九年级《用因式分解法解一元二次方程》评课稿
- 格式:doc
- 大小:28.00 KB
- 文档页数:2
21.2.3.解一元二次方程—因式分解法
解:
【强调】将原方程变形为一边是0,这一步很重要,因为只有当一边是0,即两个因式的积是0,两个因式才分别是0,从而得到两个一元一次方程。
【小结】因式分解法解一元二次方程的步骤:
①将一元二次方程化成一般形式,即方程右边为0。
②将方程左边进行因式分解,由一元二次方程转化成两个一元一次方程。
③对两个一元一次方程分别求解。
【例2】解方程:
⑴x(x-2)+x-2=0⑵3x(x+2)=5(x+2)
(3
⑶x+1)2-5=0⑷x2-6x+9=(5-2x)2
【分析】这几个方程可以展开整理成一元二次方程的一般形式,然后再用公式法或因式分解法来解,但这样做比较麻烦,根据这两个方程的特点,直接应用因式分解法较简便。
解:
【说明】用因式分解法解一元二次方程时,要根据情况灵活选用学过的因式分解的几种方法,不能出现失根的情况。
如解方程x2-3x=0时,方程两边同除以x得x-3=0,解得x=3,这样就失掉了x=0这一个根。
【练习】Р40 1 2创新,培养学生的应用意识和创新能力.
四、自主总结 拓展新知
1、用因式分解法解方程的根据由ab=0得 a=0或b=0,即“二次降为一次”。
2、正确的因式分解是解题的关键。
五、课堂作业 P43 6 (《课堂内外》对应练习)
教学理念/教学反思。
评课稿《解一元二次方程》
1. 引言
本评课稿旨在对课堂教学中关于解一元二次方程的内容进行评价和总结,以期提供改进方向和建议。
2. 课堂内容回顾
在本节课中,老师详细介绍了解一元二次方程的方法和步骤,并结合具体的示例进行讲解。
重点内容包括:
- 什么是一元二次方程;
- 一元二次方程的标准形式和一般形式;
- 解一元二次方程的方法:因式分解法和求根公式法;
- 解一元二次方程的步骤和注意事项。
3. 教学亮点
在本节课中,老师展现了一些教学亮点,以下是其中几个值得称赞的方面:
- 老师讲解清晰,语言简练,易于理解;
- 通过示例的方式,使学生对解一元二次方程的方法有了更深
入的认识;
- 课堂气氛活跃,学生积极参与讨论和提问;
- 老师通过巩固练和小组合作活动,加深了学生对解一元二次
方程的掌握程度。
4. 改进建议
尽管本节课教学一般较为成功,但仍有一些可以改进的地方:
- 教学速度稍显快,部分学生来不及跟上;
- 部分学生在实际操作中出现了错误,可能需要更多的练机会;
- 可以加入一些案例分析和实际应用,提高学生的兴趣和参与度。
5. 结语
综上所述,本节课的教学内容较为全面,老师在讲解中表现出
良好的教学能力和教学态度。
通过课堂上的互动和巩固练,学生对
解一元二次方程的掌握程度有所提高。
但也可以针对一些问题进行
改进,以进一步提升教学效果。
《用因式分解法求解一元二次方程》教案分析《用因式分解法求解一元二次方程》教案分析学习目标:1思考活动二中的问题,参与小组讨论,会用自己的语言叙述适合因式分解法的一元二次方程的特征。
2会熟练运用因式分解法(提公因式法、公式法)解决简单的数字系数的一元二次方程;3会根据方程特点选用合适的方法解一元二次方程。
设置的依据:1.《课程标准》的要求(1)理解因式分解法解数字系数的一元二次方程。
(2)在解一元二次方程的过程中体会转化的数学思想,进一步培养学生分析问题、解决问题的意识和能力。
教材分析:1.本节课是在八年级学过因式分解,前面学习了用配方法和公式法解一元二次方程的基础上展开的。
2.因为对于某些特殊的一元二次方程,用因式分解法解起来更简便。
,又可以为后续的处理有关一元二次方程的问题提供多一些思路和方法。
学情分析:1.学生掌握了提公因式法及运用公式法(平方差、完全平方)熟练的分解因式;但把一个多项式当作一个整体有一部分学生掌握的不好。
对于配方法及公式法解一元二次方程,学生掌握了这两种方法的解题思路及步骤。
2.学习小组固定,具有一定的合作学习的经验。
评价任务的设计:1.会用自己的语言叙述适合因式分解法的一元二次方程的特征。
(目标1)2做自主检测一会用因式分解法解一元二次方程(目标2)3做自主检测二会用合适的方法解方程(目标3)4做课堂检测1(目标2)2(目标3)设计意图:本节课的重点用因式分解法解一元二次方程,难点用合适的方法解一元二次方程,也是贯穿于本节的一条主线,评价也要突出这一主线。
在活动中注重学生观察能力,分析能力,归纳能力,对能主动参与合作交流、勇于发言、善于创新的行为给予及时的评价和鼓励。
教学设计学习目标学习活动评价标准教师活动目标达成情况反思与评价目标1结合活动中的问题,会用自己的语言叙述适合因式分解法的一元二次方程的特征,提高观察、分析、概括等能力。
目标2会用因式分解法(提公因式法、公式法)解决简单的数字系数的一元二次方程目标3会根据方程特点用合适的方法解一元二次方程。
用因式分解法求解一元二次方程说课稿尊敬的各位领导、老师,大家好!我是…… 中学的数学教师……,今天我说课的内容是北师大版初中数学九年级上册第二章第4节《用因式分解法求解一元二次方程》。
对于本节课我将从教材与学情分析、教法学法分析、教学过程设计、教学设计说明这四个方面加以阐述。
一、教材与学情分析1.教材的地位和作用:本节课是在学生学习了用配方法和公式法解一元二次方程的基础上展开的,学习一元二次方程的第三种解法-----因式分解法。
任何一个一元二次方程都可以用配方法和公式法这两种方法中的一种来解,为什么还要学习因式分解法解一元二次方程呢?因为对于某些特殊的一元二次方程,用因式分解法解起来更简便。
培养学生观察思考,避繁就简和一题多解的能力等都具有重要的作用。
因式分解法解一元二次方程既可以复习八年级学过的因式分解的方法,又可以为后续处理有关一元二次方程的问题时提供多一些思路和方法。
2.学情分析:学生在八年级已经学习了因式分解,掌握了用提公因式法及运用公式法(平方差、完全平方)熟练的分解因式;在本章前几节课中又学习了配方法及公式法解一元二次方程,掌握了这两种方法的解题思路及步骤。
同时在以前的数学学习中,学生已经经历了很多合作学习的过程,具备了一定的合作与交流的能力。
3.教学目标基于以上对教材的理解和学情的分析,根据新课标对方程的具体要求,并结合我校九年级学生的实际情况,我确定了如下教学目标:知识与技能:了解因式分解法的概念,会利用因式分解法解简单数字系数的一元二次方程。
过程与方法:经历探索因式分解法解一元二次方程的过程,发展学生合情推理的能力,体验解决问题方法的多样性,灵活选择解方程的方法。
情感态度与价值观:积极探索不同的解法,并和同伴交流,在学习活动中获得成功的体验,建立学好数学的兴趣和信心。
4.教学重点难点:重点:应用因式分解法解一元二次方程。
难点:将方程化为一般式后,对方程左侧进行因式分解。
二、教法学法分析1.教法分析根据本节课的教学目标、教学内容以及学生的认知特点,教学上采用以自主探究为主,通过实际问题加深数学与生活的联系,从而使用因式分解法解方程成为一种需要。
九年级数学《一元二次方程的复习》评课稿第一篇:九年级数学《一元二次方程的复习》评课稿九年级数学《一元二次方程的复习》评课稿九年级数学《一元二次方程的复习》评课稿本节课坚持以学生为主体,让学生主动参与到教学中来,教学目标明确,教学思路清晰,教学环节紧凑,合理把握重点,突破教学难点。
创造情境引入本节内容,激发了学生的学习兴趣,活跃了课堂气氛。
下面就这堂课谈谈我的感受。
1、本堂课在潜移默化中让学生领会学习方法、掌握基础知识的同时,向学生渗透“整体思想”、“最优化思想”,通过这些数学方法的渗透,使学生善于把握知识之间的内在联系,全面而灵活的思考问题,让学生获得可持续发展的动力。
2、在练习题的设计上,一题多变,一题多解,采用了多种形式,紧紧围绕本节课的学习目标,达到较好的教学效果。
3、充分发挥了学生的主体地位,这节复习课,把学生推到前台去,老师做学生的坚强后盾,让学生感受到了学习是他们自己的事,也体现了以学生自主发展为本的思想为教学行为。
4、板书设计,条理清晰,布局合理,体现整节课的主要内容。
5、课堂内容环环相扣,教法灵活多样,有个别提问、学生板演、一位学生口述,一位学生实验等,课堂氛围活跃,学生积极参与。
在组织和引导学生自主学习、合作探究方面也作了很大的努力。
欧老师的这堂复习课时刻围绕着县“目标教学”的理念,讲究学生在课堂上的学习效率。
当然,课堂总会有那么点瑕疵,欧老师的这堂课在以下两方面还需要研讨:1、把大部分时间让给学生,培养学生的学习主动性,但唯一不足的是学生练习做题的时间较少,思考不够充分。
2、欧老师在教学中往往过分强调了疏通知识点,只强调知识技巧的掌握,而忽视了能力的培养,忽视发散思维,知识迁移不够。
第二篇:一元二次方程复习课教案一元二次方程复习课教案(二)目标:1、让学生进一步掌握解一元二次方程的四种方法;并能灵活选择方法;2、通过典型例子让学生感受到选择适当方法的重要性。
3、进一步探索实际问题中的数量关系及其变化规律,体会数学建模思想,体会数学在应用中的价值4、会根据具体问题中数量关系列出一元二次方程并求解,能根据问题的实际意义检验所得结果是否合理。
用因式分解法求解一元二次方程》说课稿
学法指导方面,鼓励学生在研究过程中积极思考、自主探究,注重合作研究和交流,提高学生的解题能力和思维能力。
同时,引导学生注重方法的灵活运用,培养学生的解题策略和技巧。
三、教学过程设计
1.导入环节
通过生活中的实际问题引入本节课的研究内容,如何用因式分解法解决问题,引起学生的兴趣和思考。
2.知识讲解
介绍因式分解法的基本概念和方法,以及如何将一元二次方程化为一般式进行因式分解。
3.案例分析
通过具体的例子,引导学生掌握因式分解法解一元二次方程的方法和技巧,培养学生的解题能力和思维能力。
4.练与巩固
设计一系列练题,巩固学生对因式分解法解一元二次方程的理解和掌握程度,提高学生的解题能力和思维能力。
5.拓展与应用
引导学生将所学知识应用到实际问题中,拓展学生的思维和解题能力,培养学生的创新精神和实践能力。
四、教学设计说明
本节课的教学设计注重以学生为中心,以问题为导向,以探究为主,通过实际问题引导学生掌握因式分解法解一元二次方程的方法和技巧,提高学生的解题能力和思维能力。
同时,注重学生的合作研究和交流,培养学生的团队合作精神和交流能力。
通过引导学生将所学知识应用到实际问题中,拓展学生的思维和解题能力,培养学生的创新精神和实践能力。
部编版九年级数学上册《因式分解法》评课稿一、引言本文是对部编版九年级数学上册《因式分解法》一课进行的评课稿。
本课是九年级数学课程的一部分,通过学习因式分解法,学生可以进一步掌握数的因子、最大公因数、最小公倍数等概念。
本评课稿将对该节课的教学内容、教学目标、教学方法等方面进行细致的分析和评价。
二、教学内容在本节课中,老师以因式分解法为核心,讲解了如何将代数式按照因式分解法进行拆解和简化。
具体内容包括:1.因式分解法的概念和基本步骤;2.对一元多项式进行因式分解;3.使用因式分解法解决实际问题;4.因式分解法在二次方程求解中的应用。
三、教学目标1. 知识目标通过本节课的学习,学生应该能够掌握以下知识点:1.理解因式分解法的基本概念和步骤;2.能够对一元多项式进行因式分解;3.了解因式分解法在实际问题中的应用;4.理解因式分解法在二次方程求解中的作用。
2. 能力目标通过本节课的学习,学生应该培养和提高以下能力:1.分析和解决实际问题的能力;2.进行因式分解的能力;3.运用因式分解法解决二次方程的能力;4.发现问题和解决问题的能力。
3. 情感目标通过本节课的学习,学生应该培养和提高以下情感态度和价值观:1.培养学生对数学的兴趣和喜爱;2.培养学生分析问题、解决问题的积极态度;3.引导学生在实际问题中应用数学知识的能力;4.培养学生对学习的主动性和探究精神。
四、教学方法1. 情景教学法在教学过程中,老师通过情景设置,将抽象的概念与具体的情境相结合,使学生容易理解和记忆。
例如,在讲解因式分解法的步骤时,老师以具体的例子进行演示,通过学生的参与和互动,促使学生深入理解因式分解法。
2. 合作学习法在学生进行练习和解答问题的过程中,老师鼓励学生之间的合作学习。
通过小组合作,学生可以相互帮助和补充,在合作中提高解决问题的能力,并培养团队合作精神。
3. 课堂讨论法在学习过程中,老师引导学生就特定的问题展开课堂讨论。
通过讨论,学生可以充分发表自己的观点和思考,培养学生的分析和批判性思维能力。
北师大版九年级数学上册《用因式分解法求解一元二次方程》评课稿一、引言《用因式分解法求解一元二次方程》是北师大版九年级数学上册中的一节重要内容。
这节课的核心目标是教授学生如何利用因式分解法解决一元二次方程的问题。
本评课稿将对该节课进行详细的分析和评价,包括教材内容、教学目标、教学方法、教学手段和评价等方面。
二、课堂分析1. 教材内容本节课的教材内容主要包括以下几个方面:•一元二次方程的定义和基本形式;•因式分解法的基本概念和原理;•利用因式分解法求解一元二次方程的具体步骤;•实际问题中的应用。
这些内容紧密衔接,逻辑清晰,有助于学生理解和掌握一元二次方程的求解方法。
2. 教学目标本节课的教学目标主要包括以下几个方面:•理解一元二次方程的概念和基本形式;•掌握因式分解法解决一元二次方程的具体步骤;•运用所学知识解决一些实际问题;•培养学生的逻辑思维能力和问题解决能力。
这些目标能够引导学生在课堂中更好地掌握知识,提高数学思维能力和解决问题的能力。
3. 教学方法在教学过程中,本节课采用了多种教学方法,包括讲解、示范、练习、讨论和巩固等。
•在讲解环节,教师通过幻灯片和板书的形式,对一元二次方程的概念和基本形式进行详细的解释,使学生对知识有全面的了解。
•在示范环节,教师通过具体的例题,演示利用因式分解法解决一元二次方程的过程,帮助学生理解和掌握解题方法。
•在练习环节,教师设计了一系列练习题,让学生进行个人练习或小组合作练习,巩固所学知识。
•在讨论环节,教师引导学生讨论解题方法和思路,鼓励学生提出问题和思考策略,促进学生之间的合作和交流。
这些方法的有机结合使得课堂教学更加灵活多样,激发了学生的学习兴趣和积极性。
4. 教学手段为了更好地实现教学目标,本节课运用了多种教学手段,包括多媒体播放器、幻灯片、板书和黑板报等。
•多媒体播放器和幻灯片可以帮助教师提供丰富的教学资源和示范,引导学生理解和掌握知识;•板书和黑板报可以用于教师在课堂上的讲解和学生的笔记记录,让学生更好地掌握和记忆知识;这些手段的灵活应用提供了多样化的学习资源和工具,有利于学生的掌握和巩固。
青岛版九年级数学上册《用因式分解法解一元二次方程》评课稿一、课程背景和目标本堂课是青岛版九年级数学上册的一节课,教学内容为“用因式分解法解一元二次方程”。
通过本课的学习,旨在让学生掌握用因式分解法解一元二次方程的基本思想和方法,提高他们的解题能力和逻辑思维能力。
二、教学内容和流程1. 教学内容本节课的教学内容主要包括以下几个方面:•一元二次方程及其性质;•因式分解法的基本思想和步骤;•用因式分解法解一元二次方程的具体步骤;•解一元二次方程的注意事项和常见问题。
2. 教学流程步骤一:导入与激发兴趣(5分钟)通过提问和简短的小故事引导学生回顾一元二次方程的定义和性质,激发他们对本课内容的兴趣,为后续学习做好铺垫。
步骤二:讲授因式分解法的基本思想(10分钟)通过示例和图示讲解因式分解法的基本思想,重点介绍如何将一元二次方程转化为两个一次因式的乘积。
步骤三:因式分解法解一元二次方程的步骤(15分钟)详细介绍用因式分解法解一元二次方程的具体步骤,包括提取公因式、平方差公式和完全平方公式的运用等内容,通过示例演示和课堂练习巩固学生的认识和理解。
步骤四:解一元二次方程的注意事项和常见问题(10分钟)总结并讲解解一元二次方程时需要注意的事项和常见问题,包括负数的平方、零因子和二次方程无解等情况的处理方法。
步骤五:拓展与巩固(15分钟)分组练习和小组合作,让学生在课堂上进行一些拓展性的问题解答和练习,巩固他们对因式分解法解一元二次方程的掌握程度。
步骤六:课堂总结与作业布置(5分钟)对本节课的重点内容进行简要总结,布置相关作业和预习内容,以及提醒学生加强练习和复习。
三、教学方法和手段为了提高学生的学习兴趣和参与度,本课采用了多种教学方法和手段:•导入:通过提问和小故事等方式,引导学生主动思考和回忆相关知识点,激发他们对学习内容的兴趣。
•讲授:采用示例、图示等方式进行讲解,使学生能够直观地理解因式分解法的基本思想和步骤。
九年级《用因式分解法解一元二次方程》评课稿今天, 在教务处的组织下, 我参加了柏老师的九年级数学课——《用因式分解法解一元二次方程》的公开课活动。
这节课, 柏老师运用了“先学后导, 分层推进”的教学模式开展教学活动。
教学设计科学、严谨、合理。
能对教材内容进行取舍, 不照本宣科。
习题设计典型, 有梯度。
整个教学过程环环相扣, 层层推进, 最终教学效果理想。
但是我个人认为在具体细节上还有有待改进的地方:1、知识性错误。
因式分解是指把一个多项式分解成几个整式相乘的形式。
柏老师说成了分解成单项式相乘的形式。
整式既包含单项式也有多项式。
2、整个教学过程中, 还是没有把学习的主动权交给学生, 牵着学生走。
不让学生大胆的进行自主尝试。
其实, 我们从后面的课堂检测环节中可以看出学生的自主学习能力是非常强的。
那几个比较难的解方程学生都能用最简单的方法求解。
3、从新课前的复习环节可以看出学生对已经学过的概念记忆不清楚, 对每节课所学的知识点不清。
我们每节课的教学环节里基本都有“学习目标”出示和“归纳小结”的环节。
这两个环节看似不起眼, 但细细推敲来, 它们的作用就是让学生清楚到底学什么和学到了什么, 这两个环节教学到位了, 学生对所学知识也就是茶壶里煮饺子——心中有数了。
4、在“后导”环节要注重发挥学生的自主、合作学习能力。
因为学生在先学环节已经掌握的一定的知识和能力, 这时候教师适时的放手, 让学生通过自主学习, 掌握知识, 从而才能水到渠成的对知识进行归纳总结。
就不会像本节课在归纳小结时这么牵强。
5、教师对教材钻研不透彻。
后面的六个解方程练习题是本节课的课后练习题, 必然是都可以因式分解法来求解的。
但是老师在个别辅导时强调用其他解法。
用因式分解法解一元二次方程的教学设计与反思山东省安丘市景芝初级中学王汝建一、教学目标:(一)知识目标:(1)了解用因式分解解一元二次方程的概念;会用因式分解法解一元二次方程,了解其他的几种解法。
(2)学会观察方程的特征,选用适当的方法解一元二次方程。
(3)明确用因式分解法解一元二次方程的依据和“降次”转化的数学思想方法。
(二)能力目标:(1)培养学生将实际问题转化为数学问题的能力;(2)培养学生观察、比较、抽象、概括的能力;(3)训练学生思维的灵活性。
(三)德育目标:(1)结合实际与探索,寻找解决问题的策略和方法。
(2)养成良好的学习习惯。
二、教学的重、难点及教学设计:(一)教学重点:用因式分解法解一元二次方程。
(二)教学难点:选择适当的方法解一元二次方程。
(三)教学设计要点:1、情景设计:多媒体出示教材第95页“观察与思考”所提出的问题,设置问题情境,激发学生学习动机,引入新课。
2、教学内容的处理:(1)补充一组理解一元二次议程相关概念的基本练习。
(2)补充一组解一元二次方程的变形练习。
(3)在作业中,补充思考题ab=1一定有a=1或b=1吗?3、教学方法:独立探究,合作交流与老师引导相结合。
三、教具准备:彩色粉笔、多媒体课件等。
四、小结:(引导学生按下面的思路进行总结)1、这堂课的主要任务是什么?2、解一元二次方程的基本思路是什么?3、你用什么方法达到“降次”转化的目的?五、课后反思:这节课主要学习了用因式分解法解一元二次方程的概念及其解法,解法的基本思路是将一元二次方程转化为一元一次方程,而达到这一目的,我们主要利用了因式分解“降次”。
在今天的学习中,要逐步深入、领会、掌握“转化”这一数学思想方法。
在教学过程中,由一个问题引入新方程,要解决这个实际问题需要学习新知识,激发了学生的学习动机,而新知识与有知识一元一次方程有内在联系,引导学生用比较、概括的方法获得新知识。
通过补充练习,及时加深理解。
教学设计 用分解因式法解一元二次方程教学目标 会用因式分解法解部分简单的一元二次方程 教学重点 应用分解因式法解一元二次方程. 教学难点 形如“x2=ax”的解法. 教学方法 启发引导式归纳教学法. 教学过程Ⅰ.开篇点题,齐读学习目标。
回顾复习,引入新课 [师]到现在为止,我们学习了那些解一元二次方程的方法? [生] 直接开平方法、配方法、公式法。
Ⅱ.讲授新课 [师]下面我们来看一个题.(出示投影片)一个数的平方与这个数的 3 倍有可能相等吗?如果相等,这个数是几?你是怎样求 出来的?[师]大家先独自求解,然后点名板演进行讨论、交流. x2=3x,解: x2-3x+2.25=2.25 (x2-1.5) 2=2.25所以 x-1.5=1.5 或 x-1.5=-1.5 即 x1=3,x2=0.因此这个数是 0 或 3. 小明同学做错了,因为 0 的平方是 0,0 的 3 倍也是 0.根据题意可知,这个数也可以 是 0.[师]对,这说明小明同学在进行同解变形时,进行的是非同解变形,因此丢掉了一个 根.大家在解方程的时候,需要注意:利用同解原理变形方程时,在方程两边同时乘以或除 以的数,必须保证它不等于 0,否则,变形就会错误.这个方程还有没有其他的解法呢? [生]我把方程化为一般形式后,发现这个等式的左边有公因式 x,这时可把 x 提出来, 左边即为两项的乘积.前面我们知道:两个因式的乘积等于 0,则这两个因式为零,这样, 就把一元二次方程降为一元一次方程,此时,方程即可解. 解:x2-3x=0,x(x-3)=0, ∴x=0,x-3=0. ∴x1=0,x2=3. 因此这个数是 0 或 3. [师]噢,这样也可以解一元二次方程,同学们想一想,行吗? [生齐声]行. [师]丁同学应用的是:如果 a×b=0,那么 a=0,b=0,大家想一想,议一议. a×b=0 时,a=0 和 b=0 可同时成立,那么 x(x-3)=0 时,x=0 和 x-3=0 也能同 时成文吗? [生齐声]不行. [师]那该如何表示呢? …… [师]好,这时我们可这样表示: 如果 a×b=0, 那么 a=0 或 b=0 这就是说:当一个一元二次方程降为两个一元一次方程时,这两个一元一次方程中间 用的是“或”,而不用“且”. 所以由 x(x-3)=0 得到 x=0 和 x-3=0 时,中间应写上“或”字. 我们再来看丁同学解方程 x2=3x 的方法,他是把方程的一边变为 0,而另一边可以分 解成两个因式的乘积,然后利用 a×b=0,则 a=0 或 b=0,把一元二次方程变为一元一次 方程,从而求出方程的解.我们把这种解一元二次方程的方法称为分解因式法,即 当一元二次方程的一边为 0,而另一边易于分解成两个一次因式的乘积时,我们就采用分解因式法来解一元二次方程. 因式分解法的理论根据是:如果两个因式的积等于零,那么这两个因式至少有一个等于零.如;若(x+2)(x-3)=0,那么 x+2=0 或 x-3=0;反之,若 x+2=0 或 x-3=0, 则一定有(x+2)(x-3)=0.这就是说,解方程(x+2)(x-3)=0 就相当于解方程 x+2=0 或 x-3=0.接下来我们看一例题.(出示投影片§7.4D) [例题]解下列方程: (1)5x2=4x;(2)x-2=x(x-2). [师]请同学们能独自做出来. x=0 或 5x-4=0.∴x1=0,x2= 4 . 5[生乙]解方程(2)时,因为方程的左、右两边都有(x-2),所以可把(x-2)看作整体, 然后移项,再分解因式求解.解:原方程可变形为 x-2-x(x-2)=0, (x-2)(1-x)=0, x-2=0 或 1-x=0. ∴x1=2,x2=1. 下面同学们来想一想,做一做.(出示投影片§7.4E) 你能用分解因式法解方程 x2-4=0,(x+1)2-25=0 吗? [生]方程 x2-4=0 的右边是 0,左边 x2-4 可分解因式,即 x2-4=(x-2)(x+2).这 样,方程 x2-4=0 就可以用分解因式法来解,即 解:x2-4=0, (x+2)(x-2)=0, ∴x+2=0 或 x-2=0. ∴x1=-2,x2=2. [生]方程(x+1)2-25=0 的右边是 0,左边(x+1)2-25,可以把(x+1)看作整体,这 样左边就是一个平方差,利用平方差公式即可分解因式,从而求出方程的解,即 解:(x+1)2-25=0,[(x+1)+5][(x+1)-5]=0.∴(x+1)+5=0,或(x+1)-5=0.∴x1=-6,x2=-4.[师]好,这两个题实际上我们在刚上课时解过,当时我们用的是开平方法,现在用的是因式分解法.由此可知:一个一元二次方程的解法可能有多种,我们在选用时,以简便为主.好,下面我们通过练习来巩固一元二次方程的解法.Ⅲ.课堂练习1、方程 x(x+2)=0 的根是( )(A)x=2(B)x=0(C)x1=0, x2=-2 (D)x1=0, x2=2 2、方程 x2=4x 的解是( )(A)x=4(B)x=2(C)x=4 或 x=0 (D)x=03、解方程 (5x-1)2=3(5x-1)的适当方法应该是( )(A)直接开平方法 (B)配方法(C)公式法(D)因式分解法4、下列方程中不适合用因式分解法求解的方程是( )(A) 3x2-2x=0(B)4x2=9(C)(3x+1)=2x(3x+1) (D) 2x2+5x=6小结拓展 1.因式分解法的条件是方程左边易于分解,而右边等于零,关键是熟练掌握因式分解的 知识,理论依据是“如果两个因式的积等于零,那么至少有一个因式等于零.” 2.因式分解法解一元二次方程的步骤. 达标练习 解下列方程: (1)(x+2)(x-4)=0; (2)4x(2x+1)=3(2x+1).解:(1)由(x+2)(x-4)=0 得x+2=0 或 x-4=0.∴x1=-2,x2=4.(2)原方程可变形为4x(2x+1)-3(2x+1)=0,(2x+1)(4x-3)=0,∴2x+1=0 或 4x-3=0.∴x1=- 1 ,x2= 3 .242.一个数的平方的 2 倍等于这个数的 7 倍,求这个数.解:设这个数为 x,根据题意,得2x2=7x,2x2-7x=0,x(2x-7)=0.∴x=0 或 2x-7=0.∴x1=0,x2= 7 . 2因此这个数等于 0 或 7 . 2Ⅳ.课时小结我们这节课又学习了一元二次方程的解法——因式分解法.它是一元二次方程解法中应用较为广泛的简便方法.Ⅴ.课后作业(一)课本习题 7.11 1、22.预习提纲如何列方程解应用题.Ⅵ.活动与探究1.用分解因式法解:(x-1)(x+3)=12.[过程]通过学生对这个题的探讨、研究来提高学生的解题能力,养成良好的思考问题的习惯.[结果]1.解:(x-1)(x+3)=12,x2+2x-3=12, x2+2x-15=0, (x+5)(x-3)=0. ∴x+5=0 或 x-3=0. ∴x1=-5,x2=3. 板书设计§7.4 用分解因式法解一元二次方程 一、 解方程 x2=3x解:x2=3x, x2-3x+2.25=2.25(x2-1.5) 2=2.25 所以 x-1.5=1.5 或 x-1.5=-1.5即 x1=3,x2=0. 因此这个数是 0 或 3. 二、例题 例:解下列方程: (1)5x2=4x; (2)x-2=x(x-2). 三、想一想 四、课堂练习 五、课时小结 六、课后作业问题的实质。
初中九年级数学《一元二次方程复习》评课稿课程介绍《一元二次方程复习》是初中九年级数学课程中的一节重要课程。
在这个课程中,学生将复习一元二次方程的基本概念、公式、解法等知识点,并通过练习题和思考题来巩固相关知识。
本课程旨在为学生提供数学思维和分析问题的能力,并帮助他们更好地理解和应用一元二次方程。
教学目标1.了解一元二次方程的定义、基本概念和公式。
2.掌握一元二次方程的解法和应用。
3.熟练运用一元二次方程解题方法解决实际问题。
4.提高学生的分析问题和解决问题的思维能力。
5.激发学生的学习兴趣和动力。
教学设计第一部分:引入首先介绍一元二次方程的定义和基本概念,然后通过示例让学生理解方程式的意义和解题思路。
第二部分:教学内容教学内容重点包括以下内容:1.一元二次方程的标准形式和一般形式;2.一元二次方程求解的基本方法;3.一元二次方程的根的判别式;4.一元二次方程的应用。
第三部分:学习活动本部分将对学生进行练习和思考题,以加深对学习内容的理解和掌握。
1.练习题:用基本公式计算给定问题的答案;2.探究题:设计一元二次方程实例题目,一定程度上可以提高学生的思考力。
第四部分:总结与评价在这一部分,通过反馈和提问,让学生更好地总结和评价课程。
教学评估学生表现通过学生的表现,可以对学生对于掌握《一元二次方程复习》有一个全面的评估。
学生表现包括以下几个方面:1.学生的作业质量;2.学生在集体讨论中的表现;3.学生在个人练习中的成绩。
教学反馈教师应该在课后向学生收集反馈,以帮助他们了解在具体操作中出现的问题和需要周密布置练习的方向。
适用范围这份《一元二次方程复习》评课稿,主要是针对初中九年级这个年龄层的学生,涵盖了一元二次方程的基础知识、公式和解法等,旨在帮助学生理解和掌握一元二次方程,并提高他们的数学分析和问题解决能力。
总结总的来说,本课程评估良好,严格按照教学方案来规范的,学生表现也比较符合预期。
但在实际操作中,还需要进一步调整内容的具体布局,要求学生在课程中得到更细致的掌握,并在之后的学习中更有效地应用一元二次方程解决场景问题。
《用因式分解法解一元二次方程》学情分析任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。
这就要求我们教师必须从学生的认识结构和心理特征出发,分析初中学生的心理特征,他们有强烈的好奇心和求知欲。
当他们在解决实际问题时,发现要解得方程不是以前学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的方法问题。
而从学生的认识结构来看,前面我们已经系统的研究了完全平方公式、二次根式,用直接开平方法、配方法、公式法解一元二次方程之后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。
《用因式分解法解一元二次方程》效果分析本节课我主要注意了以下两点:一、注意学生思维习惯的培养。
优秀是一种习惯,好的习惯可以使人终身受益。
刘主任在教学中不但注重夯实基础知识,巩固学生的基本技能,而且还注重学生良好思维习惯的培养。
二、关注全体学生。
以自学为主,通过自主探究、合作性学习获取知识,形成了师生互动、生生互动、全体参与教学氛围。
教师在教学中鼓励解决问题策略的多样化,尊重学生在解决过程中所表现出的不同水平。
问题情境的设计、教学过程的展开、练习的安排等都尽可能地让所有学生都能主动参与,提出各自解决问题的策略,并引导学生在与他人的交流中丰富数学活动经验,提高思维水平。
《用因式分解法解一元二次方程》教材分析一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。
我们从知识发展来看,学生通过一元二次方程的学习,可以对已学过的实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是学生今后学习可化为一元二次方程的方程式、二次函数等知识的基础。
初中数学中,一些常用的解题方法、计算技巧以及主要的数学思想,在本章教学中都有较多的体现、应用和提升。
我们从知识的横向联系上来看,学习一元二次方程对其他学科有重要意义。
很多实际问题都学通过列、解一元二次方程来解决。
而我们想通过列一元二次方程来解决实际问题,首先要学会一元二次方程的解法。
21.2 解一元二次方程21.2.3 因式分解法一、教学目标【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度与价值观】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.二、课型新授课三、课时1课时四、教学重难点【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.五、课前准备课件六、教学过程(一)导入新课1.解一元二次方程的方法有哪些?(出示课件2)学生答:直接开平方法:x2=a (a≥0),配方法:(x+m)2=n (n≥0),公式法:x=2ba-±(b2-4ac≥0).2. 什么叫因式分解?学生答:把一个多项式分解成几个整式乘积的形式叫做因式分解,也叫把这个多项式分解因式.3.分解因式的方法有那些?(出示课件3)学生答:(1)提取公因式法:am+bm+cm=m(a+b+c).(2)公式法:a²-b²=(a+b)(a-b), a²±2ab+b²=(a±b) ².(3)十字相乘法.教师问:下面的方程如何使解答简单呢?x2+25x=0.出示课件5:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)教师问:你能根据题意列出方程吗?学生答:设物体经过x s 落回地面,这时它离地面的高度为0m ,即10x -4.9x 2=0.教师问:你能想出解此方程的简捷方法吗?(二)探索新知探究 因式分解法的概念学生用配方法和公式法解方程10x -4.9x 2=0.(两生板演)配方法解方程10x -4.9x 2=0. 解:2100049x x -=,22210050500494949x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭2250504949x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭50504949x -=±50504949x =±+110049,=x 20.=x公式法解方程10x -4.9x 2=0.解:24.9100x x -=,a=4.9,b=-10,c=0.b 2-4ac= (-10)2-0=100,a acb b x 242-±-=()10102 4.9--±=⨯110049,=x20. =x教师引导学生尝试找出其简洁解法为:(出示课件7)x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.这种解法是不是很简单?教师问:以上解方程的方法是如何使二次方程降为一次方程的?x(10-4.9x)=0,①x=0或10-4.9x=0,②通过学生的讨论、交流可归纳为:(出示课件8)可以发现,上述解法中,由①到②的过程,不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法.教师提示:(出示课件9)1.用因式分解法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的方法;3.理论依据是“ab=0,则a=0或b=0 ”.师生共同归纳:(出示课件10)分解因式法解一元二次方程的步骤是:1.将方程右边化为等于0的形式;2.将方程左边因式分解为A×B;3.根据“ab=0,则a=0或b=0”,转化为两个一元一次方程;4.分别解这两个一元一次方程,它们的根就是原方程的根.例1 解下列方程:(出示课件11)(1)x(x-2)+x-2=0; (2)5x 2-2x-14=x 2-2x+34. 师生共同解答如下: 解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x 1=2,x 2=-1;(2)原方程整理为4x 2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12,x 2=12. 想一想 以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.学生思考后,教师总结如下:(出示课件12)一.因式分解法简记歌诀:右化零,左分解;两因式,各求解.二.选择解一元二次方程的技巧:1.开平方法、配方法适用于能化为完全平方形式的方程.2.因式分解法适用于能化为两个因式之和等于0的形式的方程.3.配方法、公式法适用于所有一元二次方程.出示课件13:解下列方程:2222221 +=0; (2) -=0; (3) 3-6=-3;(4) 4-121=0; (5) 3(2+1)=4+2; (6) (-4)=(5-2).()x x x x x x x x x x x 学生自主思考并解答.(六生板演)解:⑴因式分解,得x(x+1)=0.于是得x=0或x+1=0,x 1=0,x 2=-1.⑵因式分解,得x (x)=0于是得x=0或x-2=0x1=0,x2=2.⑶将方程化为x2-2x+1 = 0. 因式分解,得(x-1)(x-1)=0.于是得x-1=0或x-1=0,x1=x2=1.⑷因式分解,得(2x+11)(2x-11)=0.于是得2x+11=0或2x-11=0,x1=-5.5,x2=5.5.⑸将方程化为6x2-x-2=0. 因式分解,得(3x-2)(2x+1)=0. 于是得3x-2=0或2x+1 = 0,x1=23,x2=12.⑹将方程化为(x-4)2-(5-2x)2=0.因式分解,得(x-4-5+2x)(x-4+5-2x)=0.(3x-9)(1-x)=0.于是得3x-9=0或1-x=0,x1=3,x2=1.出示课件16:用适当方法解下列方程:−x)2;(2)x2-6x-19=0;(3)3x2=4x+1;(4)y2-15=2y;(5)5x(x-3)-(x-3)(x+1)=0;(6)4(3x+1)2=25(x-2)2.教师提示:根据方程的结构特征,灵活选择恰当的方法来求解.四种方法的选择顺序是:直接开平方法→因式分解法→公式法→配方法.师生共同解答如下.(出示课件17,18,19)解:(1)(1-x)2=3,∴(x-1)2=3,x-1∴x1=1x2=1.(2)移项,得x2-6x=19.配方,得x2-6x+(-3)2=19+(-3)2.∴(x-3)2=28.∴x-3=±.∴x1=3+,x2=3-.(3)移项,得3x2-4x-1=0.∵a=3,b=-4,c=-1,∴x=−(−4)±√(−4)2−4×3×(−1)2×3=2±73.∴x1=2+73,x2=2-73.(4)移项,得y2-2y-15=0.把方程左边因式分解,得(y-5)(y+3)=0. ∴y-5=0或y+3=0.∴y1=5,y2=-3.(5)将方程左边因式分解,得(x-3)[5x-(x+1)]=0. ∴(x-3)(4x-1)=0.∴x-3=0或4x-1=0.∴x1=3,x2=1 4 .6)移项,得4(3x+1)2-25(x-2)2=0.∴[2(3x+1)]2-[5(x-2)]2=0.∴[2(3x+1)+5(x-2)]·[2(3x+1)-5(x-2)]=0. ∴(11x-8)(x+12)=0.∴11x-8=0或x+12=0.∴x1=811,x2=-12.出示课件20,21:用适当的方法解下列方程:(1)x2-41=0;(2) 5(3x+2)2=3x(3x+2).学生自主思考并解答.解:(1)∵x2-14=0,∴x2=14,即x=±14.∴x1=12,x2=-12.⑵原方程可变形为5(3x+2)2-3x(3x+2)=0,∴(3x+2)(15x+10-3x)=0.∴3x+2=0或12x+10=0.∴x1=-23,x2=-56.(三)课堂练习(出示课件22-30)1.已知x=2是关于x的一元二次方程kx²+(k²﹣2)x+2k+4=0的一个根,则k的值为.2. 解方程:2(x﹣3)=3x(x﹣3).3.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12.4.小华在解一元二次方程x2-x=0 时,只得出一个根x=1,则被漏掉的一个根是()A.x=4 B.x=3C.x=2 D.x=05.我们已经学习了一元二次方程的四种解法:直接开平方法、配方法、公式法和因式分解法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.我选择______________________.6.解方程:(x2+3)2-4(x2+3)=0.参考答案:1.-32.解:2(x﹣3)=3x(x﹣3),移项得2(x﹣3)﹣3x(x﹣3)=0,因式分解得(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3,x2=32.3.解:⑴x2+2x+2=0,(x+1)2=-1.此方程无解.⑵x2-4x-12=0,(x-2)2=16.x1=6,x2=-2.4.D5.解:答案不唯一.若选择①,①适合公式法,x2-3x+1=0,∵a=1,b=-3,c=1,∴b2-4ac=9-4=5>0.∴x=3±5 2.∴x1=3+52,x2=3-52.若选择②,②适合直接开平方法,∵(x-1)2=3,x-1=±3,∴x1=1+3,x2=1- 3. 若选择③,③适合因式分解法,x2-3x=0,因式分解,得x(x-3)=0.解得x1=0,x2=3.若选择④,④适合配方法,x2-2x=4,x2-2x+1=4+1=5,即(x-1)2=5.开方,得x-1=± 5.∴x1=1+5,x2=1- 5.5.提示:把(x2+3)看作一个整体来提公因式,再利用平方差公式,因式分解.解:设x2+3=y,则原方程化为y2-4y=0.分解因式,得y(y-4)=0,解得y=0,或y=4.①当y=0 时,x2+3=0,原方程无解;②当y=4 时,x2+3=4,即x2=1.解得x=±1.所以原方程的解为x1=1,x2=-1.(四)课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?⑴公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法).⑵方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法.(五)课前预习预习下节课(21.2.4)的相关内容。
《因式分解法解一元二次方程》教学点评点评人:宜城市流水镇讴乐初级中学王江涛因式分解法是针对那些可以分解为两个一次因式乘积的一元二次方程的特殊解法,它为今后用一元二次方程解决实际问题提供一种新的思路。
廖老师本节课最大的亮点在于能站在知识系统的高度把握教材,从一般到特殊有节奏的处理教学内容。
在教学的过程中渗透数学思想,在传授知识的同时注重思维能力培养。
整个教学过程可以用“以学生发展为本,知识与能力并举”十四个字来概括。
1、概念引入自然,抓住学生的注意力。
教师由物理学中的一个实际问题出发,引导学生建立了一个一元二次方程,学生用已经学过的配方法、公式法来解感觉十分繁琐,此时教师引导学生观察此方程左边和右边的特点,发现左边可以因式分解,右边等于零。
借此教师大胆提出设想:能否用因式分解法?抓住学生的注意力,很自然地也揭示本节课的课题。
2、以学生发展为本,重视学生能力培养。
活动1利用课本中的实际背景引出一个左边可以因式分解,右边等于零的一个特殊的一元二次方程,此时可以令两个一次因式分别等于零,得到两个一次方程,从而求得原方程的解。
在这个过程中,学生很自然的掌握因式分解法这个核心概念,完全符合学生的认知过程。
活动2主要采用自学的方式学习书中的例题,主要突破三个重点:一是选取恰当的因式分解的方法;二是通过一题多解,让学生充分体会到因式分解法解方程的简单性;三是通过例题归纳出用用因式分解法解一元二次方程的步骤,培养学生归纳能力、应用能力。
活动3教师设置一个学生极易出错的改错题,目的是再次调动学生的求异思维,让他们各抒己见,纠正他们在解题中的片面认识,渗透分类讨论的数学思想,使学生本节课的认识再上升到一个新的高度。
通过三个活动的设置,学生对配方法、公式法、因式分解法有一个新的认识:其基本思路是“降次”,解方程时要根据方程的特征灵活选择,从而提高学生计算的技巧不和准确性。
3、精心设计习题,强化学生解题思路本节课教材设计较简单,如果不做补充,学生知识得不到拓展,能力得不到提高。
用因式分解法解一元二次方程评课稿上课人:陈银评课人:徐波陈老师这节课从学案的编写到实施,在形式和内容上都体现了新课程改革的特征,符合教改的基本精神。
本节课始终以如何用因式分解法解一元二次方程为主线加强对学生知识、技能、方法、能力等的培养,目标的达成,达到了比较理想的程度。
在课堂结构上、严谨而顺畅,课堂营造的学习氛围比较轻松活泼;内容上,新旧知识的前后联系,多种解法系统而完整,学到了新知识,还让学生体验到了成功的快乐。
教学中灵活使用多媒体资源,提高了教学效果也是本节课的一个亮点。
针对这节课我着重从以下几个方面谈谈个人的意见。
一、教学目标方面针对学科特点,结合本课内容,制定了明确的教学目标,而且在这堂课中顺利的完成了目标,使学生学会用因式分解解一元二次方程方法,做到理解其算理,掌握其算法;并进一步培养学生观察比较、分析、综合的能力,进一步提高学生的计算能力,培养思维的灵活性。
同时还培养学生参与数学学活动的积极性,体验在学习活动中探索和创造的乐趣,感受数学的严谨性、数学结论的确定性,养成认真仔细的良好学习习惯。
本节课教学目标明确,教学过程始终围绕这个目标展开,重点内容的教学得到保证,重点知识和技能得到巩固和强化。
二、教学内容方面教学内容规定着教什么和学什么的问题,恰当地选择和处理教学内容是实现教学目标的重要保证。
本节课的教学内容始终围绕目标、反映目标,能分清主次,准确地确定让学生明白如何利用因式分解来解一元二次方程,以及利用因式分解来解一元二次方程方法步骤这一重点、难点、关键点,处理好新旧知识的结合点,抓住知识的生长点。
讲授具有启发性、层次性、详略得当;本堂课师生互动,共同探索,结合多媒体较好地处理了这个重点。
同时,注意发挥练习题的作用,加强对学生解题方法和过程的指导,使传授知识和培养能力容为一体。
通过对问题的处理,学生在不知不觉中得到了用因式分解解一元二次方程的方法,真可谓潜移默化、水到渠成。
三、教学方法方面教学方法是实现教学目标,体现教学内容的手段,教学方法包括教法和学法两部分。
九年级《用因式分解法解一元二次方程》评
课稿
今天,在教务处的组织下,我参加了柏老师的九年级数学课——《用因式分解法解一元二次方程》的公开课活动。
这节课,柏老师运用了“先学后导,分层推进”的教学模式开展教学活动。
教学设计科学、严谨、合理。
能对教材内容进行取舍,不照本宣科。
习题设计典型,有梯度。
整个教学过程环环相扣,层层推进,最终教学效果理想。
但是我个人认为在具体细节上还有有待改进的地方:
1、知识性错误。
因式分解是指把一个多项式分解成几个整式相乘的形式。
柏老师说成了分解成单项式相乘的形式。
整式既包含单项式也有多项式。
2、整个教学过程中,还是没有把学习的主动权交给学生,牵着学生走。
不让学生大胆的进行自主尝试。
其实,我们从后面的课堂检测环节中可以看出学生的自主学习能力是非常强的。
那几个比较难的解方程学生都能用最简单的方法求解。
3、从新课前的复习环节可以看出学生对已经学过的概念记忆不清楚,对每节课所学的知识点不清。
我们每节课的教学环节里基本都有“学习目标”出示和“归纳小结”的环节。
这两个环节看似不起眼,但细细推敲来,它们的作用就是让学生清楚到底学什么和学到了什么,这两个环节教学到位了,学生对所学知识也就是茶壶里煮饺子——心中有数了。
4、在“后导”环节要注重发挥学生的自主、合作学习能力。
因为学生在先学环节已经掌握的一定的知识和能力,这时候教师适时的放手,让学生通过自主学习,掌握知识,从而才能水到渠成的对知识进行归纳总结。
就不会像本节课在归纳小结时这么牵强。
5、教师对教材钻研不透彻。
后面的六个解方程练习题是本节课的课后练习题,必然是都可以因式分解法来求解的。
但是老师在个别辅导时强调用其他解法。