arc welding熔透型等离子弧焊fusion type welding熔透型焊接法fusion welding熔焊接fusion welding metal熔焊金属gas carbon-arc welding气保护碳弧焊gas electric welding气电联合焊接gas metal arc welding气体保护金属极电弧焊gas metal-arc welding气保护金属极电弧焊gas shield welding气体保护弧焊gas shielded arc welding气体保护电弧焊; 气体保护焊gas shielded arc welding machine气保护弧焊机gas shielded arc-welding machine气体保护弧焊机gas shielded magnetic flux arc welding磁性焊剂气体保护电弧焊gas shielded metal-arc welding气体保护金属弧焊gas shielded welding气体保护焊gas torch welding气炬焊gas tungsten arc welding气体保护钨极电弧焊gas tungsten-arc welding气保护钨极电弧焊gas tungstun arc welding钨极气体保护焊gas welding气焊; 乙炔焊gas welding device气焊设备gas welding equipment气焊设备gas welding machine气焊机gas welding outfit气焊机gas welding rod气焊焊丝gas welding rubber hose气焊橡胶管gas welding technique气焊工艺gas welding torch butt气焊进气硬管gas welding tube mill瓦斯焊接机gas welding work气焊工作gas-arc welding气电焊; 气体保护电弧焊gas-arc welding gun气电焊焊嘴gas-press welding气压焊gas-pressure welding machine气压焊接机gas-shielded stud welding气保护柱钉焊接girth welding环缝横向焊接gravity type arc welding重力焊gravity type welding倚焊gravity welding重力焊; 重力式电弧焊groove welding槽焊; 坡口焊; 开槽焊guided automatic welding导向自动焊接gun welding machine手提式点焊机; 点焊枪hafnium welding wire铪焊丝hammer welding锻焊; 锻接; 锤焊hammered resistance welding锤锻电阻焊; 电阻加热锻焊hand welding holdet手焊焊把hard-welding硬质合金熔焊headless bolt for welding焊接单头螺栓heat-welding adhesive热熔性胶粘剂heated-tool welding热烙铁焊接heavy welding大断面焊接heavy welding electrode粗电焊条heliarc welding氦电弧焊Heliarc welding氦弧焊法helium arc welding氦弧焊HF welding magnetic bar高频焊接磁棒hidden arc welding埋弧焊; 潜弧焊high current arc welding大电流弧焊high frequency AC welding machine高频交流电焊机high frequency dielectric welding高频介电焊high frequency induction welding高频感应焊high frequency welding高频焊接high grade energy welding高能焊high tensile electric welding rod高强焊条high-current plasma arc welding大电流等离子弧焊high-frequency induction welding高频感应焊接; 高频焊接high-frequency resistance welding高频接触焊high-frequency resistance welding (HFRW)高频电阻焊high-frequency welding高频电焊highspeed welding快速焊接horizontal fillet welding横角焊; 水平角焊horizontal position welding水平焊接; 横焊horizontal welding横焊; 水平焊horizontal-position welding水平位置焊接horizontal-rolledposition welding水平转动焊接; 滚动水平焊hot jet welding热风焊接hot press welding热压焊接hot pressure welding预热压力焊hot welding热焊hot wire welding热丝焊hot(-)gas welding热气焊接hot-gas welding热风焊接; 热空气焊接hot-pressure welding热压焊; 热压焊接hydrogen-welding氢焊impact spot welding冲击点焊法impregnated-tape metal-arc welding浸焊条金属弧焊impulse current automatic butt welding machine脉冲电流自动对焊机impulse current seam welding machine脉冲电流缝焊机impulse current semiautomatic butt welding machine脉冲电流半自动对焊机impulse electromagnetic automatic welding machine电磁脉冲自动焊机impulse plasma welding machine脉冲等离子焊机impulse welding脉冲焊; 脉冲焊接impulsed spot welding脉冲点焊inclined position welding倾斜焊indirect (spot) welding单面点焊indirect welding单面点焊induction welding感应焊; 感应焊接; 感应熔焊inert gas arc spot welding惰性气体电弧点焊inert gas arc welding惰性气体电弧焊inert gas spot welding惰性气体保护电弧点焊inert gas welding惰性气体焊接法inert-gas (inert gas) arc welding惰性气体保护焊inertia welding惯性焊接; 贮能摩擦焊; 储能摩擦焊inertial welding惯性焊接infrared welding红外线焊接intermediate current plasma arc welding中电流等离子弧焊intermittent fillet welding断续角焊intermittent point welding断续点焊intermittent welding断续焊International Institute of welding (IIW)国际焊接学会inverted welding仰焊joint welding搭焊jump welding丁字形焊keyhole-mode welding小孔型等离子弧焊; 穿透型焊接法lap fillet welding搭角焊; 搭接角焊lap resistance welding搭接电阻焊lap seam welding搭接缝焊; 搭接焊lap welding搭焊; 搭接焊laser welding激光焊接laser welding chamber激光焊接室laser welding head激光焊接头laser welding machine for orthodontics激光口腔矫形焊接机laser welding system激光焊接系统laser-beam welding machine激光焊接机laser-welding machine激光焊接器lead welding铅焊lefthand welding左焊法leftward welding左向焊法lever gun welding head杠杆式点焊钳light beam welding machine光束焊机light continuous welding轻连续焊接light gauge welding薄板焊接light ray welding光束焊接light welding轻焊接Linde welding林德钢管对焊法line welding直线焊缝焊接liquid metal welding浇注补焊longitudinal resistance seam welding纵向电阻缝焊longitudinal seam welding纵缝焊接; 纵向缝焊longitudinal welding纵缝焊接; 纵向焊接low carbon steel welding electrode低碳钢电焊条low carbon welding wires低碳焊接线材low idle voltage arc-welding power supply低空载电压的弧焊电源low temperature welding低温焊接low-alloy steel covered arc welding electrode低合金钢焊条low-current plasma arc welding小电流等离子弧焊low-hydrogen welding electrode低氢型电焊条low-temperature welding低温焊接lowest permissible temperature for welding焊接允许的最低温度machine for magnetic welding磁力焊接机machine welding机器焊接machine welding torch机械焊接吹管magnetic discharge welding电磁储能焊; 电磁焊magnetic flux arc welding磁性焊剂电弧焊magnetic flux gas shielded arc welding磁性焊剂气体保护电弧焊magnetic force welding machine磁力焊接机magnetic-force welding磁力焊接法manual arc welding手工电弧堆焊manual electic arc pile up welding手工电弧堆焊manual electric arc welding手工电弧堆焊manual electro-slag welding手工电渣焊manual gas welding手工气焊manual metal-arc welding手弧焊manual TIG welding手工钨极惰性气体保护焊manual welding手工焊接; 人工焊接manual welding machine手工焊机manually coating welding electrode手涂焊条mash seam welding滚压电阻缝焊mash stitch welding多针缝式焊接mask welding电焊眼罩match assemble welding装架焊接metal arc welding金属电弧焊metal buried welding埋渣焊metal inert gas arc welding (MIG)惰性气体金属电弧焊metal inert-gas arc welding金属极惰性气体保护焊metal inertia gas welding金属焊条惰性气体保护焊; 熔化极惰性气体保护焊metal rectifier welding set整流焊机metal-arc gas-shielded welding气保护金属极电弧焊metal-arc gas-shielded welding (MAGSW)金属极气保护焊metal-arc welding金属极电弧焊micro resistance welding显微电阻焊micro-gap welding微间隙焊接micro-plasma arc welding微束等离子弧焊micro-welding微型焊接; 显微焊接microgap welding微隙间隙焊Miebach high efficiency flash welding machine米巴赫高效闪光对焊机mild steel arc welding electrode低碳钢焊条mild steel welding rod低碳钢焊丝miter welding斜接头焊接mixed gas arc welding混合气体保护电弧焊molten bath arc welding熔池电弧焊molten-bath arc welding熔池焊motor driven welding machine电动焊机; 电动机拖动式焊机motor-driven welding machine电动旋转式焊机motor-generator welding unit电动直流发电焊接设备multi-head automatic arc-welding machine多头自动电弧焊机multi-head automatic welding machine多头自动焊机multi-operator welding set多站电焊机multi-pass (multiple pass) welding多道焊multiarc welding多弧焊multihead automatic arc welding machine多弧自动电焊机multilayer welding多层焊multioperator welding generator多工位焊接发电机multioperator welding machine多站电焊机; 多站焊机multioperator welding set多站焊机multipass welding多道焊接multiple arc welding多弧焊multiple operator arc welding machine复式弧焊机multiple projection welding多点凸焊multiple resistance welding多点电阻焊接; 复式电阻焊multiple spot welding多点点焊multiple spot welding machine多点点焊机multiple-arc welding plant多弧焊接机multiple-electrode spot welding machine多极点焊机multiple-electrode welding多焊条焊接multiple-impulse welding多脉冲焊; 多脉冲接触焊multiple-operator welding-unit多重操作焊接单元multiple-spot welding多点焊multiple-wire multiple-power submerged-arc welding多丝埋弧焊multiple-wire submerged arc welding多丝埋弧焊multiplewire submerged-arc welding多丝埋弧焊nail head type welding钉头式焊接narrow gap one side welding窄间隙单面焊narrow gap one-side automatic welding窄间隙单面自动电弧焊narrow gap welding窄间隙焊接; 狭间隙焊negative polarity welding反极性焊接neli-arc welding氦电弧焊nickel bare welding filter metal镍焊丝nickel covered welding eleetrode镍药皮焊条nickel steel gas welding rod镍钢气焊条nickel-base alloy bare welding filler metal镍基合金焊丝nitrogen-arc welding氮弧焊no-gas welding非气焊non gas shielded arc welding无气体保护电弧焊non shielded arc welding无保护电弧焊non-pressure welding不加压焊接non-vacuum electron beam welding大气压电子束焊接non-welding character不可焊接性nonpressure thermit welding (NTW)热剂铸焊oblique fillet welding斜角焊接缝one head automatic arc welding machine单弧自动电焊机one side welding单面焊one-body welding machine同体式焊机one-body welding set同体式焊机; 单机体电焊机组one-pass welding单道焊。
Colloids and Surfaces A:Physicochem.Eng.Aspects 457(2014)487–494Contents lists available at ScienceDirectColloids and Surfaces A:Physicochemical andEngineeringAspectsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c o l s u r faPreparation of Mannitol@Silica core–shell capsules via an interfacial polymerization process from water-in-oil emulsionChang-Bo Wu,Gang Wu ∗,Xi Yang,Yu-Jing Liu,Chen-Xi Gao,Qi-Hua Ji,Mang Wang,Hong-Zheng ChenMOE Key Laboratory of Macromolecule Synthesis and Functionalization,State Key Lab of Silicon Materials,Department of Polymer Science and Engineering,Zhejiang University,Hangzhou 310027,People’s Republic of Chinah i g h l i g h t s•Mannitol@Silica capsules with thickshell were prepared from the W/O emulsion.•Diffusion of APTS and TEOS across the interface controlled the growth of the shell.•Irreversible phase change over 100◦C shows latent heat of 147.4J/g.g r a p h i c a la b s t r a cta r t i c l ei n f oArticle history:Received 2April 2014Received in revised form 4June 2014Accepted 11June 2014Available online 18June 2014Keywords:Core–shell capsule Aqueous-core Silica-shell MannitolPhase changea b s t r a c tMannitol@Silica core–shell capsules were prepared from W/O emulsion by adding silicon precursor into the oil-continuous phase to form silica shell through interfacial polymerization reaction.The bicompo-nent mixture of tetraethoxysilane (TEOS)and 3-aminopropyl triethoxysilane (APTS)was used as silicon precursor to form relatively thick silica shell.The reaction was triggered by the penetration of APTS from oil-continuous phase into the aqueous phase and the silica shell formed as both TEOS and APTS hydrolyzed and polymerized after diffusing through the W/O interface.The growth of the shell layer was believed to be an outside-in mode.The mannitol crystal was well sealed inside the silica capsule under an optimized condition and the leakage was successfully avoided.The Mannitol@Silica core–shell capsules own irreversible phase change character in the range of 142.1–166.2◦C with latent heat of 147.4J/g.©2014Elsevier B.V.All rights reserved.1.IntroductionMicroencapsulation,techniques using natural or synthetic materials to enwrap solid,liquid or gas materials,has attracted wildly academic and commercial interests in the past years.Since the first carbon paper produced by microcapsule technology in the early 1950s [1],microcapsules containing active materials inside have been prepared and used in the fields of cosmetics [2,3],∗Corresponding author.Tel.:+8657187953733;fax:+8657187953733.E-mail addresses:wmang@ ,samy@ (G.Wu).pesticides [4,5],foods [6,7],biology [8,9],medicine [10,11]and energy-saving [12–14],etc.Microcapsules with silica shell have drawn tremendous atten-tion in the past years with the advantages of high thermal and chemical stability,environmental friendly,low cost,and low tox-icity [15–17].Silica shells were used to encapsulate organic phase change materials (PCMs)because of their thermal cycle stability and thermal conductivity,showing promising applications in the field of energy storage and thermal anic PCMs,such as paraffin [18,19],n-octadecane [20,21],n-hexadecane [22,23],palmitic acid [24]and stearic acid [25],have been successfully encapsulated by silica via sol–gel method and result in enhanced/10.1016/j.colsurfa.2014.06.0180927-7757/©2014Elsevier B.V.All rights reserved.488 C.-B.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects457(2014)487–494performance.Besides these PCMs with phase change temperature lower than80◦C,organic PCMs including polyhydric alcohols and sugar alcohols with melt temperature higher than100◦C are of important applications for high temperature thermal-energy stor-age in the industrial process heat sector.The PCMs@Silica core/shell microcapsules were commonly prepared in oil-in-water(O/W)system via the hydrolysis and poly-condensation of silicon precursor at the O/W interface under the catalysis of base or acid,where the melting organic PCMs acts as the oil phase.To hold the stability of the O/W system,the melting temperature of the PCMs is required to be far below the boil-ing temperature of the continuous water phase.However,for the organic PCMs with higher melt temperature,it is still challeng-ing to enwrap them into the silica capsules with O/W system.To solve this problem,one possible approach is to seal water solu-ble polyhydric alcohols and sugar alcohols inside the silica shell through water in oil(W/O)emulsion,where the solid PCMs can be left inside after water pared to the numer-ous investigations on the O/W emulsion based core–shell capsules, the knowledge about the preparation of the silica shell capsules with an aqueous core is,however,limited.Even though several nanoparticles/capsules with silica shell have been prepared from W/O microemulsion[26–30],the capsule shell is too thin to prevent the leakage of the core materials during thermal cycling.Recently, O’Sullivan and Vincent found that mixture of tetraethoxysilane (TEOS)and diethoxydimethylsilane(DEODMS)should be used to form relatively thick and strong shells,rather than TEOS alone.In the case of mixed silicon precursor,the continuous trans-shell dif-fusion of the alkoxysilane and water allow continuous interfacial condensation reaction[31].Sambrook et al.reported that apply-ing single silicon precursor like TEOS can also get thick shells,the structural robustness of which is dependent on the quantity of pre-cursor used[32].Despite these contributions,more understandings on the formation of aqueous core/silica shell microcapsules are still needed.Furthermore,for some pH sensitive core materials,the extremely high/low pH value of the aqueous phase that induced by the catalysts will cause irreversible damage on the core material. As a result,a catalyst-free or neutral-catalysis method is believed to be of great value in the practical applications[33].In this contribution we reported the formation of the aqueous-core/silica shell microcapsules via hydrolysis and poly-condensation of bicomponent silicon precursors,in which the saturated aqueous solution of mannitol was utilized as the water phase with a mixture of tetraethoxysilane(TEOS)and 3-aminopropyl triethoxysilane(APTS)as silicon precursor.By mon-itoring the silica shell formation process,we found that both APTS and TEOS only react with water at the W/O interface,which is different from the previous report[34].Because APTS,the only com-ponent that can affect the pH value of the system,distributed only at the W/O interface,a neutral-catalysis process can be expected. Based on this process,mannitol,a sample of the organic PCMs with melting point higher than100◦C,was successfully encapsulated into the silica shell capsules.FT-IR,TGA,SEM and TEM were utilized to investigate and evidence the structure and component of the pre-pared Mannitol@Silica core–shell capsules.The mannitol crystal was well sealed inside the silica capsule under optimized condi-tion and the leakage was successfully avoided.The Mannitol@Silica core–shell capsules own irreversible phase change character in the range of142.1–166.2◦C with latent heat of147.4J/g.2.Experimental2.1.MaterialsMannitol(>99%),Tetraethoxysilane(TEOS,>99%),(3-Aminopropyl)triethoxysilane(APTS,99%)were purchased from Aladdin Chemistry Co.Ltd.,SPAN80was purchased from Sigma-Aldrich Co.LLC.,Cyclohexane(AR)was obtained from Sinopharm Chemical Reagent Co,Ltd.,Sodium dodecyl sulfate(SDS,CP)was obtained from Guangdong Xilong chemical reagent company. All the chemical reagents were used as received without further purifications.Deionized water was used in all experiments.2.2.Preparation of W/O emulsionThe whole reaction process was in a three-neckedflask of 250mL with continuously mechanical stirring(IKA RW20),and the reaction system was controlled at45◦C using a constant tem-perature bath.The oil-continuous phase was130mL cyclohexane containing1.20g SPAN80.The aqueous phase was30mL saturated aqueous solution of mannitol(40◦C)containing0.20g SDS.Then aqueous phase was added into oil phase and continuously stirred at a rate of350rpm for3.5min,as a result,a stable W/O emulsion was formed.2.3.Preparation of Mannitol@Silica capsulesTEOS was added into the oil-continuous phase of W/O emulsion drop by drop,followed by addition of APTS.The total amount of the TEOS and APTS is25mL and kept constant.Different volume ratio of TEOS to APTS including20mL:5mL,15mL:10mL,10mL:15mL, 5mL:20mL was applied.Stirring the system at a constant tempera-ture(45◦C)for2,3,5or12h.The capsules prepared were washed by fresh cyclohexane(40◦C)for three times and dried by freeze-drying for12h.2.4.Characterization of Mannitol@Silica capsulesFTIR spectra(KBr pellets)were carried out by Bruker Vector 22Fourier Transform Infrared Spectrometer.Thermogravimetric Analysis(TGA)was recorded on a Thermo-Gravimetric Analyzer (Q600,TGA,TA instrument)at10◦C/min ramp rate in a stream of nitrogen.The crystalline structure was investigated by a Rigaku D/max2550/PC X-ray diffractometer using graphite monochro-matic CuK␣radiation.The morphology of the Mannitol@Silica capsules was observed by polarizing microscope(Nikon LV100 POL),Transmission Electron Microscopy(TEM,JEM-1230,EOL Co.), Field Emission Scanning Electron Microscope(FE-SEM,S-4800, Hitachi Inc Japan)equipped with Energy Dispersive Spectrometer (EDS,SU-70,Hitachi Inc.,Japan).The phase change character was measured by a by Differential Scanning Calorimeter(DSC,Q100,TA instrument)at10◦C/min ramp rate in a stream of nitrogen.3.Results and discussion3.1.Preparation of the Mannitol@Silica capsulesThe ratio between the two silicon precursors is of great impor-tance to the morphologies of silica shell in the bicomponent systems[35–37].The morphology of the products with different TEOS to APTS ratio is shown in rge bulk of silica aggrega-tions was observed with TEOS to APTS ratio of20mL:5mL,as shown in Fig.1a.By decreasing the ratio to15mL:10mL,particles with reg-ular sphere shape can be obtained(Fig.1b).Note that some needle like mannitol crystals can also be observed among the particles, which is resulted from the crystallization of core materials after solvent evaporation.This result indicates insufficient encapsula-tion of the core materials into the silica shell.By further decreasing the TEOS to APTS ratio to10mL:15mL,all the needle like mannitol crystals disappeared and spherical particles with good morphology and uniform size distribution can be produced(Fig.1c).It can be concluded that all of the mannitol was successfully encapsulatedC.-B.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects457(2014)487–494489Fig.1.SEM images of the outcome of the interfacial polymerization of TEOS/APTS bicomponent precursor on the W/O interface with different volume ratio of TEOS to APTS: (a)20mL:5mL,(b)15mL:10mL,(c)10mL:15mL,and(d)5mL:20mL.The total amount of the silicon precursor is25mL and kept constant.into the silica shell.However,further decreasing the TEOS to APTS ratio(5mL:20mL)cannot obtain any silica particles(Fig.1d),indi-cating the failure of the interfacial polymerization at such low TEOS concentration.The influence of the reaction time on the morphology of the Mannitol@Silica core/shell capsules was evaluated with afixed TEOS to APTS ratio of10mL:15mL.Relative short reaction time can not form a thick silica shell to hold the capsules structure. For instance,Rugby-like capsules can be found from the products from2h reaction(Fig.2a).The capsule shell is notfirm enough and easy to collapse.The saturated aqueous solution of mannitol leaks out and the needle like crystals can be observed.When the reaction time is prolonged to3h,the shell is still not hard enough to encapsulate the mannitol crystals and a bundle of needle like mannitol crystals penetrate through the silica capsule,though the shell is thick enough(3–4m)to hold spherical shape(Fig.2b).5h is found to be the optimized reaction time to get uniform struc-tured capsules as shown in Fig.2c.If the reaction time is long enough,e.g.,12h,no clear boundary between the core and shell can be observed from the cross section image(Fig.2d)because of the continuous hydrolysis and polycondensation of the silicon precursors.The process of preparing Mannitol@Silica core/shell capsules is shown in Scheme1.When the saturated aqueous solution of mannitol was dispersed in cyclohexane with the aid of surfac-tant,a stable W/O emulsion was formed under continuous stirring. When TEOS was added into the emulsion system,parts of the TEOS molecules would adsorbed at the W/O interface because of its amphiphilic property.The water droplets surrounded by surfac-tant and TEOS can be expected.Similar to TEOS,the subsequently added APTS molecules trend to gather around the water droplets. However,the APTS molecules are easier to penetrate into the water phase across the W/O interface due to the hydrophilic properties of the amine group on APTS.To produce the solid shell in the W/O system,the monomers and water molecules have to react across the interface[31].The formation of the silica shell in this study is triggered by the diffusion of APTS from cyclohexane to water phase.First,NH2of APTS was ionized to NH3+in the water near the interface and a thin ionized water layer coupled with OH−formed,which is suitable for hydrolysis and polycondensa-tion of the precursors.A thin shell emerges at the W/O interface because of quick hydrolysis and polycondensation of APTS.Then, both TEOS and APTS continuously diffuse into the water phase across the interface and the thickness of SiO2shell on the sur-face of the aqueous droplets increased.Finally,the capsules with aqueous core can be obtained and the water was evaporated by freeze-drying.The images in Fig.2show that the size of Mannitol@Silica core/shell capsules is independent on the reaction time,while the thickness of the capsule shell increases with the increased reaction time.It can be concluded that the growth of the shell is an outside-in mode.The reaction is controlled by the diffusion process.The good permeability of the shell to water and silicon source precur-sor makes the interfacial condensation continue until a hard shell is formed[31].The shell growth stops when the shell is too compact for the precursor to penetrate inside.During the whole process,the change of the pH value of the aqueous phase was confined in the close vicinity of the interface,while most of the aqueous phase is neutral.As a result,this method is believed to be valuable to protect the acid or base sensitive material.The structure and chemical composition of prepared Manni-tol@Silica core/shell capsules were investigated.The FTIR spectra of mannitol,SiO2and Mannitol@Silica core/shell capsule are given in Fig.3a.Characteristic vibration bands of mannitol and SiO2can be clearly found in the curve of Mannitol@Silica core/shell cap-sule.The broad band at3000–3600cm−1can be ascribed to the stretching vibrations of the OH in mannitol.The CH2stretch-ing vibration(peaks at2967cm−1and2902cm−1),CH2in-plane bending vibration(peaks at1417cm−1and2900cm−1),C C and C O vibration(1082cm−1and1020cm−1)of mannitol can be all detected in line III.Besides,the peaks at1052cm−1,786cm−1and 458cm−1can be assigned to the bending vibration of the Si O bond490C.-B.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects 457(2014)487–494Fig.2.SEM images of the Mannitol@Silica core/shell capsules produced with different reaction time (a)2h,(b)3h,(c)5h,and (d)12h.Scheme 1.Schematic diagram of the preparing process for Mannitol@Silica core/shell capsules.and the peak at 932cm −1to Si OH.The FTIR spectra show that mannitol is successfully encapsulated into the silica shell.From the optical image captured under polarization mode (Fig.3b),the capsules show particle diameter in the range from 40to 150m,consistent with the SEM results (Fig.1c).Besides,white mannitol crystals can be clearly observed inside the capsules,which give the direct evidence of the successful encapsulation of mannitol in the capsules.Because of the freeze-drying process,the mannitolC.-B.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects457(2014)487–494491Fig.3.Characterization of(I)pure SiO2,(II)Mannitol,(III)Mannitol@Silica capsule:(a)FT-IR spectra;(b)polarizing micrograph photograph;(c)TGA curves;(d)XRD patterns;(e)SEM image of capsule interface;(f)EDS spectra.inside the capsule was found to aggregate in one inter side near the spherical surface instead of the sphere center.The TGA analysis gave in Fig.3c presents the thermal stabil-ity of the Mannitol@Silica core/shell capsules.The14.3%weight loss below290◦C(the boiling temperature of mannitol)could be attributed to the evaporation of physically absorbed water in the samples.The weight loss in the region above290◦C could be assigned to the evaporation of mannitol.Because of the com-pact encapsulation of the silica shell,the weight loss curve of the capsule looks more complicated than that of the pure man-nitol.The weight ratio of mannitol can be calculated to be about 46.3%according to the39.4%residue of silica.The XRD pattern shown in Fig.3d presents that the mannitol inside owns three types of crystals corresponding to␣-type(JCPDS No.00-022-1793),-type(JCPDS No.00-022-1797)and␦-type(JCPDS No.00-022-1794).The outer surface of the shell layer with continuous palliums-like wrinkle structure can be observed in the SEM image(Fig.3e). There are no obvious cracks in the shell layer,which helps to seal the mannitol inside the capsule.The composition of the shell layer is confirmed by EDS(Energy Dispersive Spectrometer)(Fig.3f).Ele-ments including C,Si,O,N can be detected,in which C,N come from the precursors,Si and O is the results of interfacial polymerization of the silica source.The inner structure of the Mannitol@Silica core/shell capsule was investigated from TEM morphology of the ultrathin section of the capsule(Fig.4).It shows that the cross section of the capsule own an asymmetric porous structure,where the outside layer of the shell is much more compact than the inner part.More pores can be observed in the inner part of the capsule,which is consis-tent with the proposed outside-in mode of the formation process of silica shell.With the penetration of the precursor from cyclohexane492C.-B.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects 457(2014)487–494Fig.4.TEM images of the ultrathin section of the Mannitol@Silica core/shell.(a)Low magnification image of the cross section of the capsule;(b–c)high magnification images of the inner part of the capsule,showing a porous structure.into the core,the decreasing concentration gradient of alkoxysilane monomer from interface to center will appear.Thus,the inner part of the capsule shell must be loose because of the smaller amount of the silicon precursor.3.2.Phase change character of the Mannitol@Silica capsulesThe phase change behavior of the mannitol before and after sil-ica encapsulation was given in Fig.5.During the first thermal cycle,the DSC curve of the Mannitol@Silica capsule is quite different to that of the pure mannitol.For pure mannitol,an endothermic peak (166.3◦C)corresponding to the solid–liquid phase changebehaviorFig.5.DSC curve of (I)mannitol,(II)Mannitol@Silica capsule (first thermal cycle),and (III)Mannitol@Silica capsule (second thermal cycle).was observed.In addition,two endothermic peaks with onset tem-perature of 142.1◦C and 156.6◦C can be found in Mannitol@Silica capsule.The totally latent heat is measured to be 147.4J/g for the Mannitol@Silica capsule,lower than the melting enthalpy of man-nitol (287.3J/g).The mass fraction of mannitol in the capsule can be calculated to be about 51.3%,which is consistent with TGA result.Unexpectedly,there are no exothermic behavior can be detected in the DSC measurement for the Mannitol@Silica capsule.Moreover,no phase change behavior can be found in the second thermal cycle,line III shown in Fig.5.In order to deeply understand the phase change performance of the Mannitol@Silica capsules,we characterized the capsules after the first thermal cycle (Fig.6).The outer surface of the silica shell shows no difference to the as-prepared capsule and no leakage of mannitol can be observed (Fig.6a).The XRD pattern of the treated Mannitol@Silica capsules in Fig.6c is the same as the typical delta-type mannitol crystal,indicating that the mannitol crystal remains inside the capsule.However,the core–shell structure of the Manni-tol@Silica capsule shows distinguished difference before and after thermal treatment in the polarizing micrograph (Figs.3b and 6b ).The gathered mannitol crystal,which is observed before thermal treatment,spread evenly in the whole capsule after the first ther-mal cycle.It has been proved that polycondensation between the hydrolysates Si OH of APTS results in the formation of SiO 2cluster capped with NH 2groups [38].The interaction between the OH group in mannitol molecule and the NH 2groups on the silica shell may be the reason for the variation of the phase change behavior of the mannitol after silica encapsulation.Further studies are still going on to give a full explanation and to make Mannitol@Silica capsules with better performance.C.-B.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects457(2014)487–494493Fig.6.Characterization of Mannitol@Silica capsule afterfirst thermal cycle:(a)SEM of capsule surface;(b)polarizing micrograph photograph;(c)XRD patterns for pure SiO2 (I)and Mannitol@Silica capsule(II).4.ConclusionMannitol@Silica capsules with thick shell layer have been pre-pared via hydrolysis and polycondensation of the bicomponent silicon precursors on the interface of W/O emulsion.The interfacial polymerization reaction can be triggered by the penetration of APTS into the aqueous phase because the NH2group in APTS molecule can increase the pH value of the inner layer of W/O interface.The formation of the silica shell is under the control of the diffusion of the TEOS and APTS across the W/O interface from oil phase to aqueous phase through an outside-in grow process.Although the hydrolysis of APTS might change the pH value of the aqueous phase, it distributed only at the W/O interface and its effect on pH value is very limited.Our method,as such,can be regarded as a neutral-catalysis process.By optimizing the volume ratio of TEOS to APTS and the reaction time,the mannitol crystal was well sealed inside the silica capsule and the leakage was successfully avoided.The latent heat of the Mannitol@Silica capsules is up to147.4J/g.The process described here can offer a feasible route to enwrap organic PCMs with phase change temperature higher than100◦C into the silica shell tightly,though the thermal cycle stability of the cap-sules reported in this work should be improved further.This work also gave contributions to the understanding of the formation of aqueous core/silica shell microcapsules and helped to explain the formation of the aqueous core capsule with a thick shell. AcknowledgmentsThis work wasfinancially supported by the National Natural Sci-ence Foundation of China(Grants51373151and51173159)and the Fundamental Research Funds for the Central Universities of China (2014QNA4037).References[1]M.Andersson Trojer,L.Nordstierna,M.Nordin,M.Nydén,K.Holmberg,Encap-sulation of actives for sustained release,Phys.Chem.Chem.Phys.15(2013) 17727–17741.[2]m,M.C.W.Yuen,C.W.Kan,R.S.M.Wong,G.Y.M.Cheng,m,R.Gam-bari,S.H.L.Kok,C.H.Chui,Development of calendula oil/chitosan microcapsules and their biological safety evaluation,Aust.J.Chem.65(2012)72–80.[3]B.Solomon,F.F.Sahle,T.Gebre-Mariam,K.Asres,R.H.H.Neubert,Microencap-sulation of citronella oil for mosquito-repellent application:formulation and in vitro permeation studies,Eur.J.Pharm.Biopharm.80(2012)61–66.[4]N.C.Rawlings,S.J.Cook,D.Waldbi,Effects of the pesticides carbofuran,chlor-pyrifos,dimethoate,lindane,triallate,trifluralin,2,4-D,and pentachlorophenol on the metabolic enddocrine and reproductive endocrine system in ewes,J.Toxicol.Environ.Health A54(1998)21–36.[5]A.Wyss,N.Cordente,U.von Stockar,I.W.Marison,A novel approach for theextraction of herbicides and pesticides from water using liquid-core microcap-sules,Biotechnol.Bioeng.87(2004)734–742.[6]J.Shah,K.A.Wesnes,R.A.Kovelesky,H.R.Henney III,Effects of food on thesingle-dose pharmacokinetics/pharmacodynamics of tizanidine capsules and tablets in healthy volunteers,Clin.Ther.28(2006)1308–1317.[7]H.Madziva,K.Kailasapathy,M.Phillips,Evaluation of alginate–pectin capsulesin Cheddar cheese as a food carrier for the delivery of folic acid,LWT–Food Sci.Technol.39(2006)146–151.[8]A.Rezania,R.Johnson,A.R.Lefkow,K.E.Healy,Bioactivation of metal oxidesurfaces.1.Surface characterization and cell response,Langmuir15(1999) 6931–6939.[9]C.Viornery,Y.Chevolot,D.Léonard,B.-O.Aronsson,P.Péchy,H.J.Mathieu,P.Descouts,M.Grätzel,Surface modification of titanium with phosphonic acid to improve bone bonding:characterization by XPS and ToF-SIMS,Langmuir18 (2002)2582–2589.[10]X.P.Qiu,S.Leporatti,E.Donath,H.Möhwald,Studies on the drug release prop-erties of polysaccharide multilayers encapsulated ibuprofen microparticles, Langmuir17(2001)5375–5380.[11]Y.F.Zhu,J.L.Shi,W.H.Shen,X.P.Dong,J.W.Feng,M.L.Ruan,Y.S.Li,Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core–shell structure,Angew.Chem.Int.Ed.44(2005)5083–5087.[12]P.Schossig,H.-H.Henning,S.Gschwander,T.Haussmann,Micro-encapsulatedphase-change materials integrated into construction materials,Sol.Energy Mater.Sol.Cells89(2005)297–306.494 C.-B.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects457(2014)487–494[13]A.F.Regin,S.C.Solanki,J.S.Saini,Heat transfer characteristics of thermal energystorage system using PCM capsules:a review,Renew.Sustain.Energy Rev.12 (2008)2438–2458.[14]S.Lone,H.M.Lee,G.M.Kimb,W.-G.Koh,I.W.Cheong,Facile and highly efficientmicroencapsulation of a phase change material using tubular microfluidics, Colloids Surf.Physicochem.Eng.Asp.422(2013)61–67.[15]P.P.Yang,S.L.Gai,J.Lin,Functionalized mesoporous silica materials for con-trolled drug delivery,Chem.Soc.Rev.41(2012)3679–3698.[16]W.R.Zhao,J.L.Gu,L.X.Zhang,H.R.Chen,J.L.Shi,Fabrication of uniform mag-netic nanocomposite spheres with a magnetic core/mesoporous silica shell structure,J.Am.Chem.Soc.127(2005)8916–8917.[17]K.Szczepanowicz,K.Podgórna,L.Szyk-Warszy´nska,P.Warszy´nski,Formationof oilfilled nanocapsules with silica shells modified by sequential adsorption of polyelectrolytes,Colloids Surf.Physicochem.Eng.Asp.441(2014)885–889.[18]G.Y.Fang,Z.Chen,H.Li,Synthesis and properties of microencapsulated paraffincomposites with SiO2shell as thermal energy storage materials,Chem.Eng.J.163(2010)154–159.[19]B.X.Li,T.X.Liu,L.Y.Hu,Y.F.Wang,L.N.Gao,Fabrication and properties ofmicroencapsulated Paraffin@SiO2phase change composite for thermal energy storage,ACS Sustain.Chem.Eng.1(2013)374–380.[20]H.Z.Zhang,S.Y.Sun,X.D.Wang,D.Z.Wu,Fabrication of microencapsulatedphase change materials based on n-octadecane core and silica shell through interfacial polycondensation,Colloids Surf.Physicochem.Eng.Asp.389(2011) 104–117.[21]H.Z.Zhang,X.D.Wang,D.Z.Wu,Silica encapsulation of n-octadecane via sol–gelprocess:a novel microencapsulated phase-change material with enhanced thermal conductivity and performance,J.Colloid Interface Sci.343(2010) 246–255.[22]G.Fang,H.Li,Z.Chen,X.Liu,Preparation and characterization offlame retardantn-hexadecane/silicon dioxide composites as thermal energy storage materials, J.Hazard.Mater.181(2010)1004–1009.[23]F.Salaün,E.Devaux,S.Bourbigot,P.Rumeau,Influence of process parameterson microcapsules loaded with n-hexadecane prepared by in situ polymeriza-tion,Chem.Eng.J.155(2009)457–465.[24]G.Y.Fang,H.Li,Z.Chen,X.Liu,Preparation and properties of palmitic acid/SiO2composites withflame retardant as thermal energy storage materials,Sol.Energy Mater.Sol.Cells95(2011)1875–1881.[25]S.D.Zhang,S.S.Wang,J.Zhang,Y.C.Jiang,Q.Ji,Z.P.Zhang,Z.Y.Wang,Increasingphase change latent heat of stearic acid via nanocapsule interface confinement, J.Phys.Chem.C117(2013)23412–23417.[26]G.Fornasieri,S.Badaire,R.Backov,O.Mondain-Monval,C.Zakri,P.Poulin,Mesoporous and homothetic silica capsules in reverse-emulsion microreactors, Adv.Mater.16(2004)1094–1097.[27]S.Santra,R.Tapec,N.Theodoropoulou,J.Dobson,A.Hebard,W.Tan,Synthesisand characterization of silica-coated iron oxide nanoparticles in microemul-sion:the effect of nonionic surfactants,Langmuir17(2001)2900–2906. [28]Z.H.Cao,L.Z.Dong,L.Li,Y.Shang, D.M.Qi,Q.Lv,G.R.Shan,U.Ziener,ndfester,Preparation of mesoporous submicrometer silica capsules via an interfacial sol–gel process in inverse miniemulsion,Langmuir28(2012) 7023–7032.[29]F.Grasset,R.Marchand,A.-M.Marie,D.Fauchadour,F.Fajardie,Synthesis ofCeO2@SiO2core–shell nanoparticles by water-in-oil microemulsion.Prepara-tion of functional thinfilm,J.Colloid Interface Sci.299(2006)726–732. [30]X.L.Zhang,H.Y.Niu,Y.Y.Pan,Y.L.Shi,Y.Q.Cai,Modifying the surface ofFe3O4/SiO2magnetic nanoparticles with C18/NH2mixed group to get an effi-cient sorbent for anionic organic pollutants,J.Colloid Interface Sci.362(2011) 107–112.[31]M.O’Sullivan,B.Vincent,Aqueous dispersions of silica shell/water-core micro-capsules,J.Colloid Interface Sci.343(2010)31–35.[32]K.Bean,C.F.Black,an,P.Reynolds,M.R.Sambrook,Preparation of aque-ous core/silica shell microcapsules,J.Colloid Interface Sci.366(2012)16–22.[33]K.M.Roth,Y.Zhou,W.J.Yang,D.E.Morse,Bifunctional small molecules arebiomimetic catalysts for silica synthesis at neutral pH,J.Am.Chem.Soc.127 (2005)325–330.[34]J.Zhang,S.S.Wang,S.D.Zhang,Q.H.Tao,L.Pan,Z.Y.Wang,Z.P.Zhang,Y.Lei,S.K.Yang,H.P.Zhao,In situ synthesis and phase change properties of Na2SO4·10H2O@SiO2solid nanobowls toward smart heat storage,J.Phys.Chem.C115(2011)20061–20066.[35]M.O’Sullivan,Z.B.Zhang,B.Vincent,Silica-shell/oil-core microcapsules withcontrolled shell thickness and their breakage stress,Langmuir25(2009) 7962–7966.[36]B.P.Nair,C.Pavithran,Bifunctionalized hybrid silica spheres by hydrolyticcocondensation of3-aminopropyltriethoxysilane and vinyltriethoxysilane, Langmuir26(2010)730–735.[37]S.E.Rankin, A.V.McCormick,Reaction engineering of cocondensing(methyl)ethoxysilane mixtures:kinetic characterization and modeling, Macromolecules33(2000)7743–7750.[38]D.M.Gao,Z.P.Zhang,M.H.Wu,C.G.Xie,G.J.Guan,D.P.Wang,A surfacefunctional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles,J.Am.Chem.Soc.129(2007)7859–7866.。
目录缩略语表 (2)中文摘要 (4)英文摘要 (7)前言 (10)文献回顾 (12)正文 (24)第一部分运动负荷超声心动图对肥厚型心肌病患者隐匿性梗阻的预测研究. 241.资料 (24)2.仪器与方法 (25)3.结果 (26)4.讨论 (33)第二部分二维斑点追踪技术评价隐匿梗阻性肥厚型心肌病患者运动前后左心室扭转功能变化的研究 (36)1.资料 (36)2.仪器与方法 (36)3.结果 (38)4.讨论 (42)小结 (47)参考文献 (48)附录 (57)个人简历和研究成果 (59)致谢 (62)缩略语表缩略词英文全称中文全称A Late diastolic mitral flow 二尖瓣口舒张晚期血流速度峰值ACEI Angiotensin Converting Enzyme Inhibitors 血管紧张素转化酶抑制剂ARB Angiotensin Receptor Antagonist 血管紧张素Ⅱ受体阻滞剂AUC Area under the curve 曲线下面积CCB Calcium Channel Blocker 钙通道阻滞剂CMR Cardiac magnetic resonance 心脏磁共振成像DBP Diastolic Blood Pressure 舒张压E Early diastolic mitral flow 二尖瓣口舒张早期血流速度峰值ESC European Society of Cardiology 欧洲心脏学会GCS Global circumferential strain 整体圆周应变GLS Global longitudinal strain 整体纵向应变GRS Global radial strain 整体径向应变HCM Hypertrophic Cardiomyopathy 肥厚型心肌病HF Heart Failure 心力衰竭HOCM Obstructive Hypertrophic Cardiomyopathy 梗阻性肥厚型心肌病ICD Implantable Cardioverter Defibrillator 植入性心脏除颤器LA VI Left atrial volume index 左房容积指数LVEDV Left ventricular end-diastolic volume 左室舒张末期容积LVEF Left Ventricular Ejection Fraction 左室射血分数LVESV Left ventricular end-systolic volume 左室收缩末期容积LVMI Left ventricular mass index 左室质量指数LVOT Left Ventricular Outflow Tract 左室流出道LVOTO Left Ventricular Outflow Tract Obstruction 左室流出道梗阻LVOT-PG Left Ventricular Outflow Tract PressureGradient左室流出道压力阶差MV-AL Mitral Anterior Leaflet Length 二尖瓣前瓣长度MV-CL Mitral Coaptation Length 二尖瓣瓣叶对合缘长度MV-PL Mitral Posterior Leaflet Length 二尖瓣后瓣长度MV-TA Mitral Valvetenting Area 二尖瓣叶穹窿面积MV-TH Mitral Valvetenting Height 二尖瓣叶穹窿高度NYHA New York Heart Association 纽约心脏协会ROC Receiver operating characteristic curve 受试者工作特征曲线SAM Systolic Anterior Motion 收缩期前向运动SBP Systolic Blood Pressure 收缩压SCD Sudden Cardiac Death 心源性猝死2D-STI Two-dimensional speckle tracking imaging 二维斑点追踪技术第一部分运动负荷超声心动图对肥厚型心肌病隐匿性梗阻的预测研究硕士研究生:左蕾导师:刘丽文教授辅导教师:王静副研究员空军军医大学西京医院超声医学科,西安710032资助基金项目:科技部国家国际合作专项(2014DFA31980);国家自然科学基金青年项目(81601498);国家自然科学基金面上项目(81671693);陕西省重点项目(2017ZDXM-SF-058);西京医院新技术、新业务资助项目(417432A)中文摘要目的:采用运动负荷超声心动图探讨超声心动图静息指标对肥厚型心肌病隐匿性梗阻的预测价值。
actual weld-throat thick-ness焊缝厚度 all-around weld整周焊缝all-around weld (整周焊缝)环焊缝angle butt weld斜对接焊angle weld角焊appearance of weld焊缝成形arc-seam weld电弧缝焊arc-spot weld电弧点焊arc-weld电弧焊aspect ratio of weld焊缝成形系数at weld edge在焊缝边上attachment weld连接焊缝automatic spot weld自动点焊法automatic weld自动焊接axis of a weld焊缝中心线; 焊接轴线 axis of weld焊缝轴线; 焊接轴线back of weld焊缝背面backing groove of weld焊缝反面坡口 backing weld底焊; 底焊焊缝bare metal arc weld裸焊条电弧焊bead weld珠焊; 堆焊bead-on-plate weld堆焊焊缝beading weld凸焊beam-to-beam weld梁间焊接; 梁式引线焊接block sequence weld分段多层焊bond weld钢轨接头焊接bridge seam weld桥缝焊接; 桥线焊brize weld硬焊butt weld对接焊缝butt weld ends对头焊接端butt-weld碰焊; 平式焊接; 对头焊接butt-weld in the downhand position对接平焊butt-weld joint对头焊接butt-weld pipe mill对焊管轧机button spot weld按电钮点焊cap weld最后焊层; 盖面焊缝carbon content of weld materials焊接材料的碳含量cast-weld construction铸焊结构caulk weld填缝焊caulking weld密实焊缝chain intermittent fillet weld链式分段角焊; 并列间断角焊缝chain intermittent weld并列焊接circular weld环形焊缝circumferential weld环缝; 环焊缝cleft weld裂口焊closed weld底边无缝焊; 无间隙焊缝 closed-chamber fusion weld闭室熔焊cluster weld丛聚焊缝coil weld卷板对接焊; 卷板对接焊; 板卷焊cold weld冷压接commutator-controlled weld换向控制焊接complete penetration butt weld贯穿对焊composite weld紧密焊缝; 强度密封焊缝 concave filled weld凹形角焊缝concave filler weld凹角焊concave fillet weld凹面填角焊concave weld凹焊缝; 凹面焊; 凹形焊缝; 轻型焊connective weld联系焊缝continuous butt-weld mill连续式炉焊管机组continuous fillet weld连续(填)角焊缝; 连续角焊缝; 连续贴角焊continuous weld连续焊缝continuous weld process连续式炉焊管法 contour weld特形焊接convex fillet weld凸角焊缝; 凸形角焊缝convex weld凸焊缝; 凸形焊缝copper weld wire包铜钢丝corner flange weld单卷边角焊缝corner weld角焊corner-flange weld卷边角焊缝; 卷边角焊缝crack of weld焊部裂纹cross weld十字交叉焊缝; 横向焊缝cross-wire weld十字焊crotch weld楔接锻接; 楔接焊接cup weld带盖板焊缝depth of weld焊接深度dissimilar weld metal不同的焊接金属; 不同金属的焊接distance between the toes of a weld焊缝宽度double groove weld双面坡口焊缝double-bevel groove weld双斜边坡口焊缝; 双斜坡口焊double-flanged butt weld双弯边对接焊缝double-V groove weld双斜边坡口焊缝; 双斜坡口焊downhand weld平焊缝duplex spot weld双点点焊接头edge joint weld边缘焊edge weld端接焊; 端接焊缝; 端面焊缝; 对边焊electric resistance weld mill电阻焊管机electric weld-pipe mill电焊管机electric-weld pipe mill电焊管机emporary weld临时点定焊缝excess weld metal焊缝补强金属; 补强; 补强焊料; 补强金属excess weld metal(焊缝的)余高explosive weld爆炸焊接face of weld焊缝表面; 焊接面fibrous weld纤维状焊缝field weld现场焊接filler weld填角焊缝fillet weld角焊缝; 填角焊; 贴角焊fillet weld in normal shear (搭接接头的)正面角焊缝fillet weld in parallel shear侧面角焊缝; 侧面填角焊fillet weld in the flat position角接平焊; 水平角焊缝fillet weld in the horizontal position 横向角焊缝fillet weld size焊角尺寸; 填角焊缝尺寸flame weld火焰焊接flange weld卷边焊缝; 卷边焊缝flange-to-web weld卷边焊缝; 卷边焊缝 flanged butt weld弯边对接焊flanged edge weld卷边焊; 卷边焊flash butt weld闪光焊flash weld闪速对焊flat faced fillet weld平顶角焊缝焊接 flat fillet weld平角焊ing of fillet weld角焊缝平焊; 船形角焊flush fillet weld平角焊flush weld削平补强的焊缝; 平焊接; 无加强高的焊缝forge weld锻焊焊缝forged weld (焊后锻压的)锻压焊缝form factor of the weld焊缝成形系数 formation of weld焊缝成形front fillet weld正侧面填角焊缝; 正面填角焊front(al) fillet weld正面角焊缝full fillet weld满角焊缝; 全角焊full penetration butt weld满对接焊full weld满焊full-fillet weld满角焊 full-sized weld全尺寸焊缝full-strength weld (与母材等强)等强焊缝gap weld特殊点焊; 双极单点焊gas-pressure weld气压焊girth weld环形焊缝gravity weld倚焊groove weld坡口焊; 坡口焊缝; 有坡口焊缝; 凹槽焊groove-weld joint有坡口焊接接头hammer weld锻焊hand weld手焊焊缝height of reinforcement of weld加强焊缝高度helical-weld pipe螺旋焊管high performance weld flux高性能焊剂 horizontal fillet weld横向角缝焊接horizontal weld横向焊缝horizontal-vertical fillet weld横向垂直角焊缝hot weld encapsulation热焊封袋hydraulic automatic weld液压自动焊接 hydraulic weld process液压焊接法inclined weld斜焊inconel weld单面焊缝incorrect weld profile焊缝形状不对incorrect weld size焊缝尺寸不对induction weld mill感应焊管机inside corner weld内角焊接inside fillet weld内角焊接inside weld内焊缝insufficient or excess reinforcement of weld加强焊缝不足或过量intermittent fillet weld间断角缝焊接; 断续角焊缝intermittent weld断续焊; 断续焊缝jam weld对接焊; 对头焊接lap fillet weld搭接角焊缝laser (beam) weld (ing)激光焊lateral weld侧焊; 侧面焊缝leg of a fillet weld角焊缝; 角焊缝焊脚leg of fillet weld圆角焊肉厚length of weld焊缝长度light closing weld轻连续焊接light fillet weld轻型填角焊; 小填角焊 light weld轻焊缝Lincoln weld埋弧自动焊longitudinal fillet weld纵向角焊longitudinal weld纵向焊缝longitudinal weld (焊接用语)纵缝loose weld脱焊main weld主焊缝mash seam weld压薄缝焊; 滚压焊mash weld点焊; 点压焊melt thru weld熔透焊缝melt-through weld透溶焊melten weld pool焊接熔池melting through weld熔透焊缝miter weld平顶角焊缝; 斜接角焊缝molten weld metal熔融焊接金属mulitple impulse weld多脉冲焊缝multilayer weld多层焊缝multipass weld多道焊缝multiple arc weld多弧焊缝multiple-electrode submerged arc weld 多电极埋弧焊multiple-pass weld多道焊缝; 多路焊接 multirun weld多道焊缝nonpressure thermit weld不加压热剂焊缝normal weld正常焊接oblique fillet weld斜交角焊缝; 斜角焊接one-pass weld单层焊缝open butt weld开口对接焊open weld留间隙焊缝; 空隙焊outside weld外焊缝over weld过焊overhead fillet weld仰焊角焊缝overhead weld仰焊oversize weld超尺寸焊缝oxygen weld氧气焊接parallel-arc weld并列弧焊patch weld补焊; 补孔焊缝Peltier's cross weld珀耳帖交叉焊接 penetration weld熔透焊缝percussion weld冲击焊缝; 冲击焊接periphera weld环形焊缝pitch of weld焊缝接距; 焊线距plain butt weld无坡口对接焊; 平头对接焊缝plasma-arc weld等离子弧焊接plug weld塞焊焊缝point of weld焊接点point weld点焊poor weld劣质焊缝; 有缺陷的焊缝porous weld多孔焊缝; 疏松焊缝positioned weld平位焊缝; 暂焊post weld annealed (PWA)焊后退火poured weld铸焊焊缝powder weld process粉末焊接法 practice weld试验焊缝pressure weld压焊pressure-controlled weld压力控制焊接 pressure-tight weld气密焊; 密封焊道 principal weld主要焊缝profile of fillet weld填角焊缝轮廓 progress of weld焊向projection weld凸焊; 凸焊焊缝projection weld machine凸点电阻焊机 pulsating weld脉冲接触焊push weld挤焊quilting weld钉焊reinforced butt weld补强的对接焊缝; 补强式对接焊缝reinforced weld加强焊接reinforcement of weld焊缝加厚; 补强金属; 加强焊缝resistance weld mill电阻焊管机resistance weld pipe电阻焊管resonance butt weld谐振式对接焊restarting a weld再引弧ripple weld鳞状焊缝rivet weld电铆; 电铆焊缝root face of weld焊缝根部钝边root gap of weld焊缝根部间隙root of weld焊缝根部; 焊根root opening of weld焊缝根部间隙root radius of weld焊缝坡口根部半径 sagged weld下垂焊缝scarf weld楔口焊接seal weld填焊; 致密焊缝; 密封焊; 密封焊道; 密封焊缝sealing weld封焊seam weld滚焊semi-automatic arc weld半自动电弧焊 sequence weld timer序列焊接时间调节器 shallow weld浅焊shop weld工厂焊接shot weld点焊shoulder of weld焊缝根部钝边side fillet weld侧面角焊缝; 侧面填角焊缝; 侧面贴角焊side lap weld侧边搭接焊; 弯边搭焊缝 side weld侧焊缝; 边焊single lap weld单搭接焊single strap butt weld单面盖板对接焊 single-bevel groove weld单斜角槽焊 single-fillet weld单边角接焊缝single-pass weld单道焊site weld现场焊接; 安装焊; 安装焊接 size of a fillet weld焊角尺寸size of weld焊件的大小; 焊区尺寸skew weld斜焊skin weld表面焊接sleeve weld套筒焊接slip-weld hanger卡瓦焊接套管挂slot weld槽塞焊; 长孔焊; 开槽搭焊缝; 切口焊缝ing slotted weld槽焊slotted lap weld切口搭接焊smooth fillet weld平填角焊缝socket weld ends承插焊接端soft-weld铜镍焊条合金solvent weld溶剂焊接space of intermittent weld断续焊缝间距; 断续焊间距spiral weld螺旋形焊缝spiral weld-pipe mill螺旋焊管机spot weld焊点spot weld bonding胶结点焊spot weld nugget点焊熔核spreading weld宽缝焊接; 加宽的焊缝square butt weld平头对接焊缝square groove weld无坡口槽焊staggered intermittent fillet weld (ing)交错断续角焊staggered intermittent weld交错断续焊缝; 交错间断焊staggered plug weld交错塞焊standard reinforced fillet weld标准加强角焊缝stick-out weld未熔合点焊接头stitch-and-seam weld点线焊straight butt weld无坡口对接接头strapped weld搭板对接焊缝strength weld受载焊缝; 强固焊接; 承载焊缝; 高强度焊接structural weld强固焊缝surface of weld焊缝表面surface weld表面焊缝surface weld metal buildup表面焊缝金属的形成synthetic apparatus for weld thermal cycle焊接热循环模拟装置T weld丁字接头焊缝T-filled weld丁字形角焊T-fillet weld丁字接头角焊缝tack weld定位焊点; 定位焊缝; 临时点焊; 预焊; 平头焊接(welding)定位焊tandem arc weld前后弧焊temporary weld临时点固焊缝 tension weld受拉焊缝test weld试焊throat depth (thickness) of fillet weld 角焊缝厚度throat of fillet weld凹角焊喉; 填角焊缝喉长throat of weld凹角焊喉tight weld密封焊接; 致密焊缝tight-strong weld密实强固焊缝toe of the weld焊缝边界toe of weld焊趾toe weld趾部焊缝torch weld气焊焊缝total amount of weld fumes焊接发尘量 transverse fillet weld横向角焊缝; 正面角焊transverse weld横向焊缝trial weld试验焊接undercut weld底切焊接undressed weld (增加焊缝)未加工焊缝unequal fillet weld焊脚不等的角焊缝unfitness of butt weld焊缝对口错边量 union-melt weld埋弧焊unload weld非承载焊缝unspaced butted weld无间隙对接焊缝upgrading of boiler weld锅炉焊缝加强 vertical fillet weld立焊角焊缝vertical weld立焊weak weld不强固焊缝weaving weld横向摆动焊缝weld焊; 焊接的; 补焊weld all around围焊weld appearance焊缝外观weld assembly焊接组件weld back-up焊缝背垫weld backing焊缝衬垫weld bead焊缝; 熔敷焊道weld bead height焊缝高度weld beading焊瘤weld bond熔合线weld bridge seam搭桥焊缝; 桥接焊缝weld cap焊帽weld center line焊缝中心线weld collar加强焊缝焊瘤weld crack焊接裂纹weld crater熔池weld crosswise交叉焊接weld decay焊缝腐蚀; 焊接接头晶间腐蚀; 焊接侵蚀; 焊接区晶间腐蚀weld decay (焊接后)敏化区腐蚀weld defect焊接缺陷weld delay time焊接延迟时间weld deposit堆焊weld deposits cleaning焊接熔敷金属清理weld edge焊缝边缘; 焊缝表面边缘weld edgewise沿边焊接weld flange connection焊接法兰连接weld flash焊瘤weld flaw焊接缺陷weld flush焊缝隆起weld fumes焊接烟尘weld gage焊缝检查规; 焊缝卡规weld gauge焊缝量规weld heat input焊接热输入; 焊接线能量 weld holder焊接夹持架; 焊接架weld inspection焊缝质量检验; 焊接检查weld interface焊缝界面; 焊接界面weld interval焊接时间weld is accepted焊缝合格weld jig焊接夹具weld joint焊缝weld junction熔焊线; 熔合线weld layer焊接层weld length焊缝长度weld line焊缝线; 焊缝轴线; 焊接线;焊线weld machined flush削平补强的焊缝weld mark焊缝符号; 焊缝记号; 焊接痕; 熔缝weld mesh crate焊接网格weld metal焊缝金属; 焊接金属weld metal buildup surface金属堆焊表面weld metal composition焊接金属组成weld metal cracking焊缝裂纹weld metal zone焊缝金属区; 焊接金属熔化区weld nugget焊点熔核weld on bottom底焊weld overlap重叠区weld pass焊接通道weld penetration焊缝熔深; 焊透深度weld period焊接时间weld pitch焊缝距weld porosity焊缝气孔weld preheating焊前预热weld preparation焊缝坡口加工weld puddle熔池weld reinforcement焊缝补强; 焊缝加强; 焊接补强 weld repairs焊接修补weld ripple焊缝波纹weld root焊件剖口; 焊接根weld root opening gap焊缝根部间隙weld root reinforcement焊缝反面加强 weld rotation焊缝转角weld seam pipe焊缝管weld shape焊缝形状weld shielding焊接区保护; 焊接熔池保护weld slope焊缝倾角weld spacing焊点距; 焊缝间距weld strain焊接应变weld strength焊接强度weld surface焊缝表面weld swell焊缝隆起weld thermal cycle焊接热循环weld thickness焊缝厚度weld time焊接时间; 焊接通电时间; 接触焊通电时间weld toxic gases焊接有害气体weld trimmer焊缝清理机weld up焊补weld wheel conditioner焊轮调节器weld width焊缝宽度weld wire包铜钢丝weld zone焊缝区; 焊接区weld-form factor焊缝形状系数weld-fusion line焊缝熔合线weld-in nozzle焊入式喷嘴weld-interval timer焊接间隔记时器weld-shrunk cylinder包扎式圆筒weld-shrunk multilayered cylinder包扎式多层圆筒; 多层包扎式圆筒weld-throat thickness depth焊缝厚度 window type restraint weld cracking test窗口拘束焊缝抗裂试验; 窗形拘束抗裂试验zigzag intermittent fillet weld锯齿形断续角焊缝; 锯齿形断续角焊缝zone of weld焊缝表面AC & D. C. arc welding machine交直流弧焊机AC arc welding交流电弧焊AC gas metal-arc welding process交流熔化极气保护焊AC gas tungsten arc welding交流钨极气保护焊AC welding set交流焊机; 交流焊接变压器AC-dc welding machine交直流两用焊机acetylene welding气焊; 乙炔焊; 乙炔焊接acetylene welding torch乙炔焊炬; 乙炔接焊吹管air-acetylene welding空气-乙炔焊接all-position welding全位置焊接alloy steel gas welding rod合金钢气焊条alternating current arc welding交流电弧焊alternating current welding machine交流电焊机aluminium alloy arc welding electrode 铝合金焊条aluminothermic welding铝热焊; 铸焊angle backwards welding后倾焊angle butt welding斜口对接焊angle forwards welding前倾焊annealing welding wave退火焊波antogenous welding氧炔焊apparatus for butt welding平接压焊夹具arc braze welding电弧钎焊arc flash welding电弧闪光焊arc spot welding电铆焊arc stud welding柱钉电弧焊; 螺柱电弧焊arc voltage feedback controlling arc welding弧压反馈电弧焊arc welding电弧焊; 电弧焊接; 弧焊arc welding electrode电弧焊条arc welding generator电弧焊接用发电机; 弧焊发电机arc welding generator with independent excitation自激弧焊发电机; 他激电焊发电机arc welding generator withself-excitation自激电焊发电机arc welding machine弧焊机; 电焊机; 电弧焊机arc welding mask电弧焊遮罩arc welding process电弧焊接工艺过程arc welding rectifier弧焊整流器arc welding robot弧焊机器人arc welding set电弧焊机组arc welding transformer弧焊变压器arc-welding electrode电弧焊用焊条arc-welding plant电焊厂arcogen welding电弧氧乙炔焊 argon (shielded) arc welding氩弧焊接 argon tungsten-arc welding钨极氩弧焊 argon-arc welding氩弧焊argonaut welding自动氩弧焊atomic H welding氢原子焊atomic hydrogen welding原子氢焊atomic-hydrogen welding原子氢焊接austenite welding不锈钢焊接autogenous pressure welding自动压合热焊autogenous welding气焊automatic arc welding head自动电弧焊接机头automatic arc welding machine自动电焊机; 自动弧焊机automatic drying line for welding electrode电焊条自动烘焙线automatic slag pool welding自动电渣焊 automatic spot welding自动点焊automatic submerged arc welding自动埋弧焊automatic submerged slag welding of rail钢轨automatic submerged-arc welding machine埋弧自动焊机automatic transverse welding横向自动焊automatic welding自动焊; 自动焊接automatic welding head自动焊头automatic welding machine自动焊接机automatic welding of circumferential seams 环缝自动焊automatic welding process自动焊接工艺规程automation of welding焊接自动化back hand welding后退焊; 反手焊接back step welding反手焊接back ward welding反手焊接back welding底焊; 退焊法back-step welding分段退焊法backhand welding逆向焊; 右焊法; 后焊法; 向后焊backing welding打底焊backstep welding分段逆焊; 分段退焊; 反向焊; 逐步退焊法; 逆向焊backstep welding sequence分段退焊次序backward welding后倾焊; 后退焊; 向右焊 balanced welding对称焊bare welding rod光焊条bare wire arc welding光焊丝电弧焊bead welding窄焊道焊接bench arc welding machine台式弧焊机bevel welding斜角焊blacksmith welding锻工焊接; 锻焊block sequence welding分段多层焊; 分段连续焊接block welding块焊接block welding sequence分段多层焊body welding machine罐身焊接机both sides welding双面焊接brass welding rod黄铜焊条braze welding钎焊; 钎焊接; 钎接; 铜焊braze-welding钎接焊bridge spot welding带接合板点焊; 单面衬垫点焊; 单面搭板点焊bridge welding桥接焊; 盖板焊brize welding硬焊build (built) up welding堆焊build-up welding堆焊building-up by welding堆焊butt resistance welding电阻对焊; 对接电阻焊butt seam welding对接滚焊butt seam welding machine对接缝焊机butt welding对接焊; 平对焊butt welding machine对接焊机butt welding process对接焊法butt-welding对接焊butt-welding machine对焊机capability of welding vertically upwards直上焊接能力capacitor-discharge welding电容放电焊接 carbon arc welding碳弧焊; 碳极弧焊carbon in materials for welding焊接用材料中的碳carbon-dioxide arc welding二氧化碳保护焊 carriage of automatic welding machine自动焊机走架cascade welding阶梯式焊; 山形多层焊cascade welding sequence串级叠置法cast welding铸焊cement-welding金属陶瓷焊接centralized installation of welding machine多站焊接chain intermittent fillet welding并列断续角焊缝; 链式断续角焊chemical welding化学焊circular seam welding环缝对接焊circular seam-welding machine环形滚焊机 cleaning before welding焊接前的清理cleaning of welding deposits焊接沉积的清理 closed butt gas pressure welding闭式加压气焊cold welding冷焊; 冷压焊cold-pressure welding冷压焊combined cutting and welding torch焊割两用炬combined cutting and-welding blow-pipe焊割两用炬combined thermit welding加压铸焊complete penetraction and fusion in welding 全焊透condenser (discharge) spot-welding machine 电容器放电点焊机condenser discharge spot welding电容储能点焊; 电容贮能点焊constant current welding machine恒流电焊机constant energy welding machine恒功率电焊机constant voltage welding machine恒压电焊机constant-current arc welding power source垂降特性弧焊电源constant-current welding source恒流式焊接电源constant-power welding source恒功率式焊接电源constant-pressure pressure welding恒压压力焊constant-temperature pressure welding恒温压力焊constant-voltage welding machine恒电压焊机constant-voltage welding source恒压式焊接电源; 平特性焊接电源consumable electrode welding熔化极电弧焊 consumable guide electroslag welding自耗定向电渣焊contact welding接触焊continuous feed welding连续送丝电弧焊continuous welding连续焊; 连续焊接contour welding绕焊controlled arc welding可控电弧焊接controlled atmosohere arc welding充气室电弧焊controlled atmospere arc welding充气式电弧焊controlled tungsten-arc welding自动控制弧长的钨极电弧焊controlled-transfer welding可控过渡电弧焊 convex fillet welding凸面角焊缝copper arc welding electrode铜焊条copper welding rod铜焊条copper-alloy arc welding electrode铜合金焊条copper-aluminium welding rod铜铝焊条copper-nickel welding rod铜镍焊条copper-silicon welding rod铜硅焊条copper-tin welding rod铜锡焊条copper-zinc welding rod铜锌焊条core welding-wire焊芯core wire for welding rod焊条芯线corrosion due to welding焊接腐蚀cosmetic welding盖面焊cover chain welding链节式药皮包丝焊接 CO 2 arc welding machine二氧化碳弧焊机 cracking test for automatic welding自动焊抗裂试验crankshaft flashbutt welding曲轴电阻弧花压焊cross welding横向焊缝cyc-arc welding圆环电弧焊deck welding重力焊deep fillet welding深角焊deep penetration welding深熔焊deep penetration welding electrode深熔焊条 deep welding深焊die welding模焊; 冲模堆焊diesel engine driven DC arc welding machine 柴油机驱动直流弧焊机differential-excited welding generator差激电焊发电机diffusion welding扩散焊接direct spot welding双面点焊direct welding双面点焊direction of welding焊接方位; 焊接方向discontinuous welding断续焊dot welding点焊double carbon-arc welding间接碳弧焊double side welding双面焊接down-hand welding俯焊downhand welding平焊downward welding in the inclined position下坡焊downward welding in the vertical position向下立焊dual-arc welding双弧焊edge seam welding端面接头滚焊edge welding边缘焊接edgewise welding沿边焊接electric and pressure welding电压力焊接electric arc spot welding电弧点焊 electric arc welding generators电弧焊接发电机electric arc welding machine电弧焊机electric butt welding电阻接触焊electric resistance welding电阻焊接; 热电阻焊electric slag welding电渣焊electric spot welding电点焊electric welding电焊electric welding cast copper solder铸铜电焊条electric welding equipment电焊设备electric welding generator电焊发电机electric welding hammer电焊锤electric welding machine电焊机electric welding plant电焊厂electric welding pliers电焊钳electric welding rod电焊条electric welding strip电焊片electric-arc welding电弧焊electric-resistance seam-welding电阻缝焊 electric-resistance seam-welding machine电阻缝焊机electrical arc welding电弧焊接electrical resistance welding tube电阻焊接管 electrically heated welding torch电热焊枪 electro-beam welding电子束焊接electro-gas (enclosed) welding气电立焊electro-slag welding电磁渣焊; 电渣焊electro-slag welding with plate electrode板极电渣焊electro-welding电焊electrode for arc welding电焊条; 电弧焊条 electrode for vertical down welding向下立焊条electrode of vertical down welding立向下焊条electrode welding电弧焊electrogas welding气电焊; 电气焊electromagnetic percussive welding电磁冲击焊electromagnetic stored energy welding电磁储能焊electron beam welding电子束焊; 电子束焊接electron beam welding machine电子束焊接机electron-beam welding电子束焊接electron-beam welding machine电子束焊机 electron-bombardment welding真空电子束焊electrons leaves welding电子束焊接electropercussive welding电冲击焊; 冲击焊; 储能焊electroslag welding电渣焊; 电阻焊electroslag welding machine电渣焊机electroslag welding with consumable nozzle 熔嘴电渣焊electroslag welding with wire electrode丝极电渣焊electrostatic (percussive) welding电能储能焊接electrostatic percussing welding静电焊; 静电焊; 冲击焊; 储能焊electrostatic percussive welding静电冲击焊; 静电冲击焊enclosed welding强制成形焊接energy storage welding贮能焊; 储能焊; 脉冲焊接erecting welding装配焊接erection welding安装焊接eutectic welding低温焊exothermic welding铝热焊expanding or welding of tube with tubesheet 管子与管板的胀接或焊接explosive welding (EW)爆炸焊eyelet welding孔焊; 小孔熔焊faster welding快速焊接feed rate of welding wire焊丝送进速度field of welding temperature焊接温度场field welding现场焊接; 工地焊接Filler arc welding菲拉电弧焊距fillet welding (填角焊)贴角焊fillet welding in the downhand position船形角焊fillet welding in the flat position船形焊fillet welding in the horizontal position横角焊fillet welding in the vertical position立角焊 fine welding精密焊接fine wire welding细丝焊fire cracker welding躺焊fire welding锻焊; 锻接fixed welding machine固定式焊机fixed-position welding定位焊接flame welding熔气焊flare welding喇叭形坡口焊接flash butt welding闪光对焊; 闪光对接焊flash welding闪光电弧焊; 闪光焊; 闪焊; 火花电弧焊; 火花对焊flash-butt welding电阻闪光焊接flashover welding闪光焊 flat position welding平焊; 顶面平卧焊flat position welding of fillet weld角焊缝平焊; 船形角焊flat welding平卧焊flexible welding rod软焊条flexible wire for electric welding电焊软线flow welding流注焊接; 浇焊fluid welding流焊flux-cored welding包芯焊条焊接fly-wheel type friction welding贮能摩擦焊; 储能摩擦焊flywheel friction welding惯性摩擦焊forehand welding向前焊; 向左焊; 左焊法; 左向焊; 正手焊forge welding锻焊; 锻接焊forward welding正手焊; 左焊法; 左向焊; 前进焊; 前倾焊; 向前焊friction welding摩擦焊; 摩擦焊接friction welding machine摩擦焊接机frontal fillet welding正面角焊full automatic welding全自动焊full-automatic arc welding全自动电弧焊full-fillet welding满角焊full-fusion thermit welding热剂铸焊full-fusion welding全熔合焊full-length welding满焊fusion pressure welding熔化压接fusion thermit welding热剂熔焊; 熔化铝热焊fusion type plasma arc welding熔透型等离子弧焊fusion type welding熔透型焊接法fusion welding熔焊接fusion welding metal熔焊金属gas carbon-arc welding气保护碳弧焊gas electric welding气电联合焊接gas metal arc welding气体保护金属极电弧焊gas metal-arc welding气保护金属极电弧焊 gas shield welding气体保护弧焊gas shielded arc welding气体保护电弧焊; 气体保护焊gas shielded arc welding machine气保护弧焊机gas shielded arc-welding machine气体保护弧焊机gas shielded magnetic flux arc welding磁性焊剂气体保护电弧焊gas shielded metal-arc welding气体保护金属弧焊gas shielded welding气体保护焊gas torch welding气炬焊gas tungsten arc welding气体保护钨极电弧焊gas tungsten-arc welding气保护钨极电弧焊 gas tungstun arc welding钨极气体保护焊gas welding气焊; 乙炔焊gas welding device气焊设备gas welding equipment气焊设备gas welding machine气焊机gas welding outfit气焊机gas welding rod气焊焊丝gas welding rubber hose气焊橡胶管gas welding technique气焊工艺gas welding torch butt气焊进气硬管gas welding tube mill瓦斯焊接机gas welding work气焊工作gas-arc welding气电焊; 气体保护电弧焊gas-arc welding gun气电焊焊嘴gas-press welding气压焊gas-pressure welding machine气压焊接机gas-shielded stud welding气保护柱钉焊接 girth welding环缝横向焊接gravity type arc welding重力焊gravity type welding倚焊gravity welding重力焊; 重力式电弧焊groove welding槽焊; 坡口焊; 开槽焊guided automatic welding导向自动焊接gun welding machine手提式点焊机; 点焊枪 hafnium welding wire铪焊丝hammer welding锻焊; 锻接; 锤焊hammered resistance welding锤锻电阻焊; 电阻加热锻焊hand welding holdet手焊焊把hard-welding硬质合金熔焊headless bolt for welding焊接单头螺栓heat-welding adhesive热熔性胶粘剂heated-tool welding热烙铁焊接heavy welding大断面焊接heavy welding electrode粗电焊条heliarc welding氦电弧焊Heliarc welding氦弧焊法helium arc welding氦弧焊HF welding magnetic bar高频焊接磁棒hidden arc welding埋弧焊; 潜弧焊high current arc welding大电流弧焊high frequency AC welding machine高频交流电焊机high frequency dielectric welding高频介电焊high frequency induction welding高频感应焊 high frequency welding高频焊接high grade energy welding高能焊high tensile electric welding rod高强焊条high-current plasma arc welding大电流等离子弧焊high-frequency induction welding高频感应焊接; 高频焊接high-frequency resistance welding高频接触焊high-frequency resistance welding (HFRW)高频电阻焊high-frequency welding高频电焊highspeed welding快速焊接horizontal fillet welding横角焊; 水平角焊 horizontal position welding水平焊接; 横焊 horizontal welding横焊; 水平焊horizontal-position welding水平位置焊接horizontal-rolledposition welding水平转动焊接; 滚动水平焊hot jet welding热风焊接hot press welding热压焊接hot pressure welding预热压力焊hot welding热焊hot wire welding热丝焊hot(-)gas welding热气焊接hot-gas welding热风焊接; 热空气焊接hot-pressure welding热压焊; 热压焊接hydrogen-welding氢焊impact spot welding冲击点焊法impregnated-tape metal-arc welding浸焊条金属弧焊impulse current automatic butt welding machine脉冲电流自动对焊机impulse current seam welding machine脉冲电流缝焊机impulse current semiautomatic butt welding machine脉冲电流半自动对焊机impulse electromagnetic automatic welding machine电磁脉冲自动焊机impulse plasma welding machine脉冲等离子焊机impulse welding脉冲焊; 脉冲焊接impulsed spot welding脉冲点焊inclined position welding倾斜焊indirect (spot) welding单面点焊indirect welding单面点焊induction welding感应焊; 感应焊接; 感应熔焊inert gas arc spot welding惰性气体电弧点焊 inert gas arc welding惰性气体电弧焊inert gas spot welding惰性气体保护电弧点焊inert gas welding惰性气体焊接法inert-gas (inert gas) arc welding惰性气体保护焊inertia welding惯性焊接; 贮能摩擦焊; 储能摩擦焊inertial welding惯性焊接infrared welding红外线焊接intermediate current plasma arc welding中电流等离子弧焊intermittent fillet welding断续角焊intermittent point welding断续点焊intermittent welding断续焊International Institute of welding (IIW)国际焊接学会inverted welding仰焊joint welding搭焊jump welding丁字形焊keyhole-mode welding小孔型等离子弧焊; 穿透型焊接法lap fillet welding搭角焊; 搭接角焊lap resistance welding搭接电阻焊lap seam welding搭接缝焊; 搭接焊lap welding搭焊; 搭接焊laser welding激光焊接laser welding chamber激光焊接室laser welding head激光焊接头laser welding machine for orthodontics激光口腔矫形焊接机laser welding system激光焊接系统laser-beam welding machine激光焊接机laser-welding machine激光焊接器lead welding铅焊lefthand welding左焊法leftward welding左向焊法lever gun welding head杠杆式点焊钳light beam welding machine光束焊机light continuous welding轻连续焊接light gauge welding薄板焊接light ray welding光束焊接light welding轻焊接Linde welding林德钢管对焊法line welding直线焊缝焊接liquid metal welding浇注补焊longitudinal resistance seam welding纵向电阻缝焊longitudinal seam welding纵缝焊接; 纵向缝焊longitudinal welding纵缝焊接; 纵向焊接low carbon steel welding electrode低碳钢电焊条 low carbon welding wires低碳焊接线材low idle voltage arc-welding power supply低空载电压的弧焊电源low temperature welding低温焊接low-alloy steel covered arc welding electrode 低合金钢焊条low-current plasma arc welding小电流等离子弧焊low-hydrogen welding electrode低氢型电焊条low-temperature welding低温焊接lowest permissible temperature for welding焊接允许的最低温度machine for magnetic welding磁力焊接机 machine welding机器焊接machine welding torch机械焊接吹管magnetic discharge welding电磁储能焊; 电磁焊magnetic flux arc welding磁性焊剂电弧焊 magnetic flux gas shielded arc welding磁性焊剂气体保护电弧焊magnetic force welding machine磁力焊接机 magnetic-force welding磁力焊接法manual arc welding手工电弧堆焊manual electic arc pile up welding手工电弧堆焊manual electric arc welding手工电弧堆焊 manual electro-slag welding手工电渣焊manual gas welding手工气焊manual metal-arc welding手弧焊manual TIG welding手工钨极惰性气体保护焊manual welding手工焊接; 人工焊接manual welding machine手工焊机manually coating welding electrode手涂焊条 mash seam welding滚压电阻缝焊mash stitch welding多针缝式焊接mask welding电焊眼罩match assemble welding装架焊接metal arc welding金属电弧焊metal buried welding埋渣焊metal inert gas arc welding (MIG)惰性气体金属电弧焊metal inert-gas arc welding金属极惰性气体保护焊metal inertia gas welding金属焊条惰性气体保护焊; 熔化极惰性气体保护焊metal rectifier welding set整流焊机metal-arc gas-shielded welding气保护金属极电弧焊metal-arc gas-shielded welding (MAGSW)金属极气保护焊metal-arc welding金属极电弧焊micro resistance welding显微电阻焊micro-gap welding微间隙焊接micro-plasma arc welding微束等离子弧焊micro-welding微型焊接; 显微焊接microgap welding微隙间隙焊Miebach high efficiency flash welding machine米巴赫高效闪光对焊机mild steel arc welding electrode低碳钢焊条mild steel welding rod低碳钢焊丝miter welding斜接头焊接mixed gas arc welding混合气体保护电弧焊molten bath arc welding熔池电弧焊molten-bath arc welding熔池焊motor driven welding machine电动焊机; 电动机拖动式焊机motor-driven welding machine电动旋转式焊机motor-generator welding unit电动直流发电焊接设备multi-head automatic arc-welding machine多头自动电弧焊机multi-head automatic welding machine 多头自动焊机multi-operator welding set多站电焊机 multi-pass (multiple pass) welding多道焊multiarc welding多弧焊multihead automatic arc welding machine多弧自动电焊机multilayer welding多层焊multioperator welding generator多工位焊接发电机multioperator welding machine多站电焊机; 多站焊机multioperator welding set多站焊机multipass welding多道焊接multiple arc welding多弧焊multiple operator arc welding machine 复式弧焊机multiple projection welding多点凸焊 multiple resistance welding多点电阻焊接; 复式电阻焊multiple spot welding多点点焊multiple spot welding machine多点点焊机multiple-arc welding plant多弧焊接机 multiple-electrode spot welding machine多极点焊机multiple-electrode welding多焊条焊接 multiple-impulse welding多脉冲焊; 多脉冲接触焊multiple-operator welding-unit多重操作焊接单元multiple-spot welding多点焊multiple-wire multiple-power submerged-arc welding多丝埋弧焊multiple-wire submerged arc welding多丝埋弧焊multiplewire submerged-arc welding多丝埋弧焊nail head type welding钉头式焊接narrow gap one side welding窄间隙单面焊narrow gap one-side automatic welding 窄间隙单面自动电弧焊narrow gap welding窄间隙焊接; 狭间隙焊negative polarity welding反极性焊接 neli-arc welding氦电弧焊nickel bare welding filter metal镍焊丝nickel covered welding eleetrode镍药皮焊条nickel steel gas welding rod镍钢气焊条nickel-base alloy bare welding filler metal镍基合金焊丝nitrogen-arc welding氮弧焊no-gas welding非气焊non gas shielded arc welding无气体保护电弧焊non shielded arc welding无保护电弧焊 non-pressure welding不加压焊接non-vacuum electron beam welding大气压电子束焊接non-welding character不可焊接性nonpressure thermit welding (NTW)热剂铸焊oblique fillet welding斜角焊接缝one head automatic arc welding machine 单弧自动电焊机one side welding单面焊one-body welding machine同体式焊机one-body welding set同体式焊机; 单机体电焊机组one-pass welding单道焊open arc welding明弧焊open butt gas pressure welding开式加。
力学 mechanics 牛顿力学 Newtonian mechanics 经典力学 classical mechanics 静力学 statics 运动学 kinematics 动力学 dynamics子波 wavelet 次级子波 secondary wavele 驻波 standing wave声强 intensity of sound 声强计 phonometer 声调 intonation音色 musical quality 音调 pitch 声级 sound level声压[强] sound pressure 声源 sound source 声阻抗 acoustic impedance声抗 acoustic reactance 声阻 acoustic resistance 声导纳 acoustic admittance声导 acoustic conductance 声纳 acoustic susceptance 声共振 acoustic resonance声波 sound wave 超声波 supersonic wave 声速 sound velocity次声波 infrasonic wave 亚声速 subsonic speed又称“亚音速”。
超声速 supersonic speed又称“超音速”。
声呐 sonar 共鸣 resonance回波 echo 回声 echo 拍 beat 拍频 beat frequency群速 group velocity 相速 phase velocity 能流 energy flux能流密度 energy flux density 材料力学 mechanics of materials, strength of materials 应力 stress 法向应力 normal stress 剪[切]应力 shear stress单轴应力 uniaxial stress 双轴应力 biaxial stress 拉[伸]应力 tensile stress压[缩]应力 compressive stress 周向应力 circumferential stress纵向应力 longitudinal stress 轴向应力 axial stress弯[曲]应力 bending stress, flexural stress 扭[转]应力 torsional stress局部应力 localized stress 残余应力 residual stress 热应力 thermal stress最大法向应力 maximum normal stress 最小法向应力 minimum normal stress最大剪应力 maximum shear stress 主应力 principal stress主剪应力 principal shear stress 工作应力 working stress 许用应力 allowable stress应力集中 stress concentration 应力集中系数 stress concentration factor应力状态 state of stress 应力分析 stress analysis结构[强度]分析 structured analysis 应变 strain 剪[切]应变 shear strain法向应变 normal strain 拉[伸]应变 tensile strain 压[缩]应变 compressive strain 体积应变 volumetric strain 残余应变 residual strain 热应变 thermal strain最大法向应变 maximum normal strain 主应变 principal strain主剪应变 principal shear strain 名义应变 nominal strain应变状态 state of strain 载荷 load又称“荷载”。
towerreactorfluidfluid characteristicsgas-holderbibbPiping componentPipeFittingBendFlangeGasketPiping SpecialtyEnd ConnectionWeldingVarieties of WeldingType of WeldingWelding PositionDefects of WeldingHeat TreatmentConventional Heat Treatment Surface Heat Treatment InspectionTestFerrous MetalNon-metallic MaterialPiping Material Specification Material Take-off45°lateralEquipment NameVesselPipe Supports and Hangers Attachment of SupportType of Pipe Support spectacle blindquarter bendlong radius elbowdouble bevel grooveL-type supportO-ring“S”bendT-boltT-type strainerT-barcombination U and V grooveU-bolt“U”bendX-ray radiographydouble V groovey-type strainergamma radiographysafety factorerectionammonia gasreinforcing saddlessaddlefemale faceAustenitic stainless steel austenitic stainless steel pipe octagonal ring gasketdrawingcrateissueofficehalf couplingsemi-killed steeltracing pipetracing steampackingsaturated steamcold insulationhot insulationinsulation blockquoted pricequotationrupture diskexplosive weldinglimit of explosionnorthspare partsstand-byback to backstyrene-rubberpump housescalespecific heatspecific gravitywall thicknessschedule numbergratelightning preventeritemizeditemized equipmentflat nuttransmittertransformer roomelevationtitle blockstandardstandard pipe supportstandard drawingsurface preparationacrylonitrile-butadiene-styreneacrylic resinwave crestwave troughcorrugated metal gasket with asbestos inserted corrugated metal gasketbellow expansion jointglassglass clothglass tubeglass woo1gage glassBirmingham wire gagePoisson ratiomake-upreinforcement padstainless steelstainless steel pipeBrinell hardnessdepartmentbill of materialmaterial status reportProcurement; Purchasepurchase specificationpurchasing specification summary sheet referencereference drawingresidual stresschannelslot weldinggroove facegrooved metal gasketsketchthermo-paintblanklong radius returnslotnormally closednormally openvendor quotationvendor coordinative meeting future areafree on truckover-dimension cargo ultrasonic test superimposed loadclarifiersettlercountersunk screwlined pipeproductproduction design phase package unitcontractionsocket weldedsocket welding endsocket welding flange sockoletbell endgravity settlerorange colourendurance limitserratedfinshock loadimpact testimpact valueflush valveevacuationoutletcenter line of discharge preliminary stagefree on boardwindowblow-offsoot blowerpurgeperpendicularvertical installafion verticalalkyd enamelenamelmagnetic particle test roughnessstrainercoarseexpeditingbrittlenessquenchingextractoralignment tolerancemismatchlap weldinglapped jointlarge end threadlarge end plainbarometric legatmospheric pollutionatmosphereover haulcode numberside outlet elbowasbestos rope with inconeleye rodhinged expansion jointtied expansion jointpin with holebase teebase elbowstrap clampholdsingle bellowbendsingle U groovemonomersingle actionpacked slip joint spring washerspring hangerspring steelspring constant hangerresting type spring constant support spring supportresting type spring supportspring constantspring bracingelastic limitmodulus ofelasticitylightnitrogencanduitthermal conductivity factorconduit tubeguideroadstraight teestraight crossplasma weldingisothermal quenchingisothermal annealinglow alloy steellow-carbon steellow pressurelow pressure steambase plateflat on bottomprimary coatanchor boltfloor drainground levelabove ground pipingsloptankunder ground pipingearthquakeseismic loadseismic co emc ientprimary valvespot weldingpittingelectrical tracingarc weldingelectro corrosiontelephoneelectric heatercable trenchcurrentelectrical panelcapacitanceelectric-fusionelectric fusion weldingwirevoltageelectroslag weldingresistanceelectric resistance weldingelectric-resistance welded steel pipe backing weldspacertype of gasketwasherlifting lughangerhoisting beamdaviterection openingregulating valvequenching and temperingwing nutnitrile butadiene rubbertop plateJack screwflat on toppurchasing orderlocationtack weldpreset piecesdowel pindirectional stoplimit stopeastdynamic loaddynamic analysisplugplatingchromium-plated, chrome-plated galvanized steel pipe galvanized plain sheet galvanized wiregalvanized wire meshshort radius returnshort radius elbowshort codenipoletnipplereduction of areasection modulusslack quenchingforged steelwrought-iron pipeswageforgingforged valveforged steel clevisreducing swagebuild up weldingsymmetricbutt weldingbutt weldedbutt welded end welding neckflange welding neck collar convection section alignmentmultiple bellow multiport valve trunnionsecondary stresstwo-axis stopfoaminghair feltvalve pitflanged endblind flange, blind protective discflange facingfacing finishflangedlapped pipe end reactionsquare washersquare barsquare nutsquare head bolt orientationdirectionexplosion door moisture-proof packing winterizingcorrosion inhibitor anti-corrosive paint fire-proofingfire dooranti-sweatwater-proof packing rust-proof packing antirust paintventvent valvevent holenon-metallic gasket unpaved area nonferrous alloynon-rotary valvewaste heat boilerrimmed steelvictaulic couplingsubcontractorDecibelseparatorkey plananalytical engineering phaseanalyzer roommolecular sievephenolic paintincineratorwind loadwind velocityback run weldingpeak stresscrevice corrosionfuran resinfluoroplasticssymbolradiant sectionauxiliary boilercorrosioncorrosion testcorrosion allowanceappendant displacement; externally imposed displacement appendixaccessoryclad steelclad pipedry gas-holderdryerinduction hardeningrigidrigid hangerplatestrap steelsteel pipesteel pipe flangesteel ringsteel structuretop of steelreinforced concrete constructioncableleverhigh silicon cast ironhigh alloy steelhigh strength steelhigh-carbon steelhot quenchinghigh pressurehigh pressure steam isolating valvepartition wallinsulationsound insulation chromium steelchrome-molybdenum steel chromium-nickel steel inconelfeed water heaterroot valveroot gaproot crackincomplete penetration locker roomplantshop weldplant northplant limitengineering specification engineering manual engineering drawingtool steelman-dayman-hourindustrial waste water process airprocess flow diagram process gasprocess waterprocess liquidI-beamworking procedureworking pointworking loadoperating temperature operating pressure nominal pressurenominal diameterutility flow diagram metric ibreadpower factortapped; tappingsuppliercopolymerresonancethroughboaom of trenchmemberestimated priceestimatefixed saddlefix pointanchornatural frequencynatural frequency mode client; customer observation door, peep door pipe attachmentpiping layoutpiping arrangement plan piping classclass designationpiping attachmentpiping andline spanpiping flexibility analysis piping designpiping requisition sheet piping studypiping elementpiping support drawing bouom of pipetop of pipespool piecesleeperpiping trenchline spacingfitting to fitting coupling, full coupling clampshellnozzlelist of nozzlesnozzle orientationpipe rackpipe threadcapshoenetwork of pipespiping systemline listpipetubeinvertmoment of inertiaclosetgroutinggroutingdrumtank yardsmoothsmooth raised faceplanning stagecalcium silicatealuminosilicate fiberkieselguhrrolling supportboilerboiler feed waterfilterethylene perchloride paintsuperheated susceptivitysuper heatersuperheated steamover-sea mean levelburn throughwelding plate flangewelding endsymbol of weldwelded steel pipewelding procedure qualification test welding inspectionweld crackweldingiinebranch pipe welded directly to the run pipe weldoletoverlapwelding wirewelding electrodesynthesis towersynthetic rubberalloy steelalloy steel pipestructural alloy steelloadload caseconstant hangergirderredafter coolerpit; cratersliding saddlesliding supporttackle-blockseptic tankchemical analysis chemical cleaning chemical sewagering joint circumferential band ambient temperature ambient temperaturering joint faceeye boltring joint metal gasket flat ring gasketcirele bendepoxy, epoxy resin epoxy resin paintknock out drumheat exchangeryellowbrassgreygrey cast irontemper brittleness direct-fired heater recoverytemperingrotary kilnsummary sheetinter department check mixing valvemixertop of concretelive loadunionflareflare gasflame surface quenching maehine bolt mechanical vibration foundation; footingbasic designexcitationpolar moment of inertiadead-soft annealingultimate strengthquenchercatch basindrip legdrip valvelumped massextrudingmeasuring tankcomputer aided designcalculation sheettechnical specificationextra heavy, extra strongfeed tankstiffienerreinforcing ringheatercleatelastomer with cotton fabric insertionspiral-wound metal gasket with asbestos fillerelastomer with asbestos fabric insertionelastomer with asbestos fabric insertion and with wire r jacketed line, jacketed pipingjacketed valveslag inclusionmethanatortop of supportintermittent weldingdesuperheatersnubberdamping deviceshear stressinspection holeinspectionpart humbetconstructionbuildingkeyalternating stressdelivery orderalternating currentadhesivegussetangle steelhexagonal steel barfillet weldingangular rotationagitatorcontact corrosiongrounding; easthingearth lugreceivercontinue on drawingmatch linenodenode numberpitchcrystallizerbattery limit conditionoff sitemicroscopic testflat metal jacketed asbestos filled gasket clad; metal jacketing; cladding metalgas metal arc weidingmetal hosemetallic stuffingribfeedPTFE impregnated asbestos gasketTeflon impregnated asbestos packing intergranular corrosionfractionating towerfinished, finewellpurifiernet positive suction headnet weightstatic electricitydead loadlocal panelspot annealingsevere cyclic conditiondistancepolyurethanepolyurethanepolyurethane paintpolystyrenepolypropylenepolybutylenepolymerpolymethyl methacrylatepolyvinyl chloridepolyvinylidene fluoride polytetrafluoroethylenePTFE sliding platepolymerizerpolycarbonatepolyolefinpolyamidepolyethylenepolyester resinpolyester fibersabselute elevationroot mean squarehomopolymeras built drawingstart-upkick-off meeting; launching meeting cotter pintensile strengthbending strengthcompressive strengthhardenabilityadjustable cleatadjustable supportmalleable ironflammableair separation facilityair coolerairorificeorifice flangecontrol roomspanquick closing valvequick opening valvequick couplingwide flanged beammineral woolflaring testtension testtension stresshandrailbluecold-drawing seamless pipecold shortnessrefrigerantcold workingcold springcold flowcondensercoolingcooling towercooling towercold loadcold rollingforcemomentcouple of force vertical welding asphaltbituminous painttie plateconnecting rodtie rodhook up drawing interlocktop of beambeamboth end threadboth ends plain reformercritical pointcritical temperature critical pressure temporary load phosphor bronzeflow diagramflow metersulphuric acidradius of gyration hexagonal nut hexagonal head bolt floorstair; stair way funnelfurnace tubefurnacehalogen gas leak test shoulderaluminumalaminium sheet aluminum magnesium aluminum bronzegreenneoprenechlorinated polyvinyl chloride chlorinated polyethertapnutboltbolt circlethreadedthreaded endthreaded flangethreaded joint, pipe threaded joint threadoletspiral plate heat exchangerspiral welded steel pipehelical gas-holderstud boltbare iineRockwell hardnessMartensitic stainless steelmastic weatherproof coatingex wharfpulsationpulsating stressgross weightcliprivetAmerican standard taper pipe thread American wire gagedoormanganese bronzedensitysealing oilblanketareain-planefinishing coatout-planeface to facefire extinguishernomenclaturemodelbase metalmother liquorwoodwood blockwooden boxmolybdenum steelbevel for inside thickness inner ringinternal forcebevel for combined thickness internal pressure stressfire brickalkali-proof paintheat resisting steelincoloyheat-proof paintHastelloycorrosion resistanceacid-proof paintseismic classsouthdeflectionflexible tubenylon plasticcounter clock wiseurea resinnickel steelnickel copper alloyfreezing pointtorquetorsional stress concentrationdischarge valveexhaustblow downblowdown valveblow down tankdraindrain valvedrip ringdrain funnelpad type flangeby passby-pass valvefoam glassfoamed concretecellular polystyrenefoam monitorfoam hydrantfoam fire-fightingfoam stationswitch boardsubstation, switch roomcompanion-flangeejectorsprayerspray nozzleshelterborosilicate glassexpansion jointexpansion boltapproved for planningapproved for designapproved for constructionfatigue limitfatigue testeccentric reducerfrequencyflat gasketplain washerplain endflat weldingwelding-on collarflat metal gasketplanplatformparallelevaluationgroovebeveled endvacuum breakervacuum breakerpaving areageneral structure low-alloy steel general carbon steelspectrum analysisurushiol resin paintcylindergas welding; flame welding vaporizerporosityair tightness testfusion gas weldingcavitation erosiongas-shielded arc weldinggas analysisgaseous corrosiongas chromatographpneumatic teststeam drumleadwallsupport on wallblock valvecut to suittangent linebronzehydrogen embrittlementhydrogenvarnishclean outrequisitioningspheroid, spherical tankspheroids annealingspherical washernodular cast iron; nodular graphite iron ball type expansion jointarea limitzone iimityield pointyield limitsampling valvesampling connectionsample coolerfull jacketedflat face; full faceskirtfuel gasfuel oilthermocouplethermosetting plasticshot workingthermal expansion coefficienthot waterhot-water tracingthermoplasticthermal cyclethermal stressthermal stress analysisheat affected zonehot rollinghot-rolling seamless pipemanholepersonal protectionman-monthtoughesssolvent cementsolutionsolution storage tankmelting pointmelterflexibility characteristicflexibilityflexibility factorflexibility stressvisual inspectioncreep rupture strengthcreep limitinletcenter line of suctionhose valvehose connectionhose stationsoftenercork woodsoft waterlubricating oilsprinklerplug weldingtriangular support’teethree way valvebulk materialblisterflash pointflash drumuprisercaustic sodaburnerequipment listequipment item numberdesign specification summary sheet basic engineering design data design managerdesign temperaturedesign documentdesign response spectrumdesign pressuredesign scismic coefficientdesign notefacilitiesradiographic testchillerdarkapprovalcheck listnitridationchromizingchromized steelsoak-away pitaluminizingcarbonizationboostersanitary sewerpig ironsound intensitysound pressure levelsound sourceeconomizerfull water testhumiditywet gas-holderasbestos boardasbastos clothasbestos ropeasbestos fabricgraphite phenolic plasticsnaphthaageing treatmentemergency valvesight glasscommissioninghand-operated valvemanual and automatic inert gas tungsten arc welding handholewrought ironresindata sheetdata basequantityattenuation constantdouble extra heavydouble bellowcorrugated metal double jacketed asbestos filled gasket double jacketed gasketdouble U groovedouble offset expansion “U”double branch elbowwater traatmentwater hammerwater quenchingcold quenchingwater coolerwater-gas steel pipefinishing cementwater monitorwateringhorizontal installationhorizontalhydraulic testclock wisedescriptiongauze strainerTeflon tapcrossloose plate flangeloose hubbed flangelap joint flangeplasticplastic pipeplasticitysour gasarithmetical average roughness height gravel pavingtongue faceacetal plasticindexlock nuttitaniumcarbon steel pipecarbon steelmagnesium carbonateporcelain enamelceramicspecial flangespecial supporttrapezoid threadvolumeskylightnatural white rubber gasketnatural gasnatural rubberslip type expansion jointpackingstuffing box glandpacking boxcaulking materialskip weldingferritic alloy steel pipeshut-downventilating roomtypical pipe supporttypieal installation concentric reducercopperaccuracy of take-offbidlens gasketmale faceraised facestub endfiguredrawing numberlegendcoatingpaintingsurgingthrustannealingcradlestooldesulphurization reactor degasifierdemineralized water demineralizerdeaeratoroval ring gasketellipsoidal headbevel for outside thickncss outer ringexternal forceexternal pressure stress externally applied load bending momentbending testbending stresselbowelboletuniversal jointuniversal type expansion joint checkered platedouble-acting limit stophazardous area classificationhazardous area planmicro crackVickers diamond hardnessmaintenance roomincomplete fusion; lack of fusion displacementdisplacement stress rangedisplacement stressthermometerthermowellfileeddy current testcontaminationcontaminated rain waterseamless steel pipeinorganic zinc-rich paintnon graphited compressed white asbestos gasket non-destructive testingnon-itemized equipmentwestadsorbersuction valvesound-absorbingabsorberscrubbereye washer and showereye washer stationfine threaddownadvanced certified finalfiber reinforced thermoplasticsfield weldwire gagerestriction orificestopstopperlimit rodrestraintintersectionphasesweepoletdetaildetail designdetail design issueprojectjob No.proiect status reportproject managerbatterylimitinside battery limitproiect review meetingrubberrubber hoserubber tuberubber pavingstress relieffire fighting truckfire hose connectionfire waterfire pumphydrantsilencersilencernitric acidpinpinned shansmall end threadsmall end plaincheckbracingslant washermitre bendlatroletharmonic analysisleak testunloading valveshaped steelrevisiontrim to suitallowable stressallowable stress rangebattery roomcantilever supportcyclonesnow loadinquirycireulatloncooling water supplycooling water returncirculating waterflattening testpressure rating, pressure rating class classmanometerpressure balanced expansion pressure testpressure-temperature rating compressor housecompressed asbestos class gasket compression stressargon-arc welding,stackpercentage elongationductilityexcessive spatterrock woolbrinechlorhydric acidcolouroverhead weldingoxygenundercutownerliquefired petroleum gasliquid penetrant testlevel gaugeliquid chromatographhydraulic snubberprimary stressone end threadinstrument airinstrument panelapparatusinstrumental analysisethylene propylene rubber ethylene propylene diene monomer existing steel structurereducing nipple; swage nipple reducing flangereducerreducing couplingreducing teereducing crossreducing elbowcathodic protectionacoustic vibrationpotable waterstrain; deformationstrain energystressstress range reduction factur stress corrosioncoefficient of stress concentration stress intensification factor fluorescent penetrant inspection hardness testrigid foam rubberbraze weldinghard leadhard waterpermanent filteruserclient change noticehigh-quality carbon steeloil quenchingasphalt feltasphalt feltshielded metal arc weldingtoxicorganic silicon paintright hand threadrain watertroughembedded part; inserted plate preheatingpreheaterprefabricatedfabricated pipe bendmemberraw waterroundnessround steelround head boltcircumferential stress; hoop stress taper pintransportationon streamheating mediumreboilerreheaterregenerationregenering towerrecycleprflling towernoise levelrollingwrought-steel pipeviscositylighting; illumination corrugated bendpin holeperlitevacuumvacuum testtrue northamplitudekilled steelevaporatordistillation towersteam tracingsteaming outsteam condensatevapor pressureintegral pipe flangesolid metal serrated gasket normalizingpoint of supponstrutringsupport ringresting supportlugbranch connectionbosslegrun pipedirect currentladdershear lugpreparationdrawnmanufacturer; vendormass spectrometric analysis vermiculitemedium alloy steel neutralization tankinter coolerprocess annealingmedium-carbon steel centerlinecenter to endcenter to facecenter to centermedium pressuremedium pressure steamcounter weight hangerweightcritical pipingheavy oilperiodshaftisometric drawingbearingaxial movement type expansion jointaxial stressbead weldingmost frequent wind directionprincipal stressstorage roomtankcolumnpole type supportcast steelcastingcast ironcast iron pipecast valvedisciplineconverterpilepacking liststatus reporttaper pipe threadseal-welded taper pipe threaded jointdye penetrant inspectiondocumentationpurpleautomatic analysisautomatic submerged arc weldingself tapping screwself springself-sealingfreefree to slidefree vibrationconsolidated piping material summary sheet brownheader, manifoldheader valvegeneral plot planlongitudinal stresswalk way, gangway, access way routing studyflame arresterdamped vibrationassemblydrillcertified finalcoordinateorigin of coordinate塔反应器流体流体特性气柜(水)龙头管道组成件管子管件弯管法兰垫片管道特殊件端部连接焊接焊接种类焊接形式焊接位置焊接缺陷热处理普通热处理表面热处理检验试验黑色金属非金属材料管道材料规定材料统计45°斜三通 设备名称容器管道支吊架管架零部件管支架型式8字盲板90°弯管k半径弯头K形坡口L形管架O形环S形弯管T形螺栓T型粗滤器T型钢U-V组合坡口U形螺栓U形弯管V形坡口X射线照相X形坡口y 型粗滤器γ射线照相安全系数安装氨气鞍形补强板鞍座凹面奥氏体不锈钢奥氏体不锈钢管八角环形垫片拔制板条箱版次办公室半管接头半镇静钢伴热管伴热蒸汽包装饱和蒸汽保冷保温保温块报价报价书爆破片爆炸焊爆炸极限北备品备件备用背至背苯乙烯橡胶泵房比例比热比重壁厚壁厚系列号篦子板避雷针编位号的编位号设备扁螺母变送器变压器室标高,立面标题栏标准标准管架标准图表面处理丙烯腈—丁二烯—苯乙烯丙烯酸树脂波峰波谷波纹金属包嵌石棉垫片波纹金属垫片波纹膨胀节玻璃玻璃布玻璃管玻璃棉玻璃液位计伯明翰线规泊松比;横向变形系数补充补强板不锈钢不锈钢布氏硬度部门材料表材料情况报告采购采购说明采购说明汇总表参考、基准参考图残余应力槽钢槽焊槽面槽形金属垫片草图测温漆插板长半径180°弯头长孔常开厂商报价厂商协调会场地敞车上交货超尺寸运输超声波探伤超载沉淀池沉淀器沉头螺栓衬里管成品成品设计阶段成套设备承包商承插焊的承插焊端承插焊法兰承插支管台承口澄清器橙色的持久极限齿形翅片式导向板冲击荷载冲击试验冲击值冲洗阀抽空;排空出口出口中心线初步阶段船上交货,离岸价格窗吹出吹灰器吹扫垂直,正交,垂直的垂直安装垂直的,立式的醇酸瓷漆瓷漆磁粉探伤粗糙度粗制的催货脆性淬火萃取器错边量错位搭焊搭接接头,松套连接大端带螺纹大端为平的大气腿大气污染大气压大修代码带侧向口的弯头(右向或左向)带铬镍合金丝的石棉绳带环头拉杆带铰链膨胀节带接杆膨胀节带孔销带支座三通带支座弯头带状卡待定单波单侧偏置U形膨胀弯管(| ?形) single offset “U”单面U形坡口单体单向滑动填料函补偿器弹簧垫圈弹簧吊架弹簧钢弹簧恒力吊架弹簧恒力托架弹簧架弹簧托架弹簧系数弹簧支撑架弹性极限弹性模量淡(浅)色的;轻的氮气导管导热系数导向架道路等径三通等径四通等离子焊等温淬火等温退火低合金钢低碳钢低压低压蒸汽底板底平底漆地脚螺栓地漏地面地上管道地下槽地下管道地震地震荷载地震系数第一道阀;根部阀点焊点蚀电伴热电弧焊电化腐蚀电话电加热器电缆沟电流电气盘电容电熔(弧)焊钢板卷管电熔焊电线电压电渣焊电阻电阻焊电阻焊钢管垫板焊垫环垫片的型式吊耳吊架吊梁吊柱吊装孔调节阀调质蝶形螺母丁腈橡胶顶板顶开螺栓,顶起螺栓顶平订货单;订购单定位定位焊定位块定位销定向限位架定值限位架东动力荷载动态分析堵头镀层镀铬的镀锌钢管镀锌铁皮镀锌铁丝镀锌铁丝网短半径180°弯头短半径弯头短代码短管支管台短节断面收缩率断面系数断续淬火锻钢锻铁管锻造,型钢锻造的,锻造锻造阀锻制U形夹锻制异径管堆焊对称的。
力学 mechanics牛顿力学 Newtonian mechanics 经典力学 classical mechanics静力学 statics运动学 kinematics动力学 dynamics子波 wavelet次级子波 secondary wavelet驻波 standing wave声[音] sound声强 intensity of sound声强计 phonometer声调 intonation音色 musical quality音调 pitch声级 sound level声压[强] sound pressure声源 sound source声阻抗 acoustic impedance声抗 acoustic reactance声阻 acoustic resistance声导纳 acoustic admittance声导 acoustic conductance声纳 acoustic susceptance声共振 acoustic resonance声波 sound wave超声波 supersonic wave声速 sound velocity次声波 infrasonic wave亚声速 subsonic speed又称“亚音速”。
超声速 supersonic speed又称“超音速”。
声呐 sonar共鸣 resonance回波 echo回声 echo拍 beat拍频 beat frequency群速 group velocity相速 phase velocity能流 energy flux能流密度 energy flux density材料力学 mechanics of materials, strength of materials 应力 stress法向应力 normal stress剪[切]应力 shear stress单轴应力 uniaxial stress双轴应力 biaxial stress拉[伸]应力 tensile stress压[缩]应力 compressive stress周向应力 circumferential stress纵向应力 longitudinal stress轴向应力 axial stress弯[曲]应力 bending stress, flexural stress 扭[转]应力 torsional stress局部应力 localized stress残余应力 residual stress热应力 thermal stress最大法向应力 maximum normal stress最小法向应力 minimum normal stress最大剪应力 maximum shear stress主应力 principal stress主剪应力 principal shear stress工作应力 working stress许用应力 allowable stress应力集中 stress concentration应力集中系数 stress concentration factor 应力状态 state of stress应力分析 stress analysis结构[强度]分析 structured analysis应变 strain剪[切]应变 shear strain法向应变 normal strain拉[伸]应变 tensile strain压[缩]应变 compressive strain体积应变 volumetric strain残余应变 residual strain热应变 thermal strain最大法向应变 maximum normal strain主应变 principal strain主剪应变 principal shear strain名义应变 nominal strain应变状态 state of strain载荷 load又称“荷载”。
力学??mechanics牛顿力学??Newtonian?mechanics 经典力学静力学运动学动力学子波次级子波??secondary?wavelet驻波??standing?wave声强??intensity?of?sound声强计??phonometer声调音色音调声级声压[强声源??sound?source声阻抗??acoustic?impedance声抗??acoustic?reactance声阻??acoustic?resistance声导纳??acoustic?admittance声导声纳声共振声波超声波声速??sound?velocity次声波??infrasonic?wave亚声速??subsonic?speed 又称“亚音速”。
超声速??supersonic?speed又称“声呐共鸣回波回声拍??beat拍频??beat?frequency群速??group?velocity相速??phase?velocity能流??energy?flux能流密度材料力学应力法向应力剪[切]单轴应力??uniaxial?stress 双轴应力??biaxial?stress拉[伸]应力??tensile?stress压[缩]应力??compressive?stress周向应力纵向应力轴向应力弯[曲]扭[转]局部应力??localized?stress残余应力??residual?stress热应力??thermal?stress最大法向应力??maximum?normal?stress最小法向应力??minimum?normal?stress主应力主剪应力工作应力许用应力应力集中??stress?concentration应力集中系数??stress?concentration?factor应力状态??state?of?stress应力分析??stress?analysis结构[强度应变剪[切]法向应变拉[伸]压[缩]应变??compressive?strain 体积应变??volumetric?strain残余应变??residual?strain热应变??thermal?strain最大法向应变??maximum?normal?strain主应变主剪应变名义应变应变状态载荷又称“荷载”。
Circumferential resonance modes of solid elastic cylinders excited by obliquely incident acoustic wavesYing FanDepartment of Mechanical and Industrial Engineering,University of Toronto,5King’s College Road,Toronto,Ontario M5S3G8,CanadaFarhang HonarvarDepartment of Mechanical Engineering,K.N.Toosi University of Technology,P.O.Box16765-3381,Tehran,IranAnthony N.Sinclair a)Department of Mechanical and Industrial Engineering,University of Toronto,5King’s College Road,Toronto,Ontario M5S3G8,CanadaMohammad-Reza JafariDepartment of Mechanical Engineering,K.N.Toosi University of Technology,P.O.Box16765-3381,Tehran,Iran͑Received21March2002;revised5October2002;accepted7October2002͒When an immersed solid elastic cylinder is insonified by an obliquely incident plane acoustic wave,some of the resonance modes of the cylinder are excited.These modes are directly related to theincidence angle of the insonifying wave.In this paper,the circumferential resonance modes of suchimmersed elastic cylinders are studied over a large range of incidence angles and frequencies andphysical explanations are presented for singular features of the frequency-incidence angle plots.These features include the pairing of one axially guided mode with each transverse whisperinggallery mode,the appearance of an anomalous pseudo-Rayleigh in the cylinder at incidence anglesgreater than the Rayleigh angle,and distortional effects of the longitudinal whispering gallerymodes on the entire resonance spectrum of the cylinder.The physical explanations are derived fromResonance Scattering Theory͑RST͒,which is employed to determine the interior displacementfieldof the cylinder and its dependence on insonification angle.©2003Acoustical Society of America.͓DOI:10.1121/1.1525289͔PACS numbers:43.20.Fn,43.40.Ks͓ANN͔I.INTRODUCTIONAn analysis of the ultrasonic scattering characteristics of a cylinder may be used to determine its geometric and elastic properties,or the boundary conditions between the cylinder and the surrounding medium.1,2The scattered pressurefield from a submerged cylinder contains valuable information about the resonance modes of the cylinder.The resonance modes of the cylinder serve as its signatures,therefore,it is necessary to have a thorough understanding of the character-istics of these resonance modes in order to study the proper-ties of the cylinder.In this paper,the dependence of the scattering spectrum and resonance modes of an immersed solid elastic cylinder insonified by a plane acoustic wave is explored as a function of the incidence angle of the insoni-fying wave.Physical explanations for the dependence of the resonance frequencies on the angle of incidence are given. The dependence of the resonance frequencies on the angle of incidence has never been studied to this extent before.Earliest studies of wave scattering from cylinders,con-ducted by Faran,dealt with normally incident compressional waves on a submerged elastic,isotropic,and homogeneous rod.3A normal mode expansion technique was used;this technique has now become relatively straightforward with the advent of high-powered desktop computers and math-ematical libraries such as IMSL4and MATLAB.5The scat-tering spectrum consists of a number of sharp resonances, superimposed on a relativelyflat background.A physical ex-planation for this general form of response was provided by Resonance Scattering Theory͑RST͒,according to which each resonance can be linked to the constructive interference of a single surface wave making multiple encirclements of the cylinder.6–8Several researchers have explored extensions of RST to more general cases than those studied by Faran.These in-clude investigations on the effects of obliquely incident plane waves,9–11absorptive materials,12,13multi-layered cylinders,2,13encasement in a solid matrix,14,15and material anisotropy.16,17In each case,the method of solution follows the same format:the wave equation is solved in cylindrical coordinates in each medium,yielding a normal mode expan-sion with several unknown coefficients.Boundary conditions expressed in terms of stresses and displacements at each cy-lindrical interface are then used to solve for the coefficients. Extensive bibliographies and reviews of these topics can be found in the works by Uberall,8Gaunaurd,18and Addison and Sinclair.14a͒Author to whom correspondence should be addressed.Electronic mail: sinclair@mie.utoronto.caThe case of obliquely incident waves holds particularinterest for a certain class of nondestructive evaluation ͑NDE͒problems.Fibers used in reinforced composite mate-rials typically possess transverse isotropy.Ultrasonic charac-terization of the axial properties of thefiber andfiber/matrixinterface requires that the incident wave impinge on the cyl-inder at an oblique angle of␣ 0;see Fig.1.Similar rea-soning applies to the characterization of transversely isotro-pic rods such as those used in the telecommunications industry;19the anisotropic grain structure and stiffness prop-erties of these rods are closely linked to their low-noise sig-nal transmission capabilities.20To date,a number of RST studies have been conductedthat focus on the issue of plane waves incident at obliqueangles.White’s formulation for wave scattering from an em-bedded rod provided solutions for nonzero values of␣,how-ever,the lack of computing power available at that time re-stricted his numerical solutions to cases with␣ϭ0.21Many other researchers including Flax et al.,9Veksler,11Nagl et al.,22and Maze et al.23pursued this topic and demon-strated that beside the two classes of surface waves observed at normal incidence,i.e.,Rayleigh and whispering gallery waves,an entirely new set of surface waves,termed axially guided waves,are introduced when the incident wave vector has a nonzero component along the axis of the cylinder. These waves travel along helical paths with the helix angle dependent on the phase velocity of the wave,and generate a new set of resonant modes.Such modes are significant even in experimental studies designed to feature normally incident waves because a wave with afinite wave front does have components with nonzero projection along the axis of the cylinder.This causes guided modes to exist in almost all practical applications.Conoir et al.24demonstrated that the resonance frequencies of these vibration modes generally shift to the right as the incidence angle␣is increased.Lecroq et al.studied the scattering of waves from air-filledfinite cylindrical shells.25They plotted the resonance curves for a steel cylindrical shell for different resonance modes.More recent works by Fan et al.15and Honarvar andSinclair16deal with transversely isotropic rods and relativelysmall incident angles.Experimental verification of numerical results with␣Ͼ10°are difficult,as such experiments require plane waves with a very broad wavefront.However,if one is to assess accurately the extent of transverse isotropy in rods designed to have enhanced axial properties,then such studies with appreciable␣values are essential.To learn more about the nature of surface waves and resonance modes at higher angles of incidence,one has tofirst consider the case of isotropic cylinders.The focus of the current work is to in-vestigate the resonance modes of an isotropic immersed elas-tic cylinder over a large range of incident angles,including values beyond critical angles.II.THEORYIn this section,the mathematical model for the scattering of a plane acoustic wave from an immersed elastic cylinder is briefly reviewed.Details of this mathematical model were already published by the authors.16Although the model can be used for both isotropic and transversely isotropic cylin-ders,only isotropic materials are considered here.Figure1shows an infinite monochromatic plane acous-tic wave of frequency/2incident at an angle␣on a submerged cylinder of infinite length and radius a.A cylindrical coordinate system(r,,z)is chosen with the z-direction coincident with the axis of the cylinder.The pressure p i of the incident plane compressional wave can be written asp iϭ͚nϭ0ϱn i n J n͑kЌr͒cos͑n͒,͑1͒wheren is the Neumann factor(0ϭ1andnϭ2for n у1)and J n are the Bessel functions of thefirst kind of order n,kЌϭk cos␣,kϭ/c and c is the compressional wave ve-locity in the surroundingfluid medium.The time dependence is suppressed.The scattered pressurefield is given byp sϭ͚nϭ0ϱ⑀n i n A n H n͑1͒͑kЌr͒cos͑n͒,͑2͒where H n(1)are the Hankel functions of thefirst kind of order n and A n are the unknown scattering coefficients.The displacement vector inside the cylinder is written in terms of three scalar potential functions,,and, uϭٌϩٌϫ͑eˆz͒ϩaٌϫٌϫ͑eˆz͒.͑3͒In order to satisfy the equations of motion,these poten-tial functions must be of the form,ϭ͚nϭ0ϱB n J n͑k L r͒cos n,͑4͒ϭ͚nϭ0ϱC n J n͑k T r͒cos n,͑5͒ϭ͚nϭ0ϱD n J n͑k T r͒sin n,͑6͒where B n,C n,and D n are unknown coefficientsand FIG.1.Geometry used for formulating the problem.k L ϭͩ2c L2Ϫk z2ͪ1/2;k T ϭͩ2c T2Ϫk z2ͪ1/2.͑7͒c L and c T are,respectively,the bulk compressional and bulk shear wave velocities of the material and k z ϭk sin ␣.The four unknown coefficients A n ,B n ,C n and D n can be deter-mined by applying the four boundary conditions at the water/cylinder interface,i.e.,continuity of normal displacement and normal stress as well as nullity of the shear stresses.This will result in the following system of algebraic equations:ͩa 11a 12a 13a 14a 21a 22a 23a 240a 32a 33a 34a 42a 43a 44ͪͩA n B n C n D nͪϭͩb 1b 200ͪ.͑8͒Expressions for elements a i j and b i can be found in Ref.16.Equation ͑8͒can be solved for any of the unknown coeffi-cients using Cramer’s rule.By solving Eq.͑8͒for A n ,the scattered pressure field can be completely determined.Resonance peaks occur at frequencies where the matrix of Eq.͑8͒becomes singular,i.e.,its determinant becomes equal to zero.The roots of this determinant are the circum-ferential resonance frequencies of the cylinder.The scattered pressure field is usually evaluated in the far-field (r ӷa )at a fixed angle for a range of frequencies.The resulting far-field amplitude spectrum,which is called the form function is obtained from the following equation 7f ϱ͑,ka ͒ϭͩ2raͪ1/2p s e Ϫik Ќr ,͑9͒where ka ,the product of wave number and cylinder radius,is the normalized frequency.The form function can be written as the sum of individual normal modes,f ϱ͑,ka ͒ϭ͚n ϭ0ϱf n ͑,ka ͒ϭ͚n ϭ0ϱ2ͱi kЌa⑀n A n cos ͑n ͒.͑10͒Resonance scattering theory ͑RST ͒states that the spectrumof the returned echo consists of two distinct parts:the first part varies smoothly with frequency and would be present even if the cylinder were impenetrable ͑nonresonant back-ground ͒,and the other part is the resonance spectrum which consists of a number of resonance peaks which coincide with the eigenfrequencies of the circumferential vibrations of the cylinder.For a cylindrical geometry,the nonresonant background scattering component ͑rigid background in case of metal cyl-inders ͒can be separated from the resonance scattering part.For a rigid cylinder the scattering coefficients A n(rigid)are 7A n͑rigid ͒͑ka ͒ϭϪJ n Ј͑ka ͒H n ͑1͒Ј͑ka ͒.͑11͒The resonance spectrum of each mode can be obtained by removing the rigid background,26f n ͑res ͒͑,ka ͒ϭ2ͱi k Ќa⑀n A n ϪA n ͑rigid ͒1ϩ2A n͑rigid ͒cos ͑n ͒.͑12͒The displacement field inside the cylinder can also be determined by solving Eq.͑8͒for B n ,C n and D n and sub-stituting these values in Eq.͑3͒.III.EFFECT OF ANGLE OF INCIDENCE ON RESONANCE MODESAs mentioned earlier,for a solid elastic cylinder,theform function consists of resonance spectra superimposed on a smooth background corresponding to a rigid cylinder.The resonance modes in the spectrum are linked to the standing surface waves which are formed around the cylinder.The surface waves are divided into three major types:pseudo-Rayleigh waves,whispering gallery waves and axially guided waves.The axially guided waves only appear when the incident wave angle is nonzero,i.e.,␣ 0.Figure 2shows the form function of an aluminum cyl-inder insonified by an obliquely incident plane acoustic wave at ␣ϭ5°.Each dip in Fig.2is due to a certain resonance frequency identified by the integers ͑n,l ͒.The first of these two integers defines the mode number and the second one indicates the eigenfrequency label for that mode;l ϭ1corre-sponds to a pseudo-Rayleigh wave and l ϭ2,3,...to whisper-ing gallery waves.Resonances associated with axially guided waves are designated by ͗n,p ͘where,n is the mode number and p is the eigenfrequency label.Figure 3shows the resonance frequencies of an im-mersed aluminum cylinder insonified by a plane acoustic wave for 0°р␣р40°.These resonances correspond to fre-quencies for which the real part of the determinant of the coefficient matrix in Eq.͑8͒goes to zero.7͑Typical ratios of imaginary to real components of the wave number are less than 10Ϫ4.Considering this small ratio,it is an acceptable approximation to ignore the imaginary component when cal-culating the resonance frequencies.͒Figures 3͑a ͒–3͑d ͒show the variation of frequencies of resonance modes with changes in the incidence angle for different resonance modes.Key resonance modes are labeled according to their ͑n,l ͒or ͗n,l ͘designation in Fig.3͑a ͒.An extension to the information conveyed by Fig.3can be displayed by plotting the resonance curves using Eq.͑12͒.Figure 4shows the resonance spectrum of the aluminum cylinder corresponding to ␣ϭ5°.The advantage of using Eq.͑12͒is that both the center frequency and bandwidth ͑all information contained in the complex frequency ͒of each resonance mode are shown in Fig.4;hence enabling the comparison of their attenuations.In Fig.5,we have used the resonance spectra obtained from Eq.͑12͒at different inci-dence angles for plotting the resonance curves.Figure 5is a top view of resonance curves plotted at different incident angles and placed next to one another.The bandwidth of the resonance frequencies is indicated by the thickness of the dark lines describing the curves.It can be observed that al-though different approaches are used for plotting Figs.3͑a ͒and 5͑a ͒,they both show the same characteristic behavior of the resonance curves.A.Shift of the resonance frequenciesFigures 3and 5show the changes in frequencies of spe-cific resonance modes of an aluminum cylinder with increaseFIG.2.Form function for an aluminum cylinder at␣ϭ5°.0рkaр30,͑b͒nϭ1and0рkaр120,͑c͒nϭ2,͑d͒nϭ3.of the angle of incidence.It is observed that below the sec-ond critical angle,␣T ,all the resonance frequencies corre-sponding to whispering gallery and axially guided waves in-crease monotonically with the increase of ␣,and tend to infinity as ␣approaches the second critical angle,␣T .A similar behavior is observed for pseudo-Rayleigh waves with higher mode numbers (n у2,and l ϭ1);see Figs.3͑c ͒and ͑d ͒.The pseudo-Rayleigh mode corresponding to n ϭ1in Figs.3͑a ͒and ͑b ͒is special and will be considered in the next section.With increase of the angle of incidence,pseudo-Rayleigh waves approach the true Rayleigh wave ͑on a sub-merged plate ͒and the corresponding resonance frequencies approaches the Rayleigh angle,␣R Ӎ31°.A similar observation was reported by Conoir et al.,24who explained the shift of resonance frequencies using the connection between the propagation of helical surface waves around the cylinder and formation of resonance modes.Following the approach of Ref.24,a physical explana-tion for the rightward shift of all resonance frequencies with an increase in the angle of incidence can be presented as follows.In physical terms,a resonance indicates a standing wave pattern.For the case of a normally incident wave,an integral number n of wavelengths of the corresponding wave pattern are distributed around the circumference of the cyl-inder such that,n ϭ2a /n and k n ϭ2/n ,͑13͒where n and k n are the wave number and the projection of the total wave vector in the direction,respectively.For an obliquely incident wave,k n can be related to the total wave vector k ␥by ͑see Fig.6͒,k n ϭk ␥cos ␥ϭ2cos ␥/␥,͑14͒where ␥is the refraction angle and ␥is the wavelength.Substituting Eq.͑13͒into Eq.͑14͒,n can be related to the helical wavelength ␥by␥ϭn cos ␥.͑15͒The resonance frequency isf res ϭc ph /␥,͑16͒where c ph is the phase velocity of the corresponding surface wave.Substituting Eqs.͑13͒and ͑15͒into Eq.͑16͒givesf res ϭ͑nc ph ͒/͑2a cos ␥͒.͑17͒Equation ͑17͒shows that the resonance frequency is in-versely proportional to cos ␥.For the case of immersed elas-tic cylinders,an increase in ␣causes an increase of the re-fraction angle ␥and consequently a decrease in cos ␥.Therefore,the resonance frequency f increases with the in-crease of the angle of incidence,␣.When ␥reaches /2͑i.e.,critical angle ͒,the resonance frequency tends to infinity.B.Resonance mode …1,1…A single pseudo-Rayleigh wave corresponding to mode (n ,1)is present at ␣р␣R when n Ͼ1.The corresponding ͑2,1͒and ͑3,1͒modes for an immersed aluminum cylinder are shown in Figs.3͑c ͒and ͑d ͒,respectively.The ͑1,1͒resonance mode,shown in Figs.3͑a ͒and 5͑a ͒is anomalous.Curiously,this pseudo-Rayleigh mode for n ϭ1appears only for incident angles greater or equal to ␣R ,such that one would expect that penetration of energy into the cylinder would be impossible.The existence of reso-nances above Rayleigh angle is reported in the literature,27however,no physical explanation is provided.To confirmtheFIG.4.Resonance spectrum of an alu-minum cylinder at ␣ϭ5°.existence of this resonance mode,plots showing the ampli-tude and phase changes at resonance frequencies correspond-ing to various incident angles are plotted in Fig.7based on Eq.͑12͒for ␣ϭ30°and ␣ϭ35°.The existence of a resonant mode beyond the second critical angle is indicated in the phase diagram by a sudden phase shift;see Fig.7͑d ͒.The pseudo-Rayleigh mode ͑1,1͒is alternatively re-ferred to as the rigid-body translation mode,i.e.,the cylinder moves vertically back and forth without distortion.Figure 8͑a ͒shows the displacement field at a cross-section of thecylinder for the ͑1,1͒mode at ␣ϭ33°.It is observed that the true motion is made up primarily of a common translational component.Figure 8͑b ͒shows the displacement field for the same mode at ka Ӎ67and ␣ϭ31.24°.The corresponding displacement field for higher order pseudo-Rayleigh modes,e.g.,͑2,1͒and ͑3,1͒,at comparable ka values showed a similar displacement field,hence,indicating that all pseudo-Rayleigh modes approach the true Rayleigh mode at high frequencies.The reason for the upward curving of ͑1,1͒mode with the increase of ␣is not completely understoodyetFIG.5.Resonance curves of an alumi-num cylinder.This is the top view of a three dimensional graph obtained by plotting the resonance spectra for dif-ferent incident angles using Eq.͑12͒.͑a ͒n ϭ1and 0рka р30,͑b ͒n ϭ1and 0рka р120.but it can be correlated to corresponding decrease in the ra-dial component of the wave vector.In other words,if the wavelength is larger than a certain value,this mode cannot be directly generated.The pressure amplitude,rr,at the boundary of the cyl-inder is plotted for mode͑1,1͒in Fig.9.As shown in Fig.9,rr is zero atϭ90°andϭ270°and it reaches its maxi-mum value atϭ0°andϭ180°,which indicates that anexternal force acts in a horizontal direction on the cylinder and causes a translational motion,see the arrows next to the cylinder in Fig.9.pressional whispering gallery wavesThere exist two types of whispering gallery waves.The waves in thefirst category are called transverse whispering gallery waves,which feature predominantly shearing stresses.A qualitative description of the ray paths for these waves was presented by Uberall.28The wave vectors point along chords that link two points on the boundary of the cylinder.The number of wavelengths within each chord,de-termines the resonance mode number.A detailed mathemati-cal analysis was given by Brekhovskikh,29and by Dickey et al.30In the limit of large values of ka,the wave speed approaches the bulk shear wave velocity.The second category of whispering gallery waves fea-tures predominantly normal stresses.Unlike their shearing counterparts,the imaginary parts of these compressional whispering gallery resonances are quite dominant and conse-quently they are significantly attenuated.For this reason, such resonances are not observed experimentally.30 All of the surface waves corresponding to resonance modes shown in Figs.3and5feature predominantly shear-ing actions.The imaginary parts of their frequencies are small giving them very small attenuations.For example,for the resonance frequencies shown in Fig.3͑a͒,the maximum ratio of the imaginary to real part is in the range of10Ϫ4. Considering the transverse nature of these resonance modes, one would expect that thefirst critical angle would not play a major role in the values of resonance frequencies shown in Fig.3.Examination of Fig.3,however,shows that some curious features are observed at incident angles0р␣р␣L. These features are:͑1͒Severe serpentine distortions are noted in the kaϪ␣plots for both the transverse whispering gallery modes as well as the guided modes within this range of low␣values.These distortions are not random;in several lo-cations,there is a marked deviation of two different modes towards a specific point.A typical example is indicated by the solid arrow in Fig.3͑a͒,where both the ͗1,3͘and͑1,5͒modes deviate toward the point(␣ϭ8.6°,kaϭ22).͑2͒The distortions described in item͑1͒form distinct pat-terns that are clearly visible in Figs.3and5.The pat-terns consist of arcs rising vertically from the horizontal axis,then curving to the right,and then asymptotically approaching the line␣ϭ␣L at high frequencies.Some of the intercepts of these arcs with the horizontal axis are indicated by block arrows in Figs.3͑b͒,͑c͒,and͑d͒.The origin of arc patterns mentioned above was numeri-cally determined to be the leaky compressional whispering gallery modes.At the complex frequencies corresponding to these modes,the determinant of the real part of the coeffi-cient matrix in Eq.͑8͒goes to zero.However,previous work by Dickey et al.30showed that it is extremely difficult tofind these particular complex roots corresponding to oblique in-cidence because a large number of roots are clustered close together.Despite the fact that these modes are not explicitly featured in Fig.3,their influence is still present,i.e.,reso-nance frequencies of guided and transverse whispering gal-lery modes are significantly distorted when they are located close to one of the leaky compressional whispering gallery modes.As a result,the locus of resonances corresponding to each compressional whispering gallery mode appears as an arcing shadow in Figs.3͑b͒,͑c͒,and͑d͒.To verify this conclusion,based on the shadow arcs, dispersion curves for thefirst three compressional whisper-ing gallery modes are plotted corresponding to normal inci-dence(␣ϭ0).For this purpose,we use the relation c ph ϭ(2a f)/n,where f is the resonance frequency in Hz and is derived from the ka values observed in Figs.3͑b͒,͑c͒,and ͑d͒.These ka values are the normalized frequencies corre-sponding to thefirst three shadow arcs at␣ϭ0°in each figure.Figure10shows these dispersion curves,which agree with the results reported by Dickey et al.30In the limit of high radius-to-wavelength ratio,the speed of longitudinal whispering gallery waves approaches the speed of the longi-tudinal lateral waves.As a result,the shadow arcs in Fig.3 are strongly dependent on the axial stiffness of the rod;their shapes could therefore be used to help assess the extent of anisotropy in transversely isotropic cylinders.It is noteworthy that an analogous behavior has been observed by Uberall et al.in the study of the dispersion curves of Lamb waves propagating in elastic plates.31The dispersion curves corresponding to symmetric and antisym-metric modes of Lamb waves show very similar serpentine distortions.This behavior,which is very similar to that ob-served in our study is referred to as‘‘repulsion of the curves’’in Ref.31.This similarity is consistent with the dispersive nature of guided waves in solid cylinders and plates.32 FIG.6.Refracted surface wave on the cylinder.D.Wave pairsAs seen in Fig.3,each transverse whispering gallery mode is paired with a single guided wave mode,such that the two modes become indistinguishable as ␣approaches ␣T .For small values of ␣,each mode pair splits in two.When ␣ϭ0,the guided mode disappears completely,leaving only the transverse whispering gallery component of each pair.The merging of these two modes at large incident anglescan be explained by considering the physics of transverse whispering gallery and axially guided modes.Both modes feature primarily shear action.The axially guided waves propagate in a helical path along the axial direction of the cylinder.The angle of each helix depends on the incidence angle and phase velocity of the corresponding surface wave.It has been shown by Dickey et al.30that in the limit when the cylinder radius tends to infinity,the displacement fields of the transverse/longitudinal whispering gallery modesbe-FIG.7.Resonance mode ͑1,1͒:͑a ͒amplitude spectrum at ␣ϭ30°,͑b ͒phase diagram at ␣ϭ30°,͑c ͒ampli-tude spectrum at ␣ϭ35°,͑d ͒phase diagram at ␣ϭ35°.come the expressions for the transverse/longitudinal lateral waves on a flat elastic half-space bounded by a fluid.As the incident angle increases,the whispering gallery waves tend to propagate close to the surface and along the axial directionof the cylinder,in a manner very similar to an axially guided wave.These two types of modes merge into one as the inci-dent angle approaches the second critical angle.To confirm this point,two sets of resonance modes correspondingtoFIG.8.͑a ͒Displacement field at a cross section of the aluminum cylinder for the ͑1,1͒mode at ␣ϭ33°and ka ϭ6.05.The length of the arrow is proportional to the amplitude of the displacement.͑b ͒Displacement field at a cross section of the aluminum cylinder for the ͑1,1͒mode at ␣ϭ␣R and ka Ӎ67.different incidence angles are selected in Fig.3͑a ͒and the displacement field of each mode is plotted in Fig.11.Within each pair of modes,one corresponds to the axially guided mode ͗1,2͘and the other to the whispering gallery mode ͑1,3͒.At the small incidence angle of ␣ϭ5°,as shown in Fig.11͑a ͒,these two modes have different displacement fields.As the incidence angle approaches ␣T ,the corresponding dis-placement fields u z and u of the two modes becomeidenti-FIG.9.Stress rr at the boundary of the cylinder for mode ͑1,1͒,the trans-mitter is located at ϭ180°.FIG.10.Dispersion curves for the first three groups of longitudinal whisper-ing gallery waves.cal,see Fig.11͑b͒,while u rfields,although equal in magni-tude,show opposite directions.Consequently,at large inci-dence angles,radial displacementfields of these two waves cancel each other.Therefore,the merging of a whispering gallery wave and its adjacent axially guided wave,at large incidence angles,results in a guided wave propagating along the axis of the cylinder without any radial components. IV.CONCLUSIONSUsing Resonance Scattering Theory͑RST͒,the reso-nance modes of an immersed aluminum cylinder were stud-ied over a large range of incidence angles.With the increase of the incidence angle,it was observed that the resonance frequencies shift to higher frequencies in a nonuniform man-ner.The distortion of the kaϪ␣curves at incidence angles below thefirst critical angle can be attributed to modes as-sociated with leaky compressional whispering gallery waves. As the angle of incidence approaches the second critical angle,resonance frequencies of both whispering gallery and axially guided modes tend to infinity,while resonance fre-quencies of pseudo-Rayleigh modes do not tend to infinity,until incidence angle is close to the Rayleigh angle.The͑1, 1͒pseudo-Rayleigh mode behave differently and only ap-pears at or above the Rayleigh angle.The motion of this resonance mode is made up primarily of a common transla-tional component and resembles the true Rayleigh wave on a submerged cylinder.The whispering gallery and axially guided modes observed in the kaϪ␣plots feature predomi-nantly shear action.At large incidence angles,a whispering gallery mode and its neighboring axially guided mode merge together and produce similar but opposite radial displace-mentfields such that the resultant wave does not have any radial components.1F.Honarvar and A.N.Sinclair,‘‘Nondestructive evaluation of cylindrical components by resonance acoustic spectroscopy,’’Ultrasonics36,845–854͑1998͒.2F.Honarvar and A.N.Sinclair,‘‘Scattering of an obliquely incident plane wave from a circular clad rod,’’J.Acoust.Soc.Am.102,1–8͑1997͒.3J.J.Faran,Jr.,‘‘Sound Scattering by solid cylinders and spheres,’’J. Acoust.Soc.Am.23,405–418͑1951͒.4Visual Numerics,Inc.,IMSL C Numerical Library,1991.5The Mathworks,Inc.,Using Matlab,2000.6L.Flax,L.R.Dragonette,and H.U¨berall,‘‘Theory of resonanceexcita-FIG.11.͑a͒Displacementfields for mode͗1,2͘and͑1,3͒at␣ϭ5°.͑b͒Displacementfields for mode͗1,2͘and͑1,3͒at␣Ӎ25°.。