正方形 习题精选(一)
- 格式:doc
- 大小:277.50 KB
- 文档页数:6
小学求正方形面积10题以下是10道适合小学生求解正方形面积的题目:
1.一个正方形的边长是6厘米,求它的面积。
2.一个正方形的面积是49平方厘米,求它的边长。
3.一个正方形的边长是8分米,求它的面积。
4.一个正方形的面积是100平方厘米,求它的边长。
5.一个正方形的边长是9米,求它的面积。
6.一个正方形的面积是36平方厘米,求它的边长。
7.一个正方形的边长是12分米,求它的面积。
8.一个正方形的面积是169平方厘米,求它的边长。
9.一个正方形的边长是7米,求它的面积。
10.一个正方形的面积是25平方厘米,求它的边长。
二年级数学长方形与正方形练习题〔精选4篇〕篇1:二年级数学长方形与正方形练习题二年级数学长方形与正方形练习题一、填空。
1、边长是2厘米的正方形的周长是厘米。
2、长方形的长6厘米,宽2厘米,它的周长是厘米。
3、一个正方形的周长是20厘米,它的边长是厘米。
4、一个长方形的周长是16厘米,长是6厘米,宽是厘米。
二、解决问题。
1、给一块长28米,宽22米的菜地围篱笆,篱笆长多少米?2、妈妈要给一块边长是20分米的白布绣一圈花边,花边长多少分米?合多少米?3、一块长方形的草坪长16米,宽14米,在草坪四周修一条水泥路,水泥路至少长多少米?4、小明围着边长为20米的菜地跑了5圈,一共跑了多少米?5、用一根长16厘米的.铁丝围成一个正方形,正方形的边长是多少厘米?假如用同一根铁丝围成一个宽是3厘米的长方形,长方形的长是多少厘米?6、用4个边长是2厘米的小正方形拼成一个大正方形,这个大正方形的周长是多少?篇2:二年级数学《长方形与正方形》教案二年级数学《长方形与正方形》教案教学目的:1、通过操作、比拟、归纳,引导学生可以用自己的语言描绘长方形、正方形的特征。
2、使学生学会按要求在方格纸上画长方形和正方形。
3、通过“推一推”“拉一拉”等活动,使学生获得研究图形的经历。
教学准备:三角板,直尺,大小不同的长方形和正方形纸,教学课件教学过程:一、导入1、同学们,今天郎老师给大家带来一位新朋友,我们他是谁2、引出长方形和正方形揭题:长方形和正方形〔贴出长方形和正方形〕二、探究1、初步感知,提出疑问〔1〕你以前见过他们吗?那你能找到藏在我们教室里的长方形或者正方形吗?〔学生找一找,说一说:假如你认为他找对了,就鼓掌表示同意〕〔3〕刚刚同学们找到了藏在我们教室的长方形和正方形,那么你怎么就能一眼认出是长方形或正方形的呢?〔可提示:他们分别有几条边和几个角呢?那么是不是所有四条边四个角组成的图形都是长方形或是正方形呢?〕〔3〕我们班的同学真会观察,那么你们观察到的结果是否正确呢?2、验证,探究〔1〕如今我们每个人手上就有长方形和正方形纸,同桌合作想方法来验证刚刚你的发现?比一比哪些同学验证的方法多,而且有方便〔2〕学生独立操作,验证发现,老师作一定的指导〔4〕汇报:学生说一说长方形和正方形的边和角各有什么特征〔老师整理板书〕A、边的特征,你的方法量一量:通过测量的方法得到“对边”相等。
第1节长方体和正方体的认识典型例题例1.一个长方体长8厘米,宽6厘米,高4厘米,它的棱长总和是多少厘米?分析:根据长方体的特征,它相对的棱(3组,每组4条)的长度相等,那么长方体的棱长和等于长、宽、高的4倍.解:(8+6+4)×4=18×4=72(厘米)答:它的棱长总和是72厘米.例2.用一根48厘米的铁丝焊接成一个最大的正方体框架,这个框架的每条边应该是多少厘米?分析:根据正方体的特征,它的12条棱长都相等,把48厘米平均分成12份,每份就是一条棱的长度.解:48÷12=4(厘米)答:这个框架的每条边应该是4厘米.例3.用棱长1厘米的小正方体摆成稍大一些的正方体,至少需要多少个小正方体?分析:题目要求至少要多少个棱长为1厘米的小正方体,那么拼成的棱长应尽量小,所以应该考虑棱长为2的立方体,体积是8立方厘米,所以要8个.解:2×2×2=8(个)答:至少需要8个小正方体.例4.将下面的硬纸板按照虚线折成一个立方体,哪个面与哪个面相对?分析:通过实验可以看到带有标号的面7与10,面8与11,面9与12是相对的面.例5.一个正方体的六个面上,分别写着“1”“2”“3”“4”“5”“6”.根据下面摆放的三种情况,判断出每个对面上的数字是几?分析:正方体有6个面,每一个面有一个相对的面,而与其余四个面相邻.解题时我们如果抓住这一特征,确定某一个面与哪四个面相邻,于是就不难判断出这一面相对的面上的数字是几了.即排除包括自己在内的五个数字,剩下的就是与某一面相对的面上数字了.先以“3”为例:从上面左图可以看出,“3”面与“2”面、“1”面相邻;从中图可以看出.“3”面又与“4”面、“5”面相邻.这就是说,“3”面与“1”面、“2”面、“4”面和“5”面这四个面相邻.那么,就可以很快知道,“3”面与“6”面相对.再来看“1”面:从上面左图可看出,“1”面与“2”面“3”面相邻;从右图可看出,“1”面又与“6”面“4”面相邻,这就是说,与“1”相邻的四个面,是“2”面、“3”面、“4”面和“6”面,那么,与“1”面相对的面就只能是“5”面了.最后看“4”面:从上面中图可以看出,“4”面与“3”面、“5”面相邻;从右图可以看出,“4”面又与“1”面“6”面相邻.这就是说,与“4”面相邻的四个面,是“1”面、“3”面、“5”面和“6”面,于是可知,与“4”面相对是面是“2”面.所以题目的结论是:这个正方体上相对的面,分别是“1”面和“5”面、“2”面和“4”面、“3”面和“6”面.解:这个正方体上相对的面,分别是“1”面和“5”面、“2”面和“4”面、“3”面和“6”面.习题精选一、填空.1.长方体有()个面,它们一般都是()形,也可能有()个面是正方形.2.长方体的上面和下面、前面和后面、左面和右面都叫做(),它们的面积().3.长方体的12条棱,每相对的()条棱算作一组,12条棱可以分成()组.4.正方体有()个面,每个面都是()形,面积都().5.一个正方体的棱长是6厘米,它的棱长总和是().6.一个长方体的长是1.5分米,宽是1.2分米,高是1分米,它的棱长和是()分米.7.一个长方体的棱长总和是80厘米,其中长是10厘米,宽是7厘米,高是()厘米.8.把两个棱长1厘米的正方体拼成一个长方体,这个长方体的棱长总和是()厘米.二、判断题.1.长方体和正方体都有6个面,12条棱,8个顶点.()2.长方体的6个面不可能有正方形.()3.长方体的12条棱中,长、宽、高各有4条.()4.正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等.()5.长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等.()6.一个长方体长12厘米,宽8厘米,高7厘米,把它切成一个尽可能大的正方体,这个正方体的棱长是8厘米.()三、选择题.1.下列物体中,形状不是长方体的是()①火柴盒②红砖③茶杯④木箱2.长方体的12条棱中,高有()条.①4②6③8④123.下列三个图形中,能拼成正方体的是()4.把一个棱长3分米的正方体切成两个相等的长方体,增加的两个面的总面积是()平方分米.①18②9③36④以上答案都不对参考答案一、填空.1.6 长方形 22.相对面相等3.4 34.6 正方形相等5.72厘米6.14.87.38.16二、判断题.1.√ 2.× 3.√4.√ 5.√ 6.×三、选择题.1.③2.①3.①和③4.①2例1.一种有盖的长方体铁皮盒,长8厘米,宽5厘米,高3厘米.做25个这样的盒子至少需要多少平方米铁皮?(不计接口面积)分析:根据长方体表面积的计算方法,先求出一个盒子需要的铁皮数量,然后就可以求出25个这样的盒子需要的铁皮数量.解:(8×5+8×3+5×3)×2×25=158×25=3950(平方厘米)=0.395(平方米)答:至少需要0.395平方米的铁皮.例2.一个长方体,表面积是456平方厘米,它的底面是一个边长为4厘米的正方形,它的高是多少厘米?分析:题目中给出这个长方体底面是一个边长为4厘米的正方形,说明这个长方体是有两个相对的面是正方形的,其余4个面是面积相等的长方形,只要我们求出一个长方形面的面积,再用面积除以底面的边长,就算出了长方体的高了.这也是利用长方体的特征,逆解题目.解:456-4×4×2=424(平方厘米)424÷4=106(平方厘米)106÷4=26.5(厘米)答:它的高是26.5厘米.例3.一个教室长8米,宽6米,高3.5米,要粉刷教室的墙壁和天花板.门窗和黑板的面积是22平方米,平均每平方米用涂料0.25千克,粉刷这个教室共需要涂料多少千克?分析:求需要涂料多少千克,必须先求出实际粉刷的面积.长方体的表面积去掉门窗、黑板和地面的面积就是实际粉刷的面积.解:(1)粉刷的面积为:(8×6+8×3.5+6×3.5)×2-8×6-22=(48+28+21)×2-48-22=97×2-48-22=194-48-22=124(平方米)(2)需要涂料的重量为:0.25×124=31(千克)答:粉刷这个教室共需要涂料31千克.例4.将一个长12厘米,宽9厘米,高5厘米的长方体,切成两个长方体,两个长方体表面积的总和最多是多少平方厘米?最少是多少平方厘米?分析:切割长方体一次,原来的表面积增加两个面的面积,要使切开后的两个长方体表面积的总和最多(少),必须使横截面的面积最大(小).解:(12×9+12×5+9×5)×2+12×9×2=(108+60+45)×2+216=213×2+216=642(平方厘米)(12×9+12×5+9×5)×2+9×5×2=(108+60+45)×2+90=213×2+90=516(平方厘米)答:两个长方体表面积的总和最多是642平方厘米,最少是516平方厘米.例5.一个正方体,棱长的总和是96厘米.这个正方体的表面积是多少?分析:因为正方体的12根棱长都相等,所以可知,这个正方体的棱长是96÷12=8(厘米).又由于正方体有相等的6个面,每个都是正方形.解:8×8×6=384(平方厘米)答:这个正方体的表面积是384平方厘米.例6.做两个同样的正方体纸盒,一个有盖一个无盖,有盖纸盒用的纸板是无盖纸盒的多少倍?分析:有盖纸盒的表面积是它的一个面面积的6倍,无盖纸盒的表面积是它的一个面面积的5倍,而两个同样的正方体纸盒的面的面积是相等的,所以有盖纸盒用的纸板是无盖纸盒的6÷5=1.2倍.解:6÷5=1.2答:有盖纸盒用的纸板是无盖纸盒的1.2倍.习题精选一、填空题1.(1)下图上、下每个面的长()厘米,宽()厘米,面积是();(2)前、后每个面的长是()厘米,宽是()厘米,面积是();(3)左、右每个面的长是()厘米,宽是()厘米,面积是().(4)它的表面积是().2.(1)下图中上面的面积是(),前面的面积是(),右面的面积是();(2)计算它的表面积的算式是().二、计算题求下面各长方体的表面积:1.长6米,宽3米,高2米.2.长8分米,宽4.5分米,高2分米.3.长和宽都是6厘米,高3.4厘米.三、应用题1.做一个长方体的纸箱,长0.8米,宽0.6米,高0.4米.做这个纸箱至少需要纸板多少平方米?2.一个正方体的木箱,棱长5分米,在它的表面涂漆,涂漆的面积是多少?如果每平方分米用漆8克,涂这个木箱要用漆多少克?合多少千克?3.一个长方体的铁皮盒,长25厘米,宽20厘米,高8厘米.做这个铁皮盒至少要用多少平方厘米铁皮?参考答案一、1.(1)下图上、下每个面的长( 9 )厘米,宽( 3 )厘米,面积是(27平方厘米);(2)前、后每个面的长是( 9 )厘米,宽是( 4 )厘米,面积是(36平方厘米);(3)左、右每个面的长是( 4 )厘米,宽是( 3 )厘米,面积是(12平方厘米).(4)它的表面积是:9×3+9×4+4×3)×2=150(平方厘米).2.(1)下图中上面的面积是(36平方分米),前面的面积是(48平方分米),右面的面积是(48平方分米);(2)计算它的表面积的算式是:6×6×2+6×8×4=264(平方分米).二、1.(6×3+6×2+3×2)×2=72(平方米)2.(8×4.5+8×2+4.5×2)×2=122(平方分米)3.6×6×2+6×3.4×4=153.6(平方厘米)三、1.(0.8×0.6+0.8×0.4+0.6×0.4)×2=2.08(平方米)答:至少需要纸板2.08平方米.2.5×5×6=150(平方分米)答:涂漆的面积是150平方分米.8×150=1200(克)=1.2(千克)答:要用漆1200克,合1.2千克.3.(25×20+25×8+20×8)×2=1720(平方厘米)答:至少要用1720平方厘米铁皮.3典型例题例1.把一个棱长6分米的正方体钢坯,锻造成一个宽3分米,高2分米的长方体钢件,这个钢件长多少分米?分析:把正方体钢坯锻造成长方体钢件,形状改变了,但是体积没有改变,即正方体的体积和长方体的体积相等.已知长方体的宽和高,用体积除以宽,要再除以高,就可以求出长.解:6×6×6÷3÷2=216÷3÷2=36(分米)答:这个钢件的长是36分米.例2.一个正方体的铁皮油箱,从里面量得棱长为6分米,里面装满汽油.如果把这箱汽油全部倒入一个长10分米、宽8分米、高5分米的长方体铁皮油箱中,那么,油面离箱口还有多少分米?分析:根据题意,可先求得正方体铁皮油箱的汽油体积为:6×6×6=216(立方分米)而长方体油箱底面积是10×8=80(平方分米),所以,汽油在长方体铁皮油箱里的高度是216÷80=2.7(分米).因此,油面离油箱口的高度就是:5-2.7=2.3(分米)答:油面离油箱口还有2.3分米.例3.一段方钢长3米,横截面是一个边长为0.4分米的正方形.如果1立方分米的钢重7.8千克,那么这段方钢有多重?分析:题目中的长度单位不统一,为计算的方便,可都化成以分米为单位来进行计算.解:3米=30分米0.4×0.4×30=4.8(立方分米)7.8×4.8=37.44(千克)答:这段方钢的重量是37.44千克.例4.有沙土12立方米,要铺在长5米,宽4米的房间里,可以铺多厚?分析:此题要把12立方米的沙土铺在房间里,也就是铺成一个长5米、宽4米、厚米的长方体,我们就可以用方程法求出所求问题了.这题是一道利用体积计算公式逆解的题.遇到此类题用方程法解即可.解:设可铺米厚.4×5×=12=0.6答:可以铺0.6米厚.例5.一个长方体的底面长6厘米,长是宽的1.2倍,宽比高少0.5厘米,这个长方体的体积是多少立方厘米?分析:这道题要求的是长方体的体积,求体积就必须知道长方形的长、宽、高.此题只直接给出了长,宽和高是间接给出的,因此应先用求一倍量的方法求出宽,再根据“求比一个数多几的数是多少”的题型算出高,最后用公式V=abh算出体积就可以了.解:6÷1.2=5(厘米)5+0.5=5.5(厘米)6×5×5.5=165(平方厘米)答:这个长方体的体积是165平方厘米.例6.在长为12厘米、宽为10厘米、8厘米深的玻璃缸中放入一石块并没入水中,这时水面上升2厘米.石块的体积是多少?分析:把石块浸没在装水的长方体玻璃缸中,石块占有一定的空间,从而使水的体积增大,它的具体表现就是水面上升,不管石块的形状如何,只要求出增加的体积就可以了(即石块的体积).解:12×10×2=240(立方厘米)答:石块的体积是240立方厘米.例7.把棱长6厘米的正方体铁块锻造成宽和高都是4厘米的长方体铁条,能锻造出多长?分析:我们不难看出,棱长6厘米的正方体和要锻造的长方体的体积相等,只不过形状不一样,这类题叫等积变形题.只要求出正方体的体积就是长方体的体积了.解:6×6×6÷4÷4=13.5(厘米)答:能锻造13.5厘米长.习题精选一、填空题1.物体所占空间的大小叫做物体的().2.计量体积要用()单位,常用的体积单位有()()和().3.棱长1厘米的正方体体积是(),棱长1分米的正方体体积是(),棱长1米的正方体体积是().4.长方体的体积=(),正方体的体积=().5.在括号里填上合适的计量单位.(1)一本数学解题题典封面的周长是80(),面积是375(),体积是1125().(2)一块橡皮的体积是6(),一只卫生保健箱的体积是30(),一堆钢材的体积是4().二、判断题1.一块长方体木料,长6分米,宽4分米,厚3分米.容积是72升.()2.一个游泳池的容积是1000毫升.()3.一个正方体的棱长扩大2倍,体积就扩大8倍.()4.一个长方体的木箱,它的体积和容积一样大.()5.一只杯子能装水1升,杯子的容积就是1立方分米.()三、计算题看图计算下面长方体和正方体的体积.1.2.3.四、应用题1.一个长方体木箱,长7分米,宽4分米,高3.5分米.这个木箱的体积是多少?2.一块方砖的厚是5厘米,长和宽都是30厘米.求这块方砖的体积.3.一块正方体石料,棱长是0.8米.这块石料的体积是多少立方分米?五、提高题1.下图是由棱长为1厘米的小正方体拼摆而成的.这个拼摆而成的形体的表面积是多少平方厘米?体积是多少立方厘米?至少再摆上几个小正方体后就可以拼摆成一个正方体?2.一个长方体玻璃容器,长5分米,宽4分米,高6分米,向容器中倒入30升水,再把一块石头放入水中,这时量得容器内的水深20厘米,石头的体积是多少立方分米?参考答案一、1.物体所占空间的大小叫做物体的(体积).2.计量体积要用(体积)单位,常用的体积单位有(立方厘米)(立方分米)和(立方米).3.棱长1厘米的正方体体积是(1立方厘米),棱长1分米的正方体体积是(1立方分米),棱长1米的正方体体积是(1立方米).4.长方体的体积=(长×宽×高),正方体的体积=(棱长×棱长×棱长).5.在括号里填上合适的计量单位.(1)一本数学解题题典封面的周长是80(厘米),面积是375(平方厘米),体积是1125(立方厘米).(2)一块橡皮的体积是6(立方厘米),一只卫生保健箱的体积是30(立方分米),一堆钢材的体积是4(立方米).二、1.一块长方体木料,长6分米,宽4分米,厚3分米.容积是72升.(× )2.一个游泳池的容积是1000毫升.(× )3.一个正方体的棱长扩大2倍,体积就扩大8倍.(√ )4.一个长方体的木箱,它的体积和容积一样大.(× )5.一只杯子能装水1升,杯子的容积就是1立方分米.(√ )三、1.48×5=240(立方厘米)2.0.36×0.6=0.216(立方米)3.9×8=72(立方分米)四、1.7×4×3.8=98(立方分米)答:这个木箱的体积是98立方分米.2.30×30×5=4500(立方厘米)答:这块方砖的体积是4500立方厘米.3.0.8×0.8×0.8=0.512(立方米)答:这块石料的体积是512立方分米.五、1.(1×1)×48=48(平方厘米)(1×1×1)×18=18(立方厘米)3×3=9(个)答:表面积是48平方厘米,体积是18立方厘米,至少再摆上9个小正方体就可以拼成一个正方体.2.5×4×[2-30÷(5×4)] =10(立方分米)或5×4×2-30=10(立方分米)答:石头的体积是10立方分米.2-3长方体和正方体的体积(二)典型例题例1.一个长方体沙坑的长是8米,宽是4.2米,深是0.6米,每立方米沙土重1.75吨,填平这个沙坑共要用沙土多少吨?分析:已知每立方米沙土重1.75吨,求共要用沙土多少吨,必须先求出共要沙土多少立方米,即先求出沙坑的容积.解: 1.75×(8×4.2×0.6)=1.75×20.16=35.28(吨)答:共要沙土35.28吨.例2.长方体货仓1个,长50米,宽30米,高5米,这个货仓可以容纳8立方米的正方体货箱多少个?分析:已知正方体货箱的体积是8立方米,可以知道正方体货箱的棱长为2米.货仓的长是50米,所以一排可以摆放50÷2=25个,宽是30米,可以摆放30÷2=15排,高是5米,可以摆放5÷2=2层 (1)米,所以一共可以摆放25×15×2=750个.(如图)解:50÷2=25(个)30÷2=15(排)5÷2=2层……1米25×15×2=750(个)答:可以容纳8立方米的正方体货箱750个.说明:如果此题先计算长方体货仓的体积(50×30×5=7500立方米),然后再除以立方体的体积8立方米(7500÷8=937.5个)是不对的.因为货仓的高是5米,立方体的棱长2米,只能摆放2层,上面的1米实际上是空的,没有摆放货箱.例3.一只底面是正方形的长方体铁箱,如果把它的侧面展开,正好得到一个边长是60厘米的正方形.(1)这只铁箱的容积是多少升?(2)如果铁箱内装半箱水,求与水接触的面的面积.分析:(1)根据侧面展开后是一个边长为60厘米的正方形,可以得出长方形的底面(正方形)的周长是60厘米,高也是60厘米.由底面(正方形)的周长可以求出底面的面积.从而求出容积.(2)与水接触的面的面积是原长方体的侧面积的一半加上一个底面积.而侧面积是边长60厘米的正方形的面积,底面积上面已经求出.解:(1)×60=225×60=13500(立方厘米)=13.5(升)(2)60×60÷2+=1800+225=2025(平方厘米)答:这只铁箱的容积是13.5升,如果装半箱水,与水接触的面积是2.25平方厘米.例4.有一个空的长方体容器和一个水深24厘米的长方体容器,将容器的水倒一部分到,使两容器水的高度相同,这时两容器相同的水深为几厘米?分析1:容器的底面积是40×30,容器的底面积是30×20,40×30÷(30×20)=2,即的底面积是的底面积的2倍,中的水倒一部分到使、两容器水的高度相同,所以这个水深为24÷(2+1)=8厘米.解法1:24÷[40×30÷(30×20)+1 ]=24÷3=8(厘米)分析2:设这个相同的水深为厘米,则中倒出的水深为(24-)厘米,倒出的水为30×20×(24-)立方厘米,这些水就全部在中,中的水有40×30×立方厘米,故可得方程.解法2:设这个相同的水深为厘米.40×30×=30×20×(24-)24-=40×30×÷(30×20)24-=23=24=8答:这个相同的水深是8厘米.例5.一个正方体木头,棱长是6厘米,在6个面的中央各挖一个长、宽、高都是2厘米的洞孔,这时它的表面积、体积各是多少?分析:表面积等于正方体表面积加上6个洞孔的4个面的面积;体积等于正方体的体积减去6个洞孔的体积.解:表面积为:6×6×6+2×2×4×6=216+96=312(平方厘米)体积为:6×6×6-2×2×2×6=216-48=168(立方厘米)答:表面积为312平方厘米,体积为168立方厘米.例6.有一块宽为22厘米的长方形铁皮,在四角上剪去边长为5厘米的正方形后(如图一),将它焊成一个无盖的长方体盒子(如图二),已知这个盒子的体积是2160立方厘米,求原来这块铁皮的面积是多少平方厘米?分析:已知盒子的体积是2160立方厘米,高为5厘米,这个盒子的底面积就可以求出,而这个盒子的底面长方形的宽为22-5×2=12(厘米),所以这底面长方形的长也可以求出.解:长方体盒子的长为:2160÷5÷(22-5×2)=432÷12=36(厘米)铁皮的面积为:(36+5×2)×22=46×22=1012(平方厘米)答:原来这块铁皮的面积是1012平方厘米.习题精选一一、填空.1、40立方米=()立方分米4立方分米5立方厘米=()立方分米30立方分米=()立方米0.85升=()毫升2100毫升=()立方厘米=()立方分米0.3升=()毫升=()立方厘米2、一个正方体的棱长和是12分米,它的体积是()立方分米.3、一个长方体的体积是30立方厘米,长是5厘米,高是3厘米,宽是()厘米.4、一个长方体的底面积是0.2平方米,高是8分米,它的体积是()立方分米.5、表面积是54平方厘米的正方体,它的体积是()立方厘米.6、正方体的棱长缩小3倍,它的体积就缩小()倍.7、一个长方体框架长8厘米,宽6厘米,高4厘米,做这个框架共要()厘米铁丝,是求长方体(),在表面贴上塑料板,共要()塑料板是求(),在里面能盛()升水是求(),这个盒子有()立方米是求().8、长方体的长是6厘米,宽是4厘米,高是2厘米,它的棱长总和是()厘米,六个面种最大的面积是()平方厘米,表面积是()平方厘米,体积是()立方厘米.二、判断.1、体积单位比面积单位大,面积单位比长度单位大.()2、正方体和长方体的体积都可以用底面积乘高来进行计算.()3、表面积相等的两个长方体,它们的体积一定相等.()4、长方体的体积就是长方体的容积.()5、如果一个长方体能锯成四个完全一样的正方体,那么长方体前面的面积是底面积的4倍.()三、选择.1、正方体的棱长扩大2倍,则体积扩大()倍.①2 ②4 ③6 ④82、一根长方体木料,长1.5米,宽和厚都是2分米,把它锯成4段,表面积最少增加()平方分米.①8 ②16 ③24 ④323、一个长方体的长、宽、高都扩大2倍,它的体积扩大()倍.①2 ②4 ③6 ④84、表面积相等的长方体和正方体的体积相比,().①正方体体积大②长方体体积大③相等5、将一个正方体钢坯锻造成长方体,正方体和长方体().①体积相等,表面积不相等②体积和表面积都不相等.③表面积相等,体积不相等.6、一个菜窖能容纳6立方米白菜,这个菜窖的()是6立方米.①体积②容积③表面积参考答案一、填空.1、40000; 4.005; 850; 2100、2.1; 300、3002、13、24、16005、276、277、72、棱长和、208、表面积、0.192、容积、0.192、体积8、48、24、88、48二、判断.1、×2、√3、×4、×5、×三、选择.1、④2、③3、④4、①5、①6、②二一、填表.二、计算下图的体积(单位:分米).三、应用题.1、一块水泥砖长8厘米,宽6厘米,厚4厘米,它的体积是多少立方厘米?2、一个正方体木块,棱长6分米,已知每立方分米木重0.4千克,这个木块重多少千克?3、把一块棱长是20厘米的正方体钢坯,锻造成底面积是16平方厘米的长方体钢材,长方体钢材长多少厘米?参考答案一、填表.二、计算下图的体积.(单位:分米)1、8×4×5=160(立方分米)2、3×3×7=63(立方分米)3、2.5×2.5×2.5=15.625(立方分米)三、应用题.1、8×6×4=192(立方厘米)答:它的体积是192立方厘米.2、6×6×6=216(立方分米)0.4×216=86.4(千克)答:这个木块重86.4千克.3、20×20×20÷16=8000÷16=500(厘米)答:钢材长500厘米.。
长方体和正方体的表面积--习题精选长方体和正方体的表面积习题精选(一)一、填空题。
1.长方体或正方体(),叫做它的表面积。
2.一个长方体,3条不同棱的长度分别是7厘米、4厘米、3厘米,它的所有棱长的和是()厘米,表面积是()平方厘米。
3.一个正方体的棱长是0.9分米,它的所有棱长的和是(),表面积是()。
4.一个正方体,相交于同一个顶点的几条棱的长度的和是18厘米,这个正方体的棱长的总和是()厘米;如果这个正方体平放在桌面上;它占桌面的大小是()平方厘米。
二、求下面长方体的表面积。
1.长2米,宽1.5米,高1米。
2.长5米,宽3.8米,高2米。
三、求下面正方体的表面积。
1.棱长14厘米。
2.棱长2.5分米。
四、应用题。
1.一间居室长5米,宽3.4米,高2.8米,要粉刷顶棚和四壁,扣除门窗面积6平方米。
要粉刷的面积是多少平方米?2.一种机器零件需要放在棱长1.5米的正方体木箱内。
要制做100个这样的木箱,需要木板多少平方米?3.一张办公桌有3个抽屉,每个抽屉长为50厘米,宽为30厘米,高为10厘米。
做5张这样的办公桌的抽屉至少需要木板多少平方米?参考答案一、填空题。
1.长方体或正方体(六个面的总面积),叫做它的表面积。
2.一个长方体,3条不同棱的长度分别是7厘米、4厘米、3厘米,它的所有棱长的和是(56)厘米,表面积是(122)平方厘米。
3.一个正方体的棱长是0.9分米,它的所有棱长的和是(10.8分米),表面积是(4.86平方分米)。
4.一个正方体,相交于同一个顶点的几条棱的长度的和是18厘米,这个正方体的棱长的总和是(72)厘米;如果这个正方体平放在桌面上;它占桌面的大小是(36)平方厘米。
二、求下面长方体的表面积:1.长2米,宽1.5米,高1米(2×1.5+2×1+1.5×1)×2=6.5×2=13(平方米)答:这个长方体的表面积是13平方米。
八年级数学下册第十九章矩形、菱形与正方形综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形ABCD 的面积为1cm 2,对角线交于点O ;以AB 、AO 为邻边作平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边作平行四边形AO 1C 2B ,…;依此类推,则平行四边形AO 2014C 2015B 的面积为( )cmA .201312 B .201412 C .201512 D .2016122、小明想判断家里的门框是否为矩形,他应该( )A .测量三个角是否都是直角B .测量对角线是否互相平分C .测量两组对边是否分别相等D .测量一组对角是否是直角3、如图,在矩形ABCD 中,AB =2,BC =4,对角线AC ,BD 相交于点O ,OE ⊥AC 交BC 于点E ,EF ⊥BD 于点F ,则OE +EF 的值为( )A B .2 C .52 D .4、如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连接EB ,EC ,DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( )A .AB =BE B .DE ⊥DC C .∠ADB =90°D .CE ⊥DE5ABCD 中,点E 是对角线AC 上一点,且EF AB ⊥于点F ,连接DE ,当22.5ADE ∠=︒时,EF =( )A .1B .2C 1D .146、如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形AECF 的面积为144.AE =13.则DE 的长为( )A .BC .4D .57、如图,在菱形ABCD 中,P 是对角线AC 上一动点,过点P 作PE BC ⊥于点E .PF AB ⊥于点F .若菱形ABCD 的周长为24,面积为24,则PE PF +的值为( )A .4B .245C .6D .4858、如图所示,四边形ABCD 是矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =5,设AB =x ,AD =y ,则x 2+(y ﹣5)2的值为( )A .10B .25C .50D .759、如图,边长为1的正方形ABCD 绕点A 逆时针旋转45°后,得到正方形AB ′C ′D ′,边B 'C ′与DC 交于点O ,则∠DOB '的度数为( )A .125°B .130°C .135°D .140°10、如图,把一张长方形纸片ABCD 沿AF 折叠,使B 点落在B '处,若20ADB ∠=︒,要使AB BD '∥,则BAF ∠的度数应为( )A.20°B.55°C.45°D.60°第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、(1)两组对边分别______,菱形的四条边都______.几何语言:∵四边形ABCD是菱形∴AB∥CD,AD∥BCAB=CD=AD=BC(2)菱形的两组对角______,邻角______几何语言:∵四边形ABCD是菱形∴∠BAD=∠BCD,∠CBA=∠ADC∠BAD+∠ADC=180°∠BCD+∠CBA=180°∠BAD+∠CBA=180°∠BCD+∠ADC=180°(3)菱形的对角线互相______,并且每一条对角线______一组对角.几何语言:∵四边形ABCD 是菱形∴AC ⊥BD , AC 平分∠BAD ,∠BCD , BD 平分∠ABC ,∠ADC(4)菱形既是轴对称图形,又是中心对称图形,有______条对称轴,其对称轴为两条对角线所在直线,对称中心为其______的交点.2、一个长方形的周长是22cm ,若这个长方形的长减少2cm ,宽增加3cm ,就可以成为一个正方形,则长方形的长是______cm .3、如图,矩形ABCD 的两条对角线相交于点O ,已知120AOD ∠=︒, 2.5cm AB =,则矩形对角线BD 的长为_______cm .4、如图,矩形ABCD 的两条对角线AC ,BD 交于点O ,∠AOB =60°,AB =3,则矩形的周长为 _____.5、如图,在ABC 中,90ACB ∠=︒,AB =1BC =,P 是线段AB 边上的动点(不与点A ,B 重合),将BCP 沿CP 所在直线翻折,得到B CP '△,连接B A ',当B A '取最小值时,则AP 的值为________.6、如图,正方形ABCD 中,E 为CD 上一动点(不含C 、)D ,连接AE 交BD 于F ,过F 作FH AE ⊥交BC 于H ,过H 作HG BD ⊥于G ,连接AH ,EH .下列结论:①AF FH =;②45HAE ∠=︒;③FH 平分GHC ∠;④2BD FG =,正确的是__(填序号).7、在菱形ABCD 中,60A ∠=︒,其所对的对角线长为2,则菱形ABCD 的面积是__.8、如图,矩形ABCD 中,对角线AC ,BD 相交于点O ,AD =60COB ∠=︒,BF AC ⊥,交AC 于点M ,交CD 于点F ,延长FO 交AB 于点E ,则下列结论:①FO FC =;②四边形EBFD 是菱形;③OBE CBF △△≌;④3MB =.其中结论正确的序号是______.9、如图在正方形ABCD 中,∠EAF 的两边分别交CB 、DC 延长线于E 、F 点且∠EAF =45°,如果BE =1,DF =7,则EF =__.10、如图,菱形ABCD 的周长为40,面积为80,P 是对角线BC 上一点,分别作P 点到直线AB .AD 的垂线段PE .PF ,则PE PF +等于______.三、解答题(5小题,每小题6分,共计30分)1、数学兴趣小组的同学发现:一些复杂的图形运动是由若干个图形基本运动组合形成的,如一个图形沿一条直线翻折后再沿这条直线的方向平移,这样的一种图形运动,大家讨论后把它称为图形的“翻移运动”,这条直线则称为(这次运动的)“翻移线”如图1,222A B C ∆就是由ABC ∆沿直线1翻移后得到的.(先翻折,然后再平移)(1)在学习中,兴趣小组的同学就“翻移运动”对应点(指图1中的A 与2A ,B 与2B …)连线是否被翻移线平分发生了争议.对此你认为如何?(直接写出你的判断)(2)如图2,在长方形ABCD 中,8BC =,点,E F 分别是边,BC AD 中点,点G 在边CD 延长线上,联结,AE FG ,如果GDF ∆是ABE ∆经过“翻移运动”得到的三角形.请在图中画出上述“翻移运动”的“翻移线”直线a ;联结AG ,线段AG 和直线a 交于点O ,若OGF ∆的面积为3,求此长方形的边长AB 的长.(3)如图3,M 是(2)中的长方形边BC 上一点,如果1BM =,ABM ∆先按(2)的“翻移线”直线a 翻折,然后再平移2个单位,得到111A B M ∆,联结线段11AA MM 、,分别和“翻移线”a 交于点K 和点H ,求四边形AKHM 的面积.2、如图,ABC 和DBC △中,90ACB DBC ∠=∠=︒,E 是BC 的中点,且ED AB ⊥于点F ,且AB DE =,CD 交AB 于点M .(1)求证:2BD EC =;(2)求ACM △与BCM 的面积之比.3、如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE =AB ,连接CE .(1)求证:BD=EC.(2)若∠E=57°,求∠BAO的大小.4、下面是小明设计的“作菱形ABCD”的尺规作图过程.求作:菱形ABCD.作法:①作线段AC;②作线段AC的垂直平分线l,交AC于点O;③在直线l上取点B,以O为圆心,OB长为半径画弧,交直线l于点D(点B与点D不重合);④连接AB、BC、CD、DA.所以四边形ABCD为所求作的菱形.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.=,证明:OA OC=,OB OD∴.,∴四边形ABCD为菱形()(填推理的依据).5、如图,已知在ABC 中,90A ∠=︒,求作正方形ADEF ,使得D ,E ,F 分别在AB ,BC ,AC 上.-参考答案-一、单选题1、C【解析】【分析】根据“同底等高”的原则可知平行四边形AOC 1B 底边AB 上的高等于BC 的12,则有平行四边形AOC 1B 的面积12,平行四边形AOC 2B 的边AB 上的高等于平行四边形AOC 1B 底边AB 上的高的12,则有平行四边形ABC 3O 2的面积212,…;由此规律可进行求解. 【详解】解:∵O 1为矩形ABCD 的对角线的交点,∴平行四边形AOC 1B 底边AB 上的高等于BC 的12,∴平行四边形AOC 1B 的面积=12×1=12,∵平行四边形AO 1C 2B 的对角线交于点O 2,∴平行四边形AOC 2B 的边AB 上的高等于平行四边形AOC 1B 底边AB 上的高的12,∴平行四边形ABC 3O 2的面积=12×12×1=212, …,依此类推,平行四边形ABC 2014O 2015的面积=201512cm 2.故答案为:C .【点睛】本题主要考查矩形的性质与平行四边形的性质,熟练掌握矩形的性质与平行四边形的性质是解题的关键.2、A【解析】【分析】根据矩形的判定方法解题.【详解】解:A 、三个角都是直角的四边形是矩形,∴选项A 符合题意; B 、对角线互相平分的四边形是平行四边形,∴选项B 不符合题意,C 、两组对边分别相等的四边形是平行四边形,∴选项C 不符合题意;D 、一组对角是直角的四边形不是矩形,∴选项D 不符合题意;故选:A .【点睛】本题考查矩形的判定方法,是重要考点,掌握相关知识是解题关键.3、A【解析】【分析】依据矩形的性质即可得到BOC ∆的面积为2,再根据BOC COE BOE S S S∆=+,即可得到OE EF +的值. 【详解】解:2AB =,4BC =,∴矩形ABCD 的面积为8,AC =12BO CO AC ∴==对角线AC ,BD 交于点O ,BOC ∴∆的面积为2,EF OB ⊥,EO AC ⊥,BOC COE BOE S S S ∆∴=+,即11222CO EO OB EF =⨯+⨯,12)2EO EF ∴=+,)4EO EF +=,∴+EO EF故选:A.【点睛】本题主要考查了矩形的性质,解题的关键是掌握矩形的四个角都是直角,矩形的对角线相等且互相平分.4、B【解析】【分析】先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.【详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE为矩形,故本选项不符合题意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不能为矩形,故本选项符合题意;C、∵∠ADB=90°,∴∠EDB =90°,∴□DBCE 为矩形,故本选项不符合题意;D 、∵CE ⊥DE ,∴∠CED =90°,∴□DBCE 为矩形,故本选项不符合题意.故选:B .【点睛】本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED 为平行四边形是解题的关键.5、C【解析】【分析】证明67.5CDE CED ∠=∠=︒,则CD CE =AC 的长,得2AE =,证明AFE ∆是等腰直角三角形,可得EF 的长.【详解】 解:四边形ABCD 是正方形,AB CD BC ∴==90B ADC ∠=∠=︒,45BAC CAD ∠=∠=︒, 22AC AB ,22.5ADE ∠=︒,9022.567.5CDE ∴∠=︒-︒=︒,4522.567.5CED CAD ADE ∠=∠+∠=︒+︒=︒,CDE CED ∴∠=∠,CD CE ∴==2AE ∴=EF AB ⊥,90AFE ∴∠=︒,AFE ∴∆是等腰直角三角形,1EF ∴,故选:C .【点睛】本题考查正方形的性质,勾股定理,等腰直角三角形,三角形的外角的性质等知识,解题的关键是在正方形中学会利用等腰直角三角形的性质解决问题,属于中考常考题型.6、D【解析】【分析】由旋转性质得△ABF ≌△ADE ,再根据全等三角形的性质得到S 正方形ABCD =S 四边形AECF =144进而求得AD =12,再利用勾股定理求解DE 即可.【详解】解:∵△ADE 绕点A 顺时针旋转90°得到△ABF ,∴△ABF ≌△ADE ,∴S △ABF =S △ADE ,∴S 正方形ABCD =S 四边形AECF =144,∴AD =12,在Rt△ADE 中,AE =13,AD =12,由勾股定理得:DE ,【点睛】本题考查旋转性质、全等三角形的性质、正方形的面积公式、勾股定理,熟练掌握旋转性质,得出S 正方形ABCD =S 四边形AECF 是解答的关键.7、A【解析】【分析】连接BP ,通过菱形ABCD 的周长为24,求出边长,菱形面积为24,求出ABC S的面积,然后利用面积法,=+ABC ABP CBP S S S ,即可求出PE PF +的值.【详解】解:如图所示,连接BP ,∵菱形ABCD 的周长为24,∴2446AB BC ==÷=,又∵菱形ABCD 的面积为24,∴24212=÷=ABCS , ∴12=+=ABC ABP CBP SS S , ∴111222⋅+⋅=AB PF BC PE ,∴()1122⋅+=AB PE PF ,∵6AB =,∴4PE PF +=,故选:A .【点睛】本题主要考查菱形的性质,解题关键在于添加辅助线,通过面积法得出等量关系.8、B【解析】【分析】根据题意知点F 是Rt△BDE 的斜边上的中点,因此可知DF =BF =EF =5,根据矩形的性质可知AB =DC =x ,BC =AD =y ,因此在Rt△CDF 中,CD 2+CF 2=DF 2,即可得答案.【详解】解:∵四边形ABCD 是矩形,AB =x ,AD =y ,∴CD =AB =x ,BC =AD =y ,∠BCD =90°,又∵BD ⊥DE ,点F 是BE 的中点,DF =5,∴BF =DF =EF =5,∴CF =5-BC =5-y ,∴在Rt△DCF 中,DC 2+CF 2=DF 2,即x 2+(5-y )2=52=25,∴x 2+(y -5)2=x 2+(5-y )2=25,故选:B .【点睛】本题考查了直角三角形斜边中线等于斜边的一半、矩形的性质、勾股定理,做题的关键是利用直角三角形斜边中线等于斜边的一半求出BF 的长度.9、C【解析】【分析】连接B ′C ,根据题意得B ′在对角线AC 上,得∠B 'CO =45°,由旋转的性质证出∠OB 'C 是直角,得=45B CO '∠︒,即可得出答案.【详解】解:连接B ′C ,如图所示,∵四边形ABCD 是正方形,∴AC 平分∠BAD ,∵旋转角∠BAB ′=45°,∠BAC =45°,∴B ′在对角线AC 上,∴∠B 'CO =45°,由旋转的性质得:90AB C B ''∠=∠=︒,AB '=AB =1,∴45B OC '∠=︒∴18045135DOB '∠=︒-︒=︒故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识;熟练掌握正方形的性质和旋转的性质是解题的关键.10、B【解析】【分析】设直线AF 与BD 的交点为G ,由题意易得90DAB ∠=︒,则有70ABD ∠=︒,由折叠的性质可知BAF B AF '∠=∠,由平行线的性质可得B AF BGA '∠=∠,然后可得BAF BGA ∠=∠,进而问题可求解.【详解】解:设直线AF 与BD 的交点为G ,如图所示:∵四边形ABCD 是矩形,∴90DAB ∠=︒,∵20ADB ∠=︒,∴70ABD ∠=︒,由折叠的性质可知BAF B AF '∠=∠,∵AB BD '∥,∴B AF BGA '∠=∠,∴BAF BGA ∠=∠, ∴180552ABG BAF ︒-∠∠==︒; 故选B .【点睛】本题主要考查折叠的性质及矩形的性质,熟练掌握折叠的性质及矩形的性质是解题的关键.二、填空题1、 平行 相等 相等 互补 垂直 平分 两 对角线【解析】略2、8【解析】【分析】设这个长方形的长为xcm ,则长方形的宽为()11x -cm ,由题意得长2-=宽+3.进而得到方程2113x x -=-+,解方程即可得到答案.【详解】解:设这个长方形的长为x cm ,由题意得:2113x x -=-+,216,x ∴=解得:8,x =答:这个长方形的长为8.cm故答案为:8【点睛】本题主要考查了一元一次方程的应用,关键是正确理解题意,抓住关键语句,表示出正方形的边长,进而利用正方形边长相等得到方程.3、5【解析】【分析】由矩形的性质可证△AOB为等边三角形,可求BO=AB的长,即可求BD的长.【详解】解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∵∠AOD=120°,∴∠AOB=60°,且AO=BO,∴△ABO为等边三角形,∴AO=BO=AB=2.5,∴BD=5,故答案为:5.【点睛】本题考查矩形的性质,熟练掌握矩形的性质是本题的关键,①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.4、663##6【解析】【分析】根据矩形性质得出AD=BC,AB=CD,∠BAD=90°,OA=OC=12AC,BO=OD=12BD,AC=BD,推出OA=OB=OC=OD,得出等边三角形AOB,求出BD,根据勾股定理求出AD即可.【详解】解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC=12AC,BO=OD=12BD,AC=BD,∴OA=OB=OC=OD,∵∠AOB =60°,OB =OA ,∴△AOB 是等边三角形,∵AB =3,∴OA =OB =AB =3,∴BD =2OB =6,在Rt △BAD 中,AB =3,BD =6,由勾股定理得:AD =∵四边形ABCD 是矩形,∴AB =CD =3,AD =BC =∴矩形ABCD 的周长是AB +BC +CD +AD =故答案为:【点睛】本题考查了矩形性质,等边三角形的性质和判定,勾股定理等知识点,关键是求出AD 的长.5【解析】【分析】根据翻转变换的性质可知BC =C B '=1,当A 、B '、C 三点在一条直线上时,A B '有最小值,根据题意作图,过P 点作PH ⊥BC ,PQ ⊥AC ,得到四边形PQCH 是正方形,利用面积法求出PQ 的长,再根据勾股定理求出AP 的长.【详解】解:∵在ABC 中,90ACB ∠=︒,AB =1BC =∴AC2=由翻转变换的性质可知:BC=C B'=1,故当A、B'、C三点在一条直线上时,A B'有最小值,过P点作PH⊥BC,PQ⊥AC,∴∠ACB=∠PHC=∠PQC=90°∴四边形PQCH是矩形∵翻转∴△BCP≌△B'CP∴PH=PQ∴四边形PQCH是正方形设PQ=x,则PH=x∵S△ABC=S△APC+S△PBC∴111222BC AC BC PH PQ AC ⨯=⨯+⨯即1111212 222x x⨯⨯=⨯⨯+⨯解得x=2 3∴AQ=2-23=43∴AP【点睛】本题主要考查的是翻转变换的性质、线段的性质,根据题意找到B '的位置是解题的关键.6、①②④【解析】【分析】连接FC ,延长HF 交AD 于点L .可证ADF CDF ∆∆≌,进而可得FHC FCH ∠=∠,由此可得出FH AF =;再由FH AF =,即可得出45HAE ∠=︒;连接AC 交BD 于点O ,则2BD OA =,证明AOF FGH ≌,即可得出OA GF =,进而可得2BD FG =;过点F 作MN BC ⊥于点N ,交AD 于点M ,由于F 是动点,FN 的长度不确定,而FG OA =是定值,即可得出FH 不一定平分GHC ∠.【详解】解:如图,连接FC ,延长HF 交AD 于点L .∵BD 为正方形ABCD 的对角线∴45ADB CDF ∠=∠=︒,AD CD =在ADF 和CDF 中45AD CD ADB CDF DF DF =⎧⎪∠=∠=︒⎨⎪=⎩∴()ADF CDF SAS ∆∆≌∴AF FC =,DCF DAF ∠=∠∵90AFL ∠=︒,90ALH LAF ∠+∠=︒ ,ALH FHC ∠=∠∴90LHC DAF ∠+∠=︒∵DCF DAF ∠=∠,90FCD FCH ∠+∠=︒∴FHC FCH ∠=∠∴FH FC =∴AF FH =故①正确;∵90AFH ∠=︒,AF FH =∴AFH 是等腰直角三角形∴45HAE ∠=︒故②正确;连接AC 交BD 于点O ,则2BD OA =∵90AFO GFH GHF GFH ∠+∠=∠+∠=︒∴AFO GHF ∠=∠在AOF 和FGH 中90AFO GHF AOF FGH AF FH ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AOF FGH AAS ∆∆≌∴OA GF =∴22BD OA GF ==故④正确.过点F 作MN BC ⊥于点N ,交AD 于点M ,F 是动点∵FN 的长度不确定,而FG OA =是定值∴FN 不一定等于FGFH ∴不一定平分GHC ∠故③错误;故答案为:①②④.【点睛】本题考查了正方形性质,全等三角形判定和性质,角平分线性质和判定,等腰三角形的性质与判定等,熟练掌握全等三角形判定和性质,合理添加辅助线构造全等三角形是解题关键.7、【解析】【分析】根据菱形的性质证得△ABD 是等边三角形,得到OB ,利用勾股定理求出OA ,由菱形的性质求出菱形的面积.【详解】解:如图所示:在菱形ABCD 中,60BAD ∠=︒,其所对的对角线长为2,AD AB ∴=,AC BD ⊥,BO DO =,AO CO =,ABD ∴∆是等边三角形,则2AB AD ==,故1BO DO ==,则AO =AC =则菱形ABCD 的面积122=⨯⨯故答案为:【点睛】此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键.8、①②③④【解析】【分析】由矩形的性质及垂直平分线的判定和性质可证明①;根据全等三角形的判定和性质及菱形的判定和性质可证明②;由菱形的性质及全等三角形的判定可证明③;根据矩形的性质,含30︒角的直角三角形的性质,勾股定理可证明④.【详解】解:∵四边形ABCD 为矩形,∴AC BD =,∴OA OC OD OB ===,∵60COB ∠=︒,∴OBC 为等边三角形,∴OB BC OC ==,60OBC ∠=︒,∵BF AC ⊥,∴OM MC =,∴FM 是OC 的垂直平分线,∴FO FC =,故①正确;∵AB CD ∥,∴DFE BEF ∠=∠,在DOF 与BOE 中,DOF BOE DFE BEF OD OB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴DOF BOE ≅,∴DF BE =,∵AB CD ∥,∴四边形EBFD 为平行四边形,由①得OBC 为等边三角形,∴60OBC OCB ∠=∠=︒,∴30ACD BCD OCB ∠=∠-∠=︒,∵OD OC =,∴30ACD BDC ∠=∠=︒,∵BF AC ⊥,OBC 为等边三角形,∴30DBE ∠=︒,∴DBF BDC ∠=∠∴DF BF =,∴四边形EBFD 为菱形,②正确;由②可得:OB EF ⊥,∴90BOE BCF ∠=∠=︒,∵AB CD ∥,∴30EBO BDC ∠=∠=︒,∴30EBO FBC ∠=∠=︒,在OBE 与CBF 中,EBO FBC BO BCBOE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴OBE CBF ≅,③正确;∵四边形ABCD 为矩形,∴BC AD ==∵BF AC ⊥,30FBC ∠=︒,∴12CM BC ==∴3MB ==,④正确,∴正确结论为:①②③④,故答案为:①②③④.【点睛】题目主要考查矩形的性质,菱形的判定定理,全等三角形的判定和性质,含30︒角的直角三角形的性质,勾股定理等,理解题意,综合运用这些性质是解题关键.9、6【解析】【分析】根据题意把△ABE 绕点A 逆时针旋转90°到AD ,交CD 于点G ,证明△AEF ≌△AGF 即可求得EF =DF ﹣BE =7﹣1=6.【详解】解:如图,把△ABE 绕点A 逆时针旋转90°到DA ,交CD 于点G ,由旋转的性质可知,AG =AE ,DG =BE ,∠DAG =∠BAE ,∵∠EAF =45°,∴∠DAG +∠BAF =45°,又∵∠BAD =90°,∴∠GAF =45°,在△AEF 和△AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△AGF (SAS )∴EF =GF ,∵BE=1,DF=7,∴EF=GF=DF﹣DG=DF﹣BE=7﹣1=6.故答案为:6.【点睛】本题主要考查正方形的性质及全等三角形的判定和性质,构造全等三角形是解题的关键,注意旋转性质的应用.10、8【解析】【分析】直接利用菱形的性质得出AB=AD=10,S△ABD=12.5,进而利用三角形面积求法得出答案.【详解】解:∵菱形ABCD的周长为40,面积为80,∴AB=AD=10,S△ABD=40,∵分别作P点到直线AB、AD的垂线段PE、PF,∴12×AB×PE+12×PF×AD=40,∴12×10(PE+PF)=40,∴PE+PF=8.故答案为:8.【点睛】此题主要考查了菱形的性质,正确得出12×AB×PE+12×PF×AD=S△ABD是解题关键.三、解答题1、 (1)“翻移运动”对应点(指图1中的A 与2A ,B 与2)B ⋯连线被翻移线平分(2)3(3)11或10【解析】【分析】(1)画出图形,即可得出结论;(2)作直线EF ,即为“翻移线”直线a ,再由“翻移运动”的性质和三角形面积关系求解即可;(3)分两种情况:①ABM ∆先按(2)的“翻移线”直线a 翻折,然后再向上平移2个单位,②ABM ∆先按(2)的“翻移线”直线a 翻折,然后再向下平移2个单位,由“翻移运动”的性质、梯形面积公式和三角形面积公式分别求解即可.(1)解:如图1,连接2AA ,2BB ⋯,则“翻移运动”对应点(指图1中的A 与2A ,B 与2)B ⋯连线被翻移线平分;(2)解:作直线EF ,即为“翻移线”直线a ,如图2所示:四边形ABCD 是长方形,AB CD ∴=,8AD BC ==,由“翻移运动”的性质得:AB DC GD ==,142AF DF AD ===,O 是AG 的中点,3AOF OGF S S ∆∆∴==, ΔΔ26AFG OGF S S ∴==,AF DF =,ΔΔ6GDF AFG S S ∴==,Δ114622GDF S DG DF DG ∴=⨯=⨯⨯=, 3DG ∴=,3AB ∴=;(3)解:分两种情况:①ABM ∆先按(2)的“翻移线”直线a 翻折,然后再向上平移2个单位,如图3所示:设ABE ∆翻折后的三角形为DCP ∆,连接1PM ,则1112A D B C M P ===,同(2)得:1112KF A D ==,1112HE M P ==,4BE =,1BM =,3ME BE BM ∴=-=,∴四边形AKHM 的面积=梯形ABEK 的面积ABM -∆的面积HME -∆的面积111(331)4313111222=⨯++⨯-⨯⨯-⨯⨯=; ②ABM ∆先按(2)的“翻移线”直线a 翻折,然后再向下平移2个单位,如图4所示:设ABE ∆翻折后的三角形为DCP ∆,连接1PM ,则1112A D B C M P ===,同(2)得:1112KF A D ==,1112HE M P ==,4BE =,1BM =,3ME BE BM ∴=-=,∴四边形AKHM 的面积=梯形AFEM 的面积AFK -∆的面积HME +∆的面积111(34)3413110222=⨯+⨯-⨯⨯+⨯⨯=; 综上所述,四边形AKHM 的面积为11或10.【点睛】本题是四边形综合题目,考查了长方形的性质、“翻移运动”的性质、梯形面积公式、三角形面积公式等知识,本题综合性强,解题的关键是熟练掌握“翻移运动”的性质和长方形的性质.2、 (1)见解析 (2)12【解析】【分析】(1)易证DEB A ∠=∠,即可证明ACB EBD ∆≅∆,得出BC BD =,根据点E 是BC 的中点即可解题;(2)过点M 作,BC AC 的垂线,交于点,P Q ,证四边形PMQC 为矩形,再证得四边形PMQC 为正方形,得出MP MQ =,根据ACM BCM S AC S BC=. (1)解:证明:90DEB ABC ∠+∠=︒,90A ABC ∠+∠=︒,DEB A ∴∠=∠, 在ACB ∆和EBD ∆中,ACB DBE A DEB AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,AAS;∴∆≅∆,()ACB EBD∴=,BC BD点E是BC的中点,∴=,2EC BC∴=;2BD EC(2)BC AC的垂线,交于点,P Q,解:过点M作,∴∠=︒,MP QC MQ PC MPC//,//,90∴四边形PMQC为矩形,=∠=︒,BC BD DBC,90∴△为等腰直角三角形,BCD∴∠=︒,MCP45∴为等腰直角三角形,CPM∴=,CP MP∴四边形PMQC为正方形,∴=,MP MQ11,22ACM BCM SAC MQ S BC MQ =⋅=⋅, ACMBCM S AC S BC ∴=, 12AC BC =, 12ACMBCMSS ∴=. 【点睛】本题考查了全等三角形的判定,等腰直角三角形,正方形的判定及性质,解题的关键是掌握全等三角形的判定及性质,同时利用等量代换的思想进行求解.3、 (1)见解析(2)33°【解析】【分析】(1)由菱形的性质可得AB =CD =BE ,AB //CD ,可证四边形BECD 是平行四边形,可得BD =EC ;(2)由平行四边形的性质可得BD //CE ,可得∠ABO =∠E =57°,菱形的性质可求∠BAO 的大小.(1)证明:∵四边形ABCD 是菱形,∴AB =CD ,AB //CD又∵BE =AB ,∴BE =CD ,BE //CD ,∴四边形BECD 是平行四边形∴BD =EC(2)∵四边形BECD是平行四边形,∴BD//CE,∴∠ABO=∠E=57°又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°∴∠BAO+∠ABO=90°∴∠BAO=90°-∠ABO=33°【点睛】本题考查了菱形的性质,平行四边形的判定和性质,熟练运用菱形的性质是本题的关键.,对角线互相垂直的平行四边形为菱形4、(1)见解析;(2)四边形ABCD为平行四边形,BD AC【解析】【分析】(1)根据几何语言画出对应的几何图形;(2)先证明四边形ABCD为平行四边形,然后利用对角线垂直可判断四边形ABCD为菱形.【详解】解:(1)如图,四边形ABCD为所作;(2)完成下面的证明.=,证明:OA OC=,OB OD∴四边形ABCD为平行四边形,BD AC⊥,∴四边形ABCD为菱形(对角线互相垂直的平行四边形为菱形).⊥,对角线互相垂直的平行四边形为菱形.故答案为四边形ABCD为平行四边形,BD AC【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.5、见解析【解析】【分析】作△ABC的角平分线AE,作线段AE的垂直平分线MN交AB于点D,交AC于点F.四边形ADEF即为所求.【详解】解:如图:四边形ADEF即为所求.【点睛】本题考查了基本作图,正方形的判定和性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.。
正比例和反比例习题(一)一、判断.1.一个因数不变,积与另一个因数成正比例.()2.长方形的长一定,宽和面积成正比例.()3.大米的总量一定,吃掉的和剩下的成反比例.()4.圆的半径和周长成正比例.()5.分数的分子一定,分数值和分母成反比例.()6.铺地面积一定,方砖的边长和所需块数成反比例.()7.铺地面积一定,方砖面积和所需块数成反比例.()8.除数一定,被除数和商成正比例.()二、选择题(填序号).1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.()A.成正比例B.成反比例C.不成比例2.和一定,加数和另一个加数.()A.成正比例B.成反比例C.不成比例3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是(),成反比例关系是().A.汽车每次运货吨数一定,运货次数和运货总吨数.B.汽车运货次数一定,每次运货的吨数和运货总吨数.C.汽车运货总吨数一定,每次运货的吨数和运货的次数.三、填空.1.两种()的量,一种量变化,另一种量(),如果这两种量中()的两个数的()一定,这两种量就叫做成正比例的量,它们的关系叫做(),关系式是().2.两种()的量,一种量变化,另一种量(),如果这两种量中()的两个数的()一定,这两种量就叫做成反比例的量,它们的关系叫做(),关系式是().3.一房间铺地面积和用砖数如下表,根据要求填空.铺地面积(平方米)1 2 3 4 5用砖块数25 50 75 100 125(1)表中()和()是相关联的量,()随着()的变化而变化.(2)表中第三组这两种量相对应的两个数的比是(),比值是();第五组这两种量相对应的两个数的比是(),比值是().(3)上面所求出的比值所表示的的意义是(),铺地面积和砖的块数的()是一定的,所以铺地面积和砖的块数().4.练习本总价和练习本本数的比值是().当()一定时,()和()成()比例.二、判断下面每题中的两种量是不是成比例,成什么比例,并说明理由.1.平行四边形的高一定,它的底和面积.2.被除数一定,商和除数.3.小明的年龄和他的体重.4.天数一定,生产零件的总个数和每天生产零件的个数.三、思考.、、三种量的关系是:×=1.如果一定,那么和成()比例;2.如果一定,那么和成()比例;3.如果一定,那么和成()比例.正比例反比例练习(二)一、判断题:1、圆的面积和圆的半径成正比例。
苏教版五年级上册精选单元测试题库(1—10)一、先读一读,再把正数和负数填入相应的圆圈内。
-8 +59 0 +639 -270 -2二、填空题。
(1)有着约9000年历史的杰里科,被认为是世界上海拔最低的城市,也被认为是人类最早兴建的城市之一。
其低于海平面300米,可记作海拔( )米。
(2)世界上最低的气温记录是在南极洲东方站测得的,为零下89.2℃,记作( )℃,读作( )。
(3)中国海拔最高的城市——那曲,平均高度高于海平面4500米;记作( )。
三、写出4个正数和4个负数。
正数:负数:四、选择合适的温度连一连。
五、某年12月份我国几个城市的平均气温如下表。
城市北京厦门哈尔滨南京平均气温/℃一3 14 一l3 6把这四个城市l2月份的平均气温按从高到低的顺序排列。
六、五(3)班举行“l分钟俯卧撑"测试,把l5次作为标准,超过的次数用正数表示,不足的次数用负数表示。
请用正负数记录成绩,填入下表。
姓名张辉李欣然王一磊徐建国陶军丁佳佳次数1l 21 18 13 14 19成绩习题训练(二)一、填空题。
(1)学校图书馆每天还入图书85本,记作+85本,那么借出图书94本可记作( )。
(2)如果-150元表示支出150元,那么+200元表示( )。
二、存下面的方框单埴上正确的数。
三、下面是小红家今年六月份收入和支出的记录。
请你在“收支”一栏里填入正数或负数。
日期项目收支6月7日爸爸妈妈共领取工资3800元6月9日给爷爷奶奶生活费700元6月12日妈妈购买衣服l80元6月18日爸爸获得奖金700元6月30日缴水、电、煤气、电话费220元6月l~30日购买食品等880元四、(1)小东在+3点的位置上,他走到-2点位置是向( )走了( )格。
(2)小东在+1点位置上,先向东走了3格,又向西走了8格,他最后停在( )的位置上。
五、中央电视台某栏目组举办环保知识竞赛,评分标准是答对一题加10分,答错一题扣10分,不回答得0分,每个队基本分都是l00分,请算出每个代表队的最后得分。
一、性质1、下列性中.矩形具有而质平行四边形不一定具有的是()A 、对边相等B 、对角相等C 、对角线相等D 、对边平行2 .在矩形ABCD 中.NAOD=130°.则NACB=__3 .已知矩形的一条对角线长是8cm.两条对角线的一个交角为60°.则矩形的周长为4 .矩形ABCD 被两条对角线分成四个小三角形.如果四个小三角形的周长的和是86cm.对角线是13cm.那么矩形的周长是5 .如图所示.矩形ABCD 中.AE ,BD 于E.Nk BAE=30°.BE=1cm.那么DE 的长为 6、直角三角形斜边上的高与中线分别是5cm 和6cm.则它的面积为7、已知.在Rt△ABC 中出口为斜边AC 上的中线.若NA=35°.那么NDBC 二。
8、如图.矩形ABCD 中.AC 与8口交于。
点.BELAC 于E.CFLBD 于F.求证:BE=CF. 9 .如口图.△ABC 中.NACB=90度.点D 、E 分别为AC 、AB 矩形的习题精选AB的中点.点F在BC延长线上.且/CDF=NA.求证:四边形DECF是平行四边形;10.已知:如图.在aABC中.NBACW90°NABC=2NC.AD±AC.交BC或CB的延长线D。
试说明:DC=2AB.11、在4ABC中.NC=90O.AC=BC.AD=BD.PE^AC于点E.PFLBC于点F。
求证:DE=DF二、判定1、下列检查一个门框是否为矩形的方法中正确的是(C)A.测量两条对角线.是否相等B.测量两条对角线.是否互相平分他用曲尺测量门框的三个角.是否都是直角口.用曲尺测量对角线.是否互相垂直2、平行四边形ABCD.E是CD的中点.4人8£是等边三角形.求证:四边形ABCD是矩形3、在平行四边形ABCD中.对角线AC、BD相交于O.EF过点O.且AF,BC. 求证:四边形AFCE是矩形4、平行四边形ABCD中.对角线AC、8口相交于点。
最新精选北师大版小学数学二年级下册六认识图形长方形与正方形习题精选第六十八篇4第1题【单选题】小明用一张长32厘米,宽20厘米的长方形纸,最多能剪()个半径是2厘米的圆形纸片.A、50B、40C、160【答案】:B【解析】:【解答】解:324-(2x2)=8(张)204-(2x2)=5(张)8x5=40(张);答:最多能剪成半径是2厘米的圆形纸片4(圮;S6S:B.【分析】就长32厘米f宽20厘米的长方形纸f长能剪32幸(2x2)=8(张)半径是2厘米的园形纸片,宽能萸20+(2x2)二5(张),这张纸最多能剪成8x5=40(张)这样的国形纸片.注意,不能用长方形纸片的面积除以每张国形纸版的面积,因为国不能密铺.4第2题【单选题】()的四条边相等.A、长方形B、正方形C、梯形D、等腰梯形【答案】:B【解析】:[解答]解:根据正方形的特征可知,正方形的四条边相等卧案为:B【分析】长方形对边相等,正方形四条边相等,梯形的两条腰长度可能相等,由此判断并蟀即可.•4第3题【单选题】下列图形()的两组对边分别平行,且邻边相等。
A、长方形B、正方形C、等腰三角形【答案】:B【解析】:【解答】选项A,长方形的对边平行且相等,邻边不相等,与题意不相符;选项B,正方形的对边平行且相等,而且邻边相等,与题意相符;选项C,等腰三角形的两腰相等,与题意不符.故答案为:B.【分析】根据图形的特征判断,长方形的对边平行且相等,邻边不相等;正方形的对边平行且相等,而且邻边相等;等腰三角形的两腰相等,据此解答。
4第4题【单选题】()四边形是正方形A、两组对分分别平行的B、四边相等的C、四边相等且四个角是直角的【答案】:C【解析】:【解答】四边相等且四个角是直角的四边形是正方形.故答案为:C.【分析】正方形的特征是:四边相等且四个角是直角,据此解答.4第5题【判断题】长方形的较长边是长,较短的边是宽,正方形的四条边就叫长宽。
A、正确B、错误【答案】:5苔沃【解析】:【解答】正方形的边我们给他起名叫"边长".【分析】正方形跟长方形知识巩固练习4第6题【判断题】长和宽相等的长方形就变成了正方形。
习题精选
1.下图中的两个正方形的边长相等,请你指出可以通过绕点O旋转而相互得到的图形并说明旋转的角度.
2.在图中,将大写字母H绕它右上侧的顶点按逆时针方向旋转90°,请作出旋转后的图案.
3.如图,菱形A
1B
1
C
1
D
1
是菱形ABCD绕点O顺时针旋转90°后得到的,你
能作出旋转前的图形吗?
4.Rt△ABC,绕它的锐角顶点A分别逆时针旋转90°、180°和顺时针旋转90°,试作出Rt△ABC旋转后的三角形。
5.如图,将右面的扇形绕点O按顺时针方向旋转,分别作出旋转下列角度后的图形:
(1)90°;(2)180°;(3)270°.
你能发现将扇形旋转多少度后能与原图形重合吗?
参考答案:
1.△OAE和△OBF,△OEB和△OFC,△OAB和△OBC,旋转的角度为90°
2.图中黄色“H”即为旋转后的图案
3.下图中黄色菱形即为旋转前的
4.(1)图①中粉色三角形ΔAB
1C
1
即ΔABC逆时针旋转90º后的图形;图②
中蓝色三角形ΔAB
2C
2
即ΔABC逆时针旋转180º后的图形;图③中黄色三角形Δ
AB
3C
3
即ΔABC顺时针旋转90º后的图形
5.
旋转360º后与原图形重合。
正方形 习题精选(一)
(一)选择题
1.正方形具有而矩形不一定具有的性质是( )。
A .四个角都是直角
B .对角线互相平分
C .对角线相等
D .对角线互相垂直
2.下列条件中不能判定四边形是正方形的条件是( )。
A .对角线互相垂直且相等的四边形
B .一条对角线平分一组对角的矩形
C .对角线相等的棱形
D .对角线互相垂直的矩形
3.在平行四边形、菱形、矩形、正方形中能够找到一点,使该点到各边的距离相等的图形是( )。
A .平行四边形、菱形
B .菱形、矩形
C .菱形、正方形
D .矩形、正方形
4.正方形的对角线长为a ,则它的两条对角线的交点到它的一边的距离为( )。
A .2a B .a 22 C .a 42 D .()
a 22- 5.如图1,已知:正方形ABCD 的边长为3,以CD 为一边向CD 两侧作等边三角形PCD 和等边三角形QCD ,那么PQ 的长为( )。
A .233
B .33
C .33
2 D .36
图1 图2 6.如图2,正方形ABCD 中,MN CE =, 35=∠MCE ,那么ANM ∠的度数为
( )。
A . 35
B . 45
C . 55
D .
65
7.正方形具有而菱形不一定具有的性质是( )。
A .对角线相等
B .对角线互相垂直平分
C .四条边相等
D .一条对角线平分一组对角
8.下列命题中,假命题是( )。
A .四个内角都相等的四边形是矩形
B .四条边都相等的平行四边形是正方形
C .既是菱形又是矩形的四边形是正方形
D .对角线互相垂直的平行四边形是菱形
9.如图3,E 是正方形ABCD 内一点,且△EAB 是等边三角形,则ADE ∠等于( )。
A . 70
B .
5.72
C . 75
D . 5.77
10.正方形具有而矩形不一定具有的性质是( )。
A .对角线互相平分
B .对角线相等
C .对角线互相平分且相等
D .对角线互相垂直
11.在四边形ABCD 中,O 是对角线的交点,能判定四边形是正方形的条件是
( )。
A .BD AC =,CD AB //
B .B
C A
D //,C A ∠=∠
C .DO CO BO AO ===,B
D AC ⊥
D .CO AO =,DO BO =,BC AB =
(二)填空题
1.若正方形对角线的长为cm 6,则它的边长是______cm 。
2.在正方形ABCD 中,E 、F 、G 分别是BD 、BC 、CD 上一点,它们与顶点C 组成一个矩形EFCG ,若正方形ABCD 的周长是cm 4,则矩形EFCG 的周长是______cm 。
3.以正方形ABCD 边AB 为边作等边△ABE ,则_________=∠DEC 。
4.正方形的两条对角线___________,并且互相____________,每条对角线平分一组____________。
5.有一组邻边相等的_____________形是正方形,有一个角是直角的___________形是正方形.
6.边长为a 的正方形,在一个角上剪掉一个边长为b 的小正方形,则所剩图形的周长是______________。
7.正方形ABCD 中,2=AB ,AC ,BD 交于O ,则△AOB 的周长为__________,△AOB 的面积为____________。
(三)解答题
1.如图1,矩形ABCD 中,BE 平分ABC ∠,BC EF ⊥于F 。
求证:四边形ABFE 是正方形。
图1
2.如图2,已知G 是正方形ABCD 的边AB 上的任意一点,直线DG EF ⊥交DA 、CB 于E 、F 。
求证:DG EF =。
图2
3.如图3,
O 为正方形ABCD 对角线的交点,E 是OA 上任意一点,BE CF ⊥于点F ,且交BD 于点G ,求证:OG OE =。
4.如图4,△ACG 是直角三角形,
90=∠ACG ,分别以AC ,GC 为边作正方形ACHK 和CBFG ,求证:BH AG =。
5.如图5,已知在正方形ABCD 中,E 为BD 上一点,AE 的延长线交CD 于H ,交BC 的延长线于F ,G 为FH 的中点,求证:GC EC ⊥。
6.如图6,在正方形ABCD 的各边上截取DH CG BF AE ===,连结AF ,BG ,CH ,DE 。
依次相交于点N ,P ,Q ,M ,求证:四边形MNPQ 是正方形。
7.如图7,E ,F 分别为正方形ABCD 的边AB ,BC 上的点,AC EF //,G 在DA 的延长线上,且AD AG =,GE 的延长线交DF 于H ,求证DA HA =。
图7
答案
(一)选择:
1.D 2.A 3.C 4.C 5.B 6.C 7.A 8.B 9.C 10.D 11.C
(二)填空:
1.23 2.2 3. 30或 1504.相等;垂直平分;对角5.矩形;菱形 6.a 4
7.22+;1
(三)解答:
1.略
2.过E 作BC EH ⊥于H ,易证△DAG ≌△EHF ,于是DG EF =
3.〔提示:先证OBE OCG ∠=∠,再证△COG ≌△BOE ,所以OG OE =。
〕
4.〔提示:证△ACG ≌△HCB ,所以BH AG =。
〕
5.〔提示:先证DCE DAE ∠=∠,因为F DAF ∠=∠,所以F DCE ∠=∠,因为CG
是Rt △CHF 斜边上的中线,所以GH CG =。
所以CHG HCG ∠=∠。
因为 90=∠+∠CHG F 。
所以 90=∠+∠HCG ECH 。
所以GC EC ⊥。
〕
6.〔提示:△AED ≌△BFA ≌△CGB ≌△DHC ,△A E M ≌△BFN ≌△CGP ≌
△DHQ , 90=∠=∠=∠=∠DQH CPG BNF AME 。
〕
7.〔提示:因为BA BC =,AC EF //,所以BF BE =。
所以AE CF =。
因为AG CD =,
所以△DCF ≌△GAE ,所以GEA DFC ∠=∠,因为FDG CFD ∠=∠,所以GEA HDG ∠=∠。
因为 90=∠+∠G GEA 。
所以 90=∠+∠G HDG ,所以 90=∠DHG ,因为AG AD =,所以DA HA =。
〕。