高2012级级高一上数学试题5(集合到反函数)
- 格式:doc
- 大小:353.50 KB
- 文档页数:8
高一期末考试试题1.已知集合{}/8,M x N x m m N =∈=-∈,则集合M 中的元素的个数为( ) A.7 B.8 C.9 D.102.已知点(,1,2)A x 和点(2,3,4)B ,且AB =,则实数x 的值是( ) A.3-或4 B.6或2 C.3或4- D.6或2-3.已知两个球的表面积之比为1:9,则这两个球的半径之比为( ) A.1:3 B. C.1:9 D.1:814.圆221x y +=上的动点P 到直线34100x y --=的距离的最小值为( ) A.2 B.1 C.3 D.45.直线40x y -+=被圆224460x y x y ++-+=截得的弦长等于( ) A. B. C. D.6.已知直线1:20l ax y a -+=,2:(21)0l a x ay a -++=互相垂直,则a 的值是( ) A.0 B.1 C.0或1 D.0或1- 7.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A.()y x x R =-∈ B.3()y x x x R =--∈ C.1()()2xy x R =∈ D.1(,0)y x R x x=-∈≠且 8.如图,一个空间几何体的主视图和左视图都是边长为1的正方形, 主视图 左视图 俯视图是一个圆,那么这个几何体的侧面积为( ) A.4πB.54πC.πD.32π9.设,m n 是不同的直线,,,αβγ是不同的平面,有以下四个命题:①//////αββγαγ⎫⇒⎬⎭ ②//m m αββα⊥⎫⇒⊥⎬⎭ ③//m m ααββ⊥⎫⇒⊥⎬⎭ ④////m n m n αα⎫⇒⎬⊂⎭其中,真命题是( )A.①④ B.②③ C.①③ D.②④ 10.函数2()ln f x x x=-的零点所在的大致区间是( ) A.()1,2 B.()2,3 C.11,e ⎛⎫ ⎪⎝⎭D.(),e +∞一、填空题(本大题共4小题,每题5分,共20分)11.设映射3:1f x x x →-+,则在f 下,象1的原象所成的集合为12.已知2()41f x x mx =-+在(],2-∞-上递减,在[)2,-+∞上递增,则(1)f = 13.过点(3,2)A 且垂直于直线4580x y +-=的直线方程为14.已知12,9x y xy +==,且x y <,则12112212x y x y-=+15(12分)已知二次函数2()43f x x x =-++(1) 指出其图像对称轴,顶点坐标;(2) 说明其图像由2y x =-的图像经过怎样的平移得来; (3) 若[]1,4x ∈,求函数()f x 的最大值和最小值。
数学基础知识训练题1(集合部分)1.集合{0,1,2}的子集有,真子集有 .2.已知A={不大于3的自然数},U={0,1,2,3,4,5},则C U A= .3.已知A={a,b,c,d,e,f },B={b,d,e,g },则A∩B= ,A∪B = .4.集合M∩N=M是M N的条件,M∪N=是M=N=的条件5.满足关系{1,2}ÍMÍ{1,2,3,4,5}的集合M的个数是 .6.已知集合A={x|x≤2}, B={x|x<a},满足A ÊB,则a的取值范围是 .7.命题:“一个实数x,使得2x+3<0”的非命题是 .8.若p真q假,则p∧q为命题;p∨q为命题; (p∨q)为命题;p→q为命题;p→q为命题.9.A={( x , y )| x+y=1},B={( x , y )| x-y=-1}则A∩B.10.设U=Z,A={2m-1| m∈Z} 则C U A=11.空集表示的集合,记为,它是任意非空集合的.12. x2=4是x=-2或x=2的________________条件;13. ab=0是a=0或b=0的__________________条件;14. 已知M={ x│x≤19},a=32,则a与M的关系是 .15.已知A={ x│-5≤x<1},B={ x│-3<x<4},则A∩B= .16.设全集U=N,A={ n│n∈N且n≥3},则C U A=.数学基础知识训练题 2(不等式)1. 方程x 2-2x -1=0的解集为 .2. 不等式-3x ≤6的解集为 .3. 不等式5+x£3≥312-4x £«18的解集为 . 4. 不等式组x 2£x 3£¾£ 1 ¡¢Ù2(x £3)£3(x £2)£¼0¡¡ ¢Ú的解集为 .5. 不等式x 2-2x -3>0的解集为 .6. 不等式-x2-3x +4≥0的解集为 .7. 不等式|2x +3|≤7的解集为 .8. 不等式|x -3|>2的解集为 .11. 不等式x 2+2x +1≥0的解集为 .12. 不等式x2+2x +3>0的解集为 .13.不等式x 2-3x +5<0的解集为 .14.不等式3x £«1x £3>0的解集为 .15.求不等式3£2x x £4≥1的解集为 .16.二次不等式ax 2+bx +1>0的解集是(-1,13)则a = ,b = . (均值定理) 1.若x >0, 则4x -2+ 的最小值是 .2.函数f (x )=1+4x 2+21x 的最小值是 .3.y =2-3x -4x(x >0)的最大值是 . 4.y =x +1x £3-2(x >3)最小值是 .数学基础知识训练题3(函数的定义域、值域)1. 函数y=£x2£«2x£«3的定义域是 ,值域是 .2. f(x)=1的定义域是,值域是 .3. 函数y=(x£2)0lgx的定义域是 .4. 函数y=log0. 5(1£x)的定义域是 .5. 函数y=-3sin(2x+φ)-5的值域是 .6. 函数y=3cos2x-4sin2x的值域是 .7. 函数y=sin x-sin2x+cos x的值域是 .8. 函数y=cos2x-2sin x cos x-sin2x的值域是 .9. 函数y=x2-3x-5的值域是 .10.函数y=3-x-1x(x>0)的值域是 .数学基础知识训练题 4 (函数的奇偶性、单调性)1. 函数y=x3的奇偶性是;在R上的单调性是 .2. 函数y=-ax-3+bx5(其中a、b不同时为0)的奇偶性是 .3. 函数y=2x2的奇偶性是;若x∈(-1,1],则该函数的奇偶性是 .4. 函数y=-x4+1的奇偶性是 .5. 函数y=0的奇偶性是 .6. 函数y=cos x的奇偶性是;y=cos x+1的奇偶性是 .7. 函数y=sin x的奇偶性是;y=sin x+cos x的奇偶性是 .8. 函数y=x cos x的奇偶性是;y=x sin x的奇偶性是 .9. 函数y=sin x cos x的奇偶性是;y=(sin x-2)2的奇偶性是10.函数y=cos(3x+11p2)的奇偶性是;函数y=sin(2x-2001p2)的奇偶性是 .11.若函数y=mx2+(1+m)x-3是偶函数,则该函数在[0, +∞)上的单调性是 .12.若函数y=f(x)是R上的奇函数,且在[0, +∞)上是增函数,则此函数在(-∞,0]上的单调性是;f(-1),f(2),f(π)的大小关系是;f(0)= .13. 若函数y=f(x)是R上的偶函数,且在[0, +∞)上是增函数,则此函数在(-∞,0]上的单调性是;f(-1),f(2),f(π)的大小关系是 .14.已知y=f(x)是R上的奇函数,f(3)=5,则f(-3)= .15.已知y=f(x)是R上的奇函数,f(-3)=5,则f(3)= .16.已知y=f(x)是R上的偶函数,f(3)=5,则f(-3)= .17.已知y=f(x)是R上的偶函数,f(-7)=-2,则f(7)= .数学基础知识训练题5(函数的对称性)1.奇函数的图像关于对称;2.偶函数的图像关于对称;3.互为反函数的两个函数的图像关于对称。
2012年高考数学按章节分类汇编(人教A 必修一)第一章集合与函数的概念一、选择题1 .(2012年高考(浙江文))设全集U={1,2,3,4,5,6} ,设集合P={1,2,3,4} ,Q{3,4,5},则P∩(C U Q)=( )A .{1,2,3,4,6}B .{1,2,3,4,5}C .{1,2,5}D .{1,2}2 .(2012年高考(浙江理))设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=( ) A .(1,4) B .(3,4) C .(1,3) D .(1,2)3 .(2012年高考(四川文))设集合{,}A a b =,{,,}B b c d =,则AB =( )A .{}bB .{,,}b c dC .{,,}a c dD .{,,,}a b c d4 .(2012年高考(山东文))已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A Bð为( )A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}5 .(2012年高考(辽宁文))已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则()()U U C A C B ⋂= ( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}6 .(2012年高考(课标文))已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则 ( )A .A ⊂≠BB .B ⊂≠AC .A=BD .A∩B=∅7 .(2012年高考(江西文))若全集U={x∈R|x 2≤4} A={x∈R||x+1|≤1}的补集CuA 为( )A .|x∈R |0<x<2|B .|x∈R |0≤x<2|C .|x∈R |0<x≤2|D .|x∈R |0≤x≤2|8 .(2012年高考(湖南文))设集合{}{}21,0,1,|MN x x x =-==,则M N ⋂= ( )A .{}1,0,1-B .{}0,1C .{}1D .{}09 .(2012年高考(湖北文))已知集合{}{}2|320,,|05,A x xx x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为 ( )A .1B .2C .3D .410.(2012年高考(广东文))(集合)设集合{}1,2,3,4,5,6U =,{}1,3,5M =,则U C M =( )A .{}2,4,6B .{}1,3,5C .{}1,2,4D .U11.(2012年高考(福建文))已知集合{}{}1,2,3,4,2,2MN ==-,下列结论成立的是( )A .N M ⊆B .M N M ⋃=C .M N N ⋂=D .{}2M N ⋂=12.(2012年高考(大纲文))已知集合{}|A x x =是平行四边形,{}|B x x =是矩形,{}|C x x =是正方形,{}|D x x =是菱形,则( )A .AB ⊆B .C B ⊆C .D C ⊆D .A D ⊆13.(2012年高考(北京文))已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则A B =( )A .(,1)-∞-B .2(1,)3--C .2(,3)3-D .(3,)+∞14 .(2012年高考(新课标理))已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为 ( )A .3B .6C .8D .1015 .(2012年高考(陕西理))集合{|lg 0}Mx x =>,2{|4}N x x =≤,则MN =( )A .(1,2)B .[1,2)C .(1,2]D .[1,2]16 .(2012年高考(山东理))已知全集{}0,1,2,3,4U=,集合{}{}1,2,3,2,4A B ==,则U C AB 为( )A .{}1,2,4B .{}2,3,4C .{}0,2,4D .{}0,2,3,417 .(2012年高考(辽宁理))已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8}, 则)()(B C A C U U 为 ( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}18 .(2012年高考(湖南理))设集合M={-1,0,1},N={x|x 2≤x},则M∩N= ( )A .{0}B .{0,1}C .{-1,1}D .{-1,0,0}19 .(2012年高考(广东理))(集合)设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U C M = ( )A .UB .{}1,3,5C .{}3,5,6D .{}2,4,620 .(2012年高考(大纲理))已知集合{{},1,,A B m A B A ==⋃=,则m =( )A .0B .0或3C .1D .1或321 .(2012年高考(北京理))已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则A B =( )A .(,1)-∞-B .2(1,)3--C .2(,3)3-D .(3,)+∞22.(2012年高考(江西理))若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为( ) A .5B .4C .3D .2 23 .(2012年高考(陕西文))下列函数中,既是奇函数又是增函数的为( )A .1y x =+B .2y x =-C .1y x=D .||y x x =24 .(2012年高考(江西文))设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则((3))f f =( )A .15B .3C .23D .13925.(2012年高考(湖北文))已知定义在区间(0,2)上的函数()y f x =的图像如图所示,则(2)y f x =--的图像为26.(2012年高考(福建文))设1,()0,1,f x ⎧⎪⎪=⎨⎪-⎪⎩0(0)(0)x x x >=<,1,()0,g x ⎧⎪=⎨⎪⎩()(x x 为有理数为无理数),则(())f g π的值为( )A .1B .0C .1-D .π27 .(2012年高考(上海春))记函数()y f x =的反函数为1().y f x -=如果函数()y f x =的图像过点(1,0),那么函数1()1y f x -=+的图像过点 [答]( )A .(0,0).B .(0,2).C .(1,1).D .(2,0).28 .(2012年高考(陕西理))下列函数中,既是奇函数又是增函数的为( )A .1y x =+B .2y x =-C .1y x=D .||y x x =二、填空题29.(2012年高考(天津文))集合{}|25A x R x =∈-≤中最小整数位_________.30.(2012年高考(上海文))若集合}012|{>-=x x A ,}1|{<=x x B ,则B A =_________. 31.(2012年高考(天津理))已知集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)A B n -,则=m __________,=n ___________.32.(2012年高考(四川理))设全集{,,,}Ua b c d =,集合{,}A a b =,{,,}B b c d =,则=)()(B C A C U U _______.33.(2012年高考(上海理))若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A =_________ .34.(2012年高考(上海春))已知集合[1,2,},{2,5}.A k B ==若{1,2,3,5},A B =则k =______.35.(2012年高考(江苏))已知集合{124}A =,,,{246}B =,,,则AB =____.36.(2012年高考(重庆文))函数()()(4)f x x a x =+- 为偶函数,则实数a =________ 37.(2012年高考(浙江文))设函数f(x)是定义在R 上的周期为2的偶函数,当x∈[0,1]时,f(x)=x+1,则3f 2()=_______________.38.(2012年高考(广东文))(函数)函数y 的定义域为__________. 39.(2012年高考(安徽文))若函数()|2|f x x a =+的单调递增区间是[3,)+∞,则_____a =40.(2012年高考(天津文))已知函数211x y x -=-的图像与函数y kx =的图像恰有两个交点,则实数k 的取值范围是________.41.(2012年高考(四川文))函数()f x =____________.(用区间表示)42.(2012年高考(上海文))已知)(x f y =是奇函数. 若2)()(+=x f x g 且1)1(=g .,则=-)1(g _______ .43.(2012年高考(山东文))若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.44.(2012年高考(福建文))已知关于x 的不等式220xax a -+>在R 上恒成立,则实数a 的取值范围是_________.祥细答案一、选择题 1. 【答案】D【命题意图】本题主要考查了集合的并集和补集运算. 【解析】Q{3,4,5},∴C U Q={1,2,6},∴ P∩(C U Q)={1,2}. 2. 【解析】A =(1,4),B =(-1,3),则A ∩(C R B )=(3,4).【答案】B 3. [答案]D[解析]集合A 中包含a,b 两个元素,集合B 中包含b,c,d 三个元素,共有a,b,c,d 四个元素,所以}{d c b a B A 、、、=[点评]本题旨在考查集合的并集运算,集合问题属于高中数学入门知识,考试时出题难度不大,重点是掌握好课本的基础知识.4. 解析:}4,2,0{)(},4,0{==B A C A C U U .答案选C.5. 【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U {7,9}.故选B 【解析二】 集合)()(B C A C U U 即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,选B【点评】本题主要考查集合的交集、补集运算,属于容易题.采用解析二能够更快地得到答案.6. 【命题意图】本题主要考查一元二次不等式解法与集合间关系,是简单题.【解析】A=(-1,2),故B ⊂≠A,故选B.7. C 【解析】{|22}U x x =-≤≤,{|20}A x x =-≤≤,则{|02}U C A x x =<≤. 8. 【答案】B【解析】{}0,1N = M={-1,0,1} ∴M∩N={0,1}【点评】本题考查了集合的基本运算,较简单,易得分.先求出{}0,1N =,再利用交集定义得出M∩N.9. D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R{}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D.【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.10.解析:A.{}2,4,6U C M =. 11. 【答案】D【解析】显然,,A B C 错,D 正确【考点定位】考查集合包含关系与运算,属基础题. 12.答案B【命题意图】本试题主要考查了集合的概念,集合的包含关系的运用.【解析】由正方形是特殊的菱形、特殊的矩形、特殊的平行四边形,矩形是特殊的平行四边形,可知集合C 是最小的,集合A 是最大的,故选答案B. 13. 【答案】D【解析】2|3A x x ⎧⎫=>-⎨⎬⎩⎭,利用二次不等式的解法可得{}|31B x x x =><-或,画出数轴易得{}|3A x x ⋂=>.【考点定位】本小题考查的是集合(交集)运算和一次和二次不等式的解法.14. 【解析】选D 5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个15. 解析:{|lg 0}{|1}Mx x x x =>=>,{|22}N x x =-≤≤,{12}M N x x =<≤,故选C.16. 【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C. 17. 【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U 为{7,9}.故选B 【解析二】 集合)()(B C A C U U 为即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,选B【点评】本题主要考查集合的交集、补集运算,属于容易题.采用解析二能够更快地得到答案.18. 【答案】B【解析】{}0,1N = M={-1,0,1} ∴M∩N={0,1}.【点评】本题考查了集合的基本运算,较简单,易得分.先求出{}0,1N =,再利用交集定义得出M∩N19. 解析:C.{}3,5,6U C M =.20. 答案B【命题意图】本试题主要考查了集合的概念和集合的并集运算,集合的关系的运用,元素与集合的关系的综合运用,同时考查了分类讨论思想.【解析】【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.若3=m ,则}3,1{},3,3,1{==B A ,满足A B A = .若m m =,解得0=m 或1=m .若0=m ,则}0,3,1{},0,3,1{==B A ,满足A B A = .若1=m ,}1,1{},1,3,1{==B A 显然不成立,综上0=m 或3=m ,选B. 21. 【答案】D【解析】2|3A x x ⎧⎫=>-⎨⎬⎩⎭,利用二次不等式的解法可得{}|31B x x x =><-或,画出数轴易得{}|3A x x ⋂=>.【考点定位】本小题考查的是集合(交集)运算和一次和二次不等式的解法. 22. C 【解析】本题考查集合的概念及元素的个数.容易看出x y +只能取-1,1,3等3个数值.故共有3个元素.【点评】集合有三种表示方法:列举法,图像法,解析式法.集合有三大特性:确定性,互异性,无序性.本题考查了列举法与互异性.来年需要注意集合的交集等运算,Venn 图的考查等.23. 解析:运用排除法,奇函数有1y x=和||y x x =,又是增函数的只有选项D 正确. 24. 【答案】D【解析】考查分段函数,22213((3))()()1339f f f ==+=. 25. B 【解析】特殊值法:当2x =时,()()()22200y f x f f =--=--=-=,故可排除D项;当1x =时,()()()22111y f x f f =--=--=-=-,故可排除A,C 项;所以由排除法知选B.【点评】本题考查函数的图象的识别.有些函数图象题,从完整的性质并不好去判断,作为徐总你则提,可以利用特殊值法(特殊点),特性法(奇偶性,单调性,最值)结合排除法求解,既可以节约考试时间,又事半功倍.来年需注意含有xe 的指数型函数或含有ln x 的对数型函数的图象的识别. 26. 【答案】B【解析】因为()0g π= 所以(())(0)0f g f π==. B 正确【考点定位】该题主要考查函数的概念,定义域和值域,考查求值计算能力. 27. B28. 解析:奇函数有1yx=和||y x x =,又是增函数的只有选项D 正确.29. 【解析】3-不等式52≤-x ,即525≤-≤-x ,73≤≤-x ,所以集合}73{≤≤-=x x A ,所以最小的整数为3-.30. [解析] ),(21∞+=A ,)1,1(-=B ,A ∩B =)1,(21. 31. 【答案】1-,1【命题意图】本试题主要考查了集合的交集的运算及其运算性质,同时考查绝对值不等式与一元二次不等式的解法以及分类讨论思想.【解析】∵={||+2|<3}A x R x ∈={||5<<1}x x -,又∵=(1,)AB n -,画数轴可知=1m -,=1n .32. [答案]{a, c, d}[解析]∵d}{c,=)(A C U ;}{a B C U =)( ∴=)()(B C A C U U {a,c,d} [点评]本题难度较低,只要稍加注意就不会出现错误.33. [解析] ),(21∞+-=A ,)3,1(-=B ,A ∩B =)3,(21-. 34. 335. 【答案】{}1,2,4,6.【考点】集合的概念和运算. 【分析】由集合的并集意义得{}1,2,4,6AB =.36. 【答案】4【解析】由函数()f x 为偶函数得()()f a f a =-即()(4)()(4)a a a a a a +-=-+--4a ⇒=.【考点定位】本题考查函数奇偶性的应用,若已知一个函数为偶函数,则应有其定义域关于原点对称,且对定义域内的一切a 都有()()f a f a =-成立.37. 【答案】32 【命题意图】本题主要考查了函数的周期性和奇偶性. 【解析】331113()(2)()()1222222f f f f =-=-==+=. 38.解析:[)()1,00,-+∞.由10x x +≥⎧⎨≠⎩解得函数的定义域为[)()1,00,-+∞.39. 【解析】6- 由对称性:362aa -=⇔=-40. 【解析】函数1)1)(1(112-+-=--=x x x x x y ,当1>x 时,11112+=+=--=x x x x y ,当1<x 时,⎩⎨⎧-<+<≤---=+-=--=1,111,11112x x x x x x x y ,综上函数⎪⎩⎪⎨⎧-<+<≤---≥+=--=1,111,111112x x x x x x x x y ,,做出函数的图象,要使函数y与kx y =有两个不同的交点,则直线kx y =必须在蓝色或黄色区域内,如图,则此时当直线经过黄色区域时)2,1(B ,k 满足21<<k ,当经过蓝色区域时,k 满足10<<k ,综上实数的取值范围是10<<k 或21<<k .41. [答案](21-,∞)[解析]由分母部分的1-2x>0,得到x∈(21-,∞).[点评]定义域问题属于低档题,只要保证式子有意义即可,相对容易得分.常见考点有:分母不为0;偶次根下的式子大于等于0;对数函数的真数大于0;0的0次方没有意义.42. [解析] )(x f y=是奇函数,则)1()1(f f -=-,44)1()1()1()1(=+-+=-+f f g g ,所以3)1(4)1(=-=-g g .43.答案:14 解析:当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =,不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.另解:由函数()(14g x m =-在[0,)+∞上是增函数可知41,041<>-m m ; 当1>a 时()x f x a =在[-1,2]上的最大值为=2a 4,解得2=a ,最小值为211==-a m 不符合题意,舍去;当10<<a 时,()x f x a =在[-1,2]上的最大值为41=-a ,解得41=a ,此时最小值为411612<==a m ,符合题意, 故a =41. 44. 【答案】(0,8)【解析】因为 不等式恒成立,所以0∆<,即 2420a a -⋅<,所以08a <<【考点定位】该题主要考查一元二次不等式的解法,解法的三种情况的理解和把握是根本.。
1函数解析式的特殊求法例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式例2 若x x x f 21(+=+),求f(x)例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式例5 已知f(x)满足x xf x f 3)1()(2=+,求)(x f2函数值域的特殊求法例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
例2. 求函数22x 1x x 1y +++=的值域。
例3求函数y=(x+1)/(x+2)的值域例4. 求函数1e 1e y x x +-=的值域。
例1下列各组中的两个函数是否为相同的函数? ①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y③21)52()(-=x x f 52)(2-=x x f2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(-(B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。
(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。
例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅,(2)(,)a b C ∈同时成立.证明题1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).答案1解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
2012学年第一学期期末教学质量监测高一数学参考答案说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一二、填空题:本大题共4小题,每小题5分,满分20分. 11.(0,1] 12.16π 13 (或1+) 14. 14三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 15.(本小题满分12分)(本小题主要考查函数的表示方法及基本性质,考查化归转化的数学思想方法.) 解:(1)因为(2)1f =,2212m-=,所以1m =. ……………………2分 (2)函数2()f x x x =-的定义域为{}0|≠x x . ……………………3分 因为22()()()f x x x f x x x-=--=--=--, ………………………5分所以)(x f 是奇函数. …………………………6分(3)设120x x <<, …………………………7分则12121222()()()f x f x x x x x -=--- ………………………8分12121212222()()(1)x x x x x x x x =---=-+ ………………………9分因为120x x <<,所以120x x -<,12210x x +>, ………………11分 所以12()()f x f x <,因此)(x f 在(,0)-∞上为单调增函数. ………………12分 16.(本小题满分12分)(本小题主要考查直线平行、垂直的性质以及直线的交点等知识,考查数形结合的数学思想方法,以及运算求解能力.) 解:(1)因为(,)A m n 是1l 和2l 的交点,O 1OD1C 1B 1A 1DCA所以27010m n m n -+=⎧⎨+-=⎩, ……………………………2分解得 23m n =-⎧⎨=⎩……………………………4分(2)由(1)得(2,3)A -. 因为12l k =,31l l ⊥,所以312l k =-, ……………………………6分 由点斜式得,31:3(2)2l y x -=-+ ,即 3:240l x y +-=.……………8分 (3)因为4//l l ,所以423l l k k ==, ……………………………10分由点斜式得,42:3(2)3l y x -=+ ,即23130x y -+=. ……………12分17.(本小题满分14分)(本小题主要考查直线与平面平行、垂直,平面与平面垂直的判定,空间几何体体积的计算,考查化归转化的数学思想方法,以及空间想象能力和推理论证计算能力)解:(1)证明:连结11AC ,设11111AC B D O =,连结1AO ,因为1111ABCD A BC D -是正方体 ,所以11A ACC 是平行四边形. ……………2分 所以11//AC AC ,且 11AC AC =. 又1,O O 分别是11,AC AC 的中点, 所以11//O C AO ,且11O C AO =.所以11AOC O 是平行四边形.所以11//C O AO .……………………4分又1AO ⊂平面11AB D ,1C O ⊄平面11AB D , 所以1//C O 平面11AB D .…………5分 (2)方法一:因为11111AA A B C D ⊥平面,111111D B A B C D ⊂平面,所以111AA B D ⊥. …………6分 因为四边形ABCD 是正方形,所以AC BD ⊥, ……………………7分 而11//D B BD ,所以11D B AC ⊥. ………………………………8分 因为1A A AC A ⋂=,所以111D B A AC ⊥平面. ………………………………9分 因为1111D B AB D ⊂平面,所以111AB D A AC ⊥平面平面. ……………………………10分方法二: 连接1A B .因为11A ABB 是正方形,所以11A B AB ⊥. ……………………………6分 因为CB ⊥平面11A ABB , 由三垂线定理得,11AC AB ⊥. …………………………7分 同理可证,11AC AD ⊥. …………………………………8分 因为1AB ⊂平面11AB D ,1AD ⊂平面11AB D ,11D A AB A ⋂=,所以1AC ⊥平面11AB D . …………………………………9分 因为1AC ⊂平面1A AC , 所以平面1A AC ⊥平面11AB D .……………………………10分(3) 因为四边形ABCD 是边长为1的正方形,所以AO BD ⊥,因为1D D ABCD ⊥平面,AO ABCD ⊂平面,所以1D D AO ⊥. ………………11分 又1D D BD D ⋂=,所以11AO D DOB ⊥平面. …………………………12分因为12DO AO BD ===,11D B方法一:111111()2DOB D S DO D B D D =+⋅=梯形. …………………………13分所以11111111134D DAOB A ODD B DOB D V V S D D -==⋅⋅=梯形. …………………………14分方法二:111111111133D DAOB A D DO A D OB D DO D OB V V V S AO S AO --∆∆=+=⋅⋅+⋅⋅ …………………13分111111132324=⋅⋅= …………………………14分18.(本小题满分14分)(本小题主要考查具体的函数模型在实际问题中的应用,考查数形结合、化归转化的数学思想方法,以及应用意识和运算求解能力) 解:(1)由图可知 (0,20)A , (25,45)B ,(25,75)C ,(30,70)D , 设AB 所在的直线方程为20P kt =+,把(25,45)B 代入20P kt =+得 1k =. …………………………1分 所以AB l : 20P t =+. ………………………………………2分由两点式得CD 所在的直线方程为757075(25)2530P t --=--. ……………………3分 整理得,100P t =-+,2530,t ≤≤ …………………………………4分所以20,025,100,2530,t t P t t +<<⎧=⎨-+≤≤⎩. ………………………………5分(2)设1Q k t b =+,把两点(5,35),(15,25)的坐标代入得115351525k b k b +=⎧⎨+=⎩,解得1140k b =-⎧⎨=⎩………………………………6分所以40Q t =-+. ……………………7分 把点(20,20),(30,10)代入40Q t =-+也适合, 即对应的四点都在同一条直线上, ……………………8分 所以40Q t =-+ (030)t <≤. ……………………9分 (本题若把四点中的任意两点代入1Q k t b =+中求出1,k b ,再验证也可以) (3) 设日销售金额为y ,依题意得, 当025t <<时,(20)(40)y t t =+-+,配方整理得 2(10)900y t =--+. ……………………10分 所以当10t =时,y 在区间(0,25)上的最大值为900, ……………………11分 当2530t ≤≤时,(100)(40)y t t =-+-+,配方整理得2(70)900y t =--, ……………………12分 所以当25t =时,y 在区间[25,30]上的最大值为1125. ……………………13分 综上可知日销售金额最大值为1125元,此时t 为25. ……………………14分19.(本小题满分14分) (本小题主要考查直线和圆相交,相切的有关性质,考查数形结合、化归转化的数学思想方法,以及推理论证能力、运算求解能力) 解:(1)方法一:由2210430x y x y x +-=⎧⎨+-+=⎩得22(1)430x x x +--+=. ……………2分解得121,2x x ==, …………………4分 从而 120,1y y ==-.(1,0)A , (21)B - ……………………5分所以||AB ==. ……………………6分方法二:由圆方程得圆心(2,0)C ,过点C 作CM AB ⊥交AB 于点M ,连结CA ,……2分则||CM ==,||1CA = …………………………………4分所以||2||2AB AM == ……………………………6分(2)令yk x=,则y kx =. ……………………7分 由22430y kxx y x =⎧⎨+-+=⎩得22(1)430k x x +-+=. ……………………9分依题意有 2221612(1)4124(13)0k k k ∆=-+=-=-≥,即2103k -≤.………11分方法一:设21()3h k k =-,令()0h k =,则3k =±. ……………………12分由二次函数()h k 的图像可知,当33k -≤≤时,()0h k ≤ , ………………13分方法二:解不等式2103k -≤,得 k ≤≤ ………………………13分故yx 的取值范围是⎡⎢⎣⎦. ………………………14分20. (本小题满分14分)(本小题主要考查函数的零点等基础知识,考查化归转化的数学思想方法,以及推理论证能力、运算求解能力)(1)证明:因为(1)0f =,所以0a b c ++=, ……………………1分 又因为a b c >>,所以0,0a c ><,即0ac <, ……………………4分 所以2440b ac ac ∆=-≥->,所以方程20ax bx c ++=有两个不等实根,所以()f x 有两个零点. ………………6分(2)证明:设121()()[()(]2g x f x f x f x =-+, ……………………7分则11121211()()[()()][()()]22g x f x f x f x f x f x =-+=-, ……………………8分22122111()()[()()][()()]22g x f x f x f x f x f x =-+=-, ……………………9分212122112111()()[()()][()()][()()]224g x g x f x f x f x f x f x f x ⋅=-⋅-=--,……………11分因为12()()f x f x ≠,所以12()()0g x g x ⋅<, ……………12分 又函数()g x 在区间12[,]x x 上的图像是连续不断的一条曲线, ……………13分 所以()0g x =在12(,)x x 内有一个实根. ……………………14分。
第一单元 集合与常用逻辑用语第一节 集 合1. (2010⋅山东)已知全集U =R ,集合M ={x |x 2-4≤0},则∁U M =( )A. {x |-2<x <2}B. {x |-2≤x ≤2}C. {x |x <-2或x >2}D. {x |x ≤-2或x ≥2}2. 集合A ={0,2,a },B ={1,a 2}.若A ∪B ={0,1,2,4,16},则实数a 的值为( )A. 0B. 1C. 2D. 43. 已知集合A ={x |y,B ={y |y =2x ,x >0},R 是实数集,则(∁R B )∩A =( )A. [0,1]B. [0,1)C. (-∞,0]D. 以上都不对4. 设全集U 是实数集R ,M ={x |x 2>4},N ={x |1<x <3},则下图中阴影部分所表示的集合是()A. {x |-2≤x <1}B. {x |-2≤x ≤2}C. {x |1<x ≤2}D. {x |x <2}5.已知M ={x |x =a 2+2a +4,a ∈R },N ={y |y =b 2-4b +7,b ∈R },则M ,N 之间的关系( )A. M ⊆NB. M =NC. N ÞMD. N ⊆M6. (2010⋅广东)在集合{a ,b ,c ,d }上定义两种运算⊕和⊗如下:A. aB. bC. cD. d7. (2011⋅苏北四市联考)已知集合A =(-∞,0],B ={1,3,a },若A ∩B ≠∅,则实数a 的取值范围是________.8.(2011⋅上海十校测试)设集合A ={(x ,y )|y =x 2,x ∈R },B ={(x ,y )||y |=1,x ∈R ,y ∈R },则A ∩B 用列举法可表示为________________________.9.已知集合P ={4,5},Q ={1,2},定义P ⊕Q ={x |x =p -q ,p ∈P ,q ∈Q },则集合P ⊕Q 的所有真子集的个数为________.10.(改编题)设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q ,x ∈R },若P ={1,2,3,4},Q ={x |0≤x +12<4},则P -Q =________. 11. 某班50名学生报名参加羽毛球和乒乓球两项体育活动小组,报名参加羽毛球小组的人数是全体学生人数的35,报名参加乒乓球小组的人数比报名参加羽毛球小组的人数多3人,两组都没报名的人数比同时报名参加两组人数的13多1人,求同时报名参加羽毛球小组和乒乓球小组的人数和两组都没报名的人数.12. 已知集合A ={x |x 2-x -6<0},集合B ={x |x 2+2x -8>0},集合C ={x |x 2-4ax +3a 2<0},若C ⊇(A ∩B ),试确定实数a 的取值范围.考点演练答案11. 设同时报名参加两组的人数为x ,则两组都没报名的人数为13x +1,根据韦恩图可得(如上图):(30-x )+(33-x )+x +13x +1=50, 解得x =21,∴13x +1=8, 即同时报名参加羽毛球小组和乒乓球小组的人数为21人,两组都没有报名的有8人.12. 由已知得A ={x |-2<x <3},B ={x |x <-4或x >2},A ∩B ={x |2<x <3}.∵C ={x |x 2-4ax +3a 2<0}={x |(x -a )(x -3a )<0},∴当a >0时,C ={x |a <x <3a };当a <0时,C ={x |3a <x <a };当a =0时, C =∅,此时C ⊇(A ∩B )是不可能的.(1)当a >0时,如图所示:C ⊇(A ∩B )⇔⎩⎪⎨⎪⎧a ≤2,3a ≥3⇔1≤a ≤2; (2)当a <0时,C 是负半轴上的一个区间,而A ∩B 是正半轴上的一个区间,因此C ⊇(A ∩B )是不可能的.综上所述,1≤a ≤2.。
2012年高一上册数学期末试卷(带答案)珠海市2012-2013学年度第一学期期末学业质量监测高一数学试题及参考答案时量:120分钟分值:150分参考公式:球的表面积,球的体积,圆锥侧面积一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项.1.(集合的运算)集合,,则()A.B.C.D.2.(函数的概念)下列四个函数中,与表示同一函数的是()A.B.C.D.3.(直线的截距)直线在轴上的截距为,则()A.B.C.D.4.(函数的单调性)下列函数中,在区间上是增函数的是()A.B.C.D.5.(直线平行)已知直线和直线,它们的交点坐标是()A.(0,1)B.(1,0)C.(-1,0)D.(-2,-1)6.(函数的图像)当时,在同一坐标系中,函数与的图象是()(A)(B)(C)(D)7.(异面直线所成的角)在右图的正方体中,分别为棱和棱的中点,则异面直线和所成的角为()A.B.C.D.8.(函数的零点)已知函数的图像是连续不断的,有如下,对应值表:123456132.5210.5-7.5611.5-53.76-126.8函数在区间上有零点至少有()A.2个B.3个C.4个D.5个9.(球的体积与表面积)已知正方体的内切球(球与正方体的六个面都相切)的体积是,那么球的表面积等于()A.B.C.D.10.(函数的奇偶性和单调性)若偶函数在上是增函数,则下列关系式中成立的是()A.B.C.D.11.(指对数的综合)三个数的大小关系为()A.B.C.D.12.(函数综合)对于函数定义域中任意的有如下结论①②③④当时,上述结论中正确的序号是()A.①②B.②④C.①③D.③④二、填空题:本大题共8小题,每小题5分,满分40分.请将答案填在答题卡相应位置.13.(圆的标准方程)已知圆的方程为,则圆心坐标为,半径为2. 14.(三视图)如果一个几何体的三视图如右图所示(单位长度:cm),则此几何体的体积是15.(直线的斜率)直线的斜率是16.(幂函数)幂函数的图象过点,则______17.(定义域)函数的定义域为.18.(分段函数与解不等式)已知函数则的值.19.(函数的奇偶性)已知函数是定义在上的奇函数,当时,,那么时,.20.(立体几何的综合)已知两条不同直线、,两个不同平面、,给出下列命题:①若垂直于内的两条相交直线,则⊥;②若∥,则平行于内的所有直线;③若,且∥,则∥;④若,,则⊥;其中正确命题的序号是①④.(把你认为正确命题的序号都填上)三、解答题:本题共有5个小题,8分+10分+10分+10分+12分=50分.21.(指数与对数的运算)(本题满分8分)计算:(1);(2)解:(1)原式=…………(4分)(2)原式=…………………………(8分)22.(直线方程)(本题满分10分)已知三个顶点是,,(1)求边上的垂直平分线的直线方程;(7分)(2)求点到边所在直线的距离.(3分)解:(1),,………(2分)则所求直线的斜率为:………………………………………(4分)又的中点的坐标为,所以边的上的中垂线所在的直线方程为:………………………………………………………………………………(7分)(2)直线的方程为:则点到直线:的距离为:……………(10分)23.在三棱柱中,侧棱垂直于底面,(1)求证:;(2)求证:;(3)求三棱锥的体积.解:(1)证明:∵,…………(2分)…∴……………(3分)(2)证明:在直三棱柱中……………………………(4分)……………………………(5分)……………………………………………(6分)……………………………………………………(7分)(3)…………………………………………………(8分)……………………………………(10分)24.(函数与单调性)(本小题满分10分)右图是一个二次函数的图象.(1)写出这个二次函数的零点;(2)求这个二次函数的解析式;(3)当实数在何范围内变化时,在区间上是单调函数.解:(1)由图可知二次函数的零点为………………(2分)(2)设二次函数为,点在函数上,解得所以………………………………………………(6分)(3),开口向下,对称轴为当,即时,在上递减………………………………(8分)当,即时,在上递增综上所述或…………………………………………………………………(10分)注:第(1)小题中若零点写为,,扣1分。
第一章 集合与函数的概念1.(2012·湖南高考卷·T1·5分)设集合M={-1,0,1},N={x|x 2≤x},则M∩N=A.{0}B.{0,1}C.{-1,1}D.{-1,0,0}【答案】B【解析】{}0,1N = M ={-1,0,1} ∴M∩N ={0,1}.【点评】本题考查了集合的基本运算,较简单,易得分.先求出{}0,1N =,再利用交集定义得出M∩N.2. (2012·辽宁高考卷· T1· 5分)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则)()(B C A C U U 为(A) {5,8} (B) {7,9} (C) {0,1,3} (D) {2,4,6}【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U 为{7,9}。
故选B【解析二】 集合)()(B C A C U U 为即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,选B【点评】本题主要考查集合的交集、补集运算,属于容易题。
采用解析二能够更快地得到答案。
3.(2012·新课标卷·T1·5分)知集合{}{}1,2,3,4,5,(,),,A B x y x A y B x y A ==∈∈-∈,则B 中所含元素的个数为( )(A )3 (B )6 (C) 8 (D )10【答案】:D【解析】:由题意得,当5x =时,4,3,2,1y =共4中情形;当4x =时,3,2,1y =共3种情形;当3x =时,2,1y =共2种情形;当2x =时,1y =共1种情形,共计10种可能,所以集合B 中的元素个数为10个,故选D.【点评】:本题考查了集合的运算性质,属于中低挡试题,关键在于准确把握试题的条件,正确、合理分类求解.4.(2011年陕西)设集合M={y|y=2cos x —2sin x|,x∈R},N={x||x—1i |<2,i 为虚数单位,x∈R},则M∩N 为A .(0,1)B .(0,1]C .[0,1)D .[0,1]【答案】C5.(2011年山东)设集合 M ={x|260x x +-<},N ={x|1≤x≤3},则M∩N =A .[1,2)B .[1,2]C .( 2,3]D .[2,3]【答案】A6.(2011年辽宁)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N =M I ∅,则=N M(A )M(B )N (C )I (D )∅ 【答案】A 7.(2011年湖北)已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P = A .1[,)2+∞ B .10,2⎛⎫ ⎪⎝⎭ C .()0,+∞ D .1(,0][,)2-∞+∞【答案】A8.(2011年广东)已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x =,则A B ⋂的元素个数为 A .0B .1C .2D .3 【答案】C9.(2011年福建)i 是虚数单位,若集合S=}{1.0.1-,则A .i S ∈B .2i S ∈C . 3i S ∈D .2S i ∈【答案】B10.(2011年安徽)设集合{}1,2,3,4,5,6,A =}8,7,6,5,4{=B 则满足S A ⊆且S B φ≠的集合S 为(A )57 (B )56 (C )49 (D )8 【答案】B11.(2012·山东高考卷·T8·5分)定义在R 上的函数f (x )满足f (x+6)=f (x ),当-3≤x <-1时,f (x )=-(x+2)2,当-1≤x <3时,f (x )=x 。
高2012级高一上数学试题8(集合与函数)满分:150分 时间:120分钟 命题:潘文荣一、选择题:本大题共10小题,每小题5分,共50分.1、集合M={x ||x -3|<4}, N={x|x 2+x -2<0,x ∈Z}, 则 M N A.{0} B.{2} C. Φ D. {}72|≤≤x x2、设()f x 是R 上的任意函数,下列叙述正确的是( )A 、()()f x f x -是奇函数;B 、()()f x f x -是奇函数;C 、()()f x f x +-是偶函数;D 、()()f x f x --是偶函数 3、含有三个实数的集合可表示为}1,,{ab a ,也可表示为}0,,{2b a a +,则20092009ba+的值为A.0B.-1C.1D.1± 4、下列各式错误..的是( ) A. 0.80.733> B. 0..50..5log 0.4log 0.6> C. 0.10.10.750.75-< D. lg1.6lg1.4> 5、函数2651()()3x x f x -+=的单调递减区间为( ).A. (,)-∞+∞B. [3,3]-C. (,3]-∞D. [3,)+∞6、定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( ).A .9 B. 14 C.18 D.21 7、函数)(2R x e y x∈=的反函数为 ( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x yD .1ln 2(0)2y x x =>8、如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:t y a =,有以下叙述:① 这个指数函数的底数是2; ② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;其中正确的是( ). A. ①②③ B. ①②③④ C. ②③④ D. ①② 9、已知命题P :1122k ->;命题q:函数22log (2)y x kx k =-+的值域为R ,则P 是q 的1 0 t/月2 3A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件10、设f (x )是R 上的奇函数,且f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (75)等于( )A 0 5B -0 5C 1 5D -1 5二、填空题:本大题共6小题,每小题4分,共24分,把答案填写在答题卡的相应位置11、函数()72log22++-=x xy 值域是____________12、函数y=log 2x -1(32-4x)的定义域是____________.13、命题“ax 2-2ax + 3 > 0恒成立”是假命题, 则实数a 的取值范围是14.已知a ,b 为常数,若34)(2++=x x x f ,2410)(2++=+x x b ax f ,则=-b a 5 . 15.对于函数)(x f 定义域中任意的)(,2121x x x x ≠,有如下结论:①)()()(2121x f x f x x f ⋅=+; ②)()()(2121x f x f x x f +=⋅;③;0)()(2121>--x x x f x f④.2)()()2(2121x f x f x x f +<+当x x f lg )(=时,上述结论中正确结论的序号是 .三.解答题:本大题共6小题,共76分,解答应写出文字说明、证明过程或演算步骤 16、已知集合R U =,集合{}2|<-=a x x A ,不等式()()11log2log 21221-->--x x x的解集为B ,若B A u C ⊆,求实数a 的取值范围.17、计算:2lg 2)23()32(3log10log222+-+-+18、某租赁公司拥有汽车100辆,当每辆月租金3000元时,可全部租出,当每辆车的月租金增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要保管费50元。
2012 年普通高等学校招生全国统一考试全国课标Ⅰ理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .102.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A .12种 B .10种 C .9种 D .8种 3.下面是关于复数21iz =-+的四个命题: p 1:|z |=2, p 2:z 2=2i , p 3:z 的共轭复数为1+i , p 4:z 的虚部为-1, 其中的真命题为( )A .p 2,p 3B .p 1,p 2C .p 2,p 4D .p 3,p 44.设F 1,F 2是椭圆E :22221x y a b +=(a >b >0)的左、右焦点,P 为直线32ax =上一点,△F2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A .12 B .23 C .34 D .455.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-76.如果执行右边的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和 B .2A B+为a 1,a 2,…,a N 的算术平均数 C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数 D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .188.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B两点,||AB =C 的实轴长为( )AB. C .4 D .8 9.已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)单调递减,则ω的取值范围是( ) A .1524⎡⎤⎢⎥⎣⎦, B .1324⎡⎤⎢⎥⎣⎦, C .(0,12] D .(0,2]10.已知函数1()ln(1)f x x x=+-,则y =f (x )的图像大致为( )11.已知三棱锥S -ABC 的所有顶点都在球O 的球面上, △ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.6 B.6 C.3 D.212.设点P 在曲线1e 2xy =上,点Q 在曲线y =ln(2x )上,则|PQ |的最小值为( ) A .1-ln2 B(1-ln2) C .1+ln2 D(1+ln2) 二、填空题:本大题共4小题,每小题5分.13.已知向量a ,b 夹角为45°,且a =1,2a b -=b =__________.14.设x ,y 满足约束条件1300,x y x y x y ≥⎧⎪≤⎪⎨≥⎪⎪≥⎩--,+,,,则z =x -2y 的取值范围为__________.15.某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为__________. 16.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C a sin C -b -c =0. (1)求A ;(2)若a =2,△ABC b ,c .18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差; ②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.20.(本小题满分12分)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD的面积为p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.21.(本小题满分12分)已知函数f (x )满足f (x )=(1)f 'e x -1-f (0)x +12x 2. (1)求f (x )的解析式及单调区间; (2)若f (x )≥12x 2+ax +b ,求(a +1) b 的最大值.请考生在22、23、24三题中任选一题作答.如果多做,则按所做第一个题计分. 22.(本题满分10分)选修4—1:几何证明选讲如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点.若CF ∥AB ,证明:(1)CD =BC ; (2)△BCD ∽△GBD .23.(本题满分10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程是2cos 3sin x y ϕϕ⎧⎨⎩=,=,(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,π3). (1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2的取值范围.24.(本题满分10分)选修4—5:不等式选讲已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.2012年全国课标Ⅰ理科数学参考答案13.14.[-3,3] 15.816. 1 830 17.解:(1)由a cos C +a sin C -b -c =0及正弦定理得sin A cos C sin A sin C -sin B -sin C =0.因为B =π-A -C , A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以π1sin()62A -=. 又0<A <π,故π3A =. (2)△ABC 的面积1sin 2S bc A ==bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.18.解:(1)当日需求量n ≥16时,利润y =80. 当日需求量n <16时,利润y =10n -80.所以y 关于n 的函数解析式为1080<16()8016n n y n n ⎧∈⎨≥⎩N -,,=.,,(2)①X 可能的取值为60,70,80,并且P (X =60)=0.1,P (X =70)=0.2,P (X =80)=0.7.X 的分布列为X 的数学期望为EX =60×0.1+70×0.2+80×0.7=76.X 的方差为DX =(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44. ②答案一: 花店一天应购进16枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y 表示当天的利润(单位:元),那么Y 的分布列为Y 的数学期望为EY =55×0.1+65×0.2+75×0.16+85×0.54=76.4. Y 的方差为DY =(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.04.由以上的计算结果可以看出,DX <DY ,即购进16枝玫瑰花时利润波动相对较小.另外,虽然EX <EY ,但两者相差不大.故花店一天应购进16枝玫瑰花. 答案二:花店一天应购进17枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y 表示当天的利润(单位:元),那么Y 的分布列为Y 55 65 75 85 P0.10.20.160.54Y 的数学期望为EY =55×0.1+65×0.2+75×0.16+85×0.54=76.4.由以上的计算结果可以看出,EX <EY ,即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润.故花店一天应购进17枝玫瑰花.19.解:(1)证明:由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又112AC AA =,可得DC 12+DC 2=CC 12,所以DC 1⊥DC . 而DC 1⊥BD ,DC ∩BD =D ,所以DC 1⊥平面BCD .BC平面BCD ,故DC 1⊥BC .(2)由(1)知BC ⊥DC 1,且BC ⊥CC 1,则BC ⊥平面ACC 1, 所以CA ,CB ,CC 1两两相互垂直.以C 为坐标原点,CA 方向为x 轴的正方向,CA 为单位长,建立如图所示的空间直角坐标系C -xyz . 由题意知A 1(1,0,2),B (0,1,0),D (1,0,1),C 1(0,0,2).则1(0,01)A D =,-,(11,1)BD =,-,1(1,0,1)DC =-.设n =(x ,y ,z )是平面A 1B 1BD 的法向量,则10,0,BD A D ⎧⋅=⎪⎨⋅=⎪⎩n n ,即00x y z z ⎧⎨⎩-+=,=, 可取n =(1,1,0).同理,设m 是平面C 1BD 的法向量,10,0.BD DC ⎧⋅=⎪⎨⋅=⎪⎩m m 可取m =(1,2,1). 3cos ,⋅=n m n m n m . 故二面角A 1-BD -C 1的大小为30°20.解:(1)由已知可得△BFD 为等腰直角三角形,|BD |=2p ,圆F 的半径||2FA =.由抛物线定义可知A 到l 的距离=||2d FA =. 因为△ABD 的面积为42所以1||422BD d ⋅=,即122422p ⋅= 解得p =-2(舍去),p =2. 所以F (0,1),圆F 的方程为x 2+(y -1)2=8.(2)因为A ,B ,F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB =90°.由抛物线定义知|AD |=|FA |=12|AB |, 所以∠ABD =30°,m 的斜率为3或3-.当m 的斜率为3时,由已知可设n :y =3x +b ,代入x 2=2py ,得x 2-3px -2pb =0. 由于n 与C 只有一个公共点,故∆=43p 2+8pb =0, 解得6pb =-. 因为m 的截距12p b =,1||3||b b =,所以坐标原点到m ,n 距离的比值为3.当m 的斜率为3-时,由图形对称性可知,坐标原点到m ,n 距离的比值为3. 21.解:(1)由已知得f ′(x )=f ′(1)e x -1-f (0)+x . 所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1,所以f ′(1)=e. 从而f (x )=e x -x +12x 2. 由于f ′(x )=e x -1+x , 故当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0. 从而,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)由已知条件得e x -(a +1)x ≥b .①(ⅰ)若a +1<0,则对任意常数b ,当x <0,且11bx a -<+时,可得e x -(a +1)x <b ,因此①式不成立. (ⅱ)若a +1=0,则(a +1)b =0.(ⅲ)若a +1>0,设g (x )=e x -(a +1)x ,则g ′(x )=e x -(a +1).当x ∈(-∞,ln(a +1))时,g ′(x )<0;当x ∈(ln(a +1),+∞)时,g ′(x )>0. 从而g (x )在(-∞,ln(a +1))上单调递减,在(ln(a +1),+∞)上单调递增. 故g (x )有最小值g (ln(a +1))=a +1-(a +1)ln(a +1).所以f (x )≥12x 2+ax +b 等价于 b ≤a +1-(a +1)ln(a +1).② 因此(a +1)b ≤(a +1)2-(a +1)2ln(a +1). 设h (a )=(a +1)2-(a +1)2ln(a +1),则h ′(a )=(a +1)(1-2ln(a +1)).所以h (a )在(-1,12e 1-)上单调递增,在(12e 1-,+∞)上单调递减, 故h (a )在12=e 1a -处取得最大值.从而e ()2h a ≤,即(a +1)b ≤e 2. 当12=e 1a -,12e 2b =时,②式成立,故f (x )≥12x 2+ax +b . 综合得,(a +1)b 的最大值为e 2. 22.证明:(1)因为D ,E 分别为AB ,AC 的中点,所以DE ∥BC . 又已知CF ∥AB ,故四边形BCFD 是平行四边形,所以CF =BD =AD . 而CF ∥AD ,连结AF ,所以ADCF 是平行四边形,故CD =AF . 因为CF ∥AB ,所以BC =AF ,故CD =BC .(2)因为FG ∥BC ,故GB =CF . 由(1)可知BD =CF ,所以GB =BD . 而∠DGB =∠EFC =∠DBC ,故△BCD ∽△GBD .23.解:(1)由已知可得A (π2cos3,π2sin 3),B (ππ2cos()32+,ππ2sin()32+), C (2cos(π3+π),2sin(π3+π)),D (π3π2cos()32+,π3π2sin()32+),即A (1,3),B (3-,1),C (-1,3-),D (3,-1).(2)设P (2cos φ,3sin φ),令S =|PA |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ. 因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].24.解:(1)当a =-3时,25,2,()1,23,25, 3.x x f x x x x -+≤⎧⎪=<<⎨⎪-≥⎩当x ≤2时,由f (x )≥3,得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3,得2x -5≥3,解得x ≥4; 所以f (x )≥3的解集为{x |x ≤1}∪{x |x ≥4}. (2)f (x )≤|x -4||x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |4-x -(2-x )≥|x +a |-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].。
高2012级级高一上数学试题5(集合到反函数)满分:150分 时间:120分钟 命题:潘文荣一、选择题(本大题共10小题,每小题5分,共50分)1.数集{1,2,x 2-3}中的x 不能取的数值的集合是A.{2,5}B.{-2,-5}C.{±2,±5}D.{2,-5}2、下列各式中,表示y 是x 的函数的有 ①y =x -(x -3);②y =2-x +x -1;③y =⎩⎨⎧≥+<-);0(1),0(1x x x x ④y =⎩⎨⎧).(1),(0为实数为有理数x x A.4个 B.3个 C.2个 D.1个3、若|3x -1|<3,化简162492+-x x +41292++x x 的结果是A.6x -2B.-6C.6D.2-6x4、已知f (x )=3x +1(x ∈R ),若|f (x )-4|<a 的充分条件是|x -1|<b (a 、b >0),则a 、b 之间的关系为A.a ≤3b B.b ≤3a C.b >3a D.a >3b 5、函数f (x )=c x b ax ++ (a 、b 、c 是常数)的反函数是f --1(x )=213+-x x ,则a 、b 、c 的值依次是 A.2,1,3 B.-2,-1,-3 C.-2,1,3 D.-1,3,-26、二次函数y =x 2+(a -3)x +1的图象与x 轴的两个交点的横坐标分别为x 1、x 2,且x 1<2,x 2>2,如图所示,则a 的取值范围是A.a <1或a >5B.a <21C.a <-21或a >5D.-21<a <1 7、.设f (x )>0是定义在区间I 上的减函数,则下列函数中增函数的个数是y =3-2f (x ), y =1+)(2x f y =[f (x )]2 , y =1-)(x fA.1B.2C.3D.48、已知函数()533f x ax bx cx =-+-,()37f -=,则()3f 的值为( ) A. 13 B.13- C.7 D. 7-函数()x f ( )A.在区间[]1,2--上是增函数,区间[]4,3上是增函数;B.在区间[]1,2--上是增函数,区间[]4,3上是减函数;C.在区间[]1,2--上是减函数,区间[]4,3上是增函数;D.在区间[]1,2--上是减函数,区间[]4,3上是减函数10、函数y=f(x)与y=g(x)的图象如所示:则函数y=f(x)·g(x)的图象可能为( )二、填空题(本大题共5小题,每小题5分,共25分)11、函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)等于12、不等式3252---x x x ≤-1的解集为_______. 13、对于定义在R 上的函数f (x ),若实数x 0满足f (x 0)=x 0,则称x 0是函数f (x )的一个不动点.若二次函数f (x )=x 2+ax +1没有不动点,则实数a 的取值范围是________.14、.如果f [f (x )]=2x -1,则一次函数f (x )=_________.15、.已知f (x )是R 上的增函数,A (0,-1),B (3,1)是其图象上的两个点,那么|f (x +1)|<1的解集是_________.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤)16、已知集合A={x │x 2-3x+2≤0} , B ={y │y=x 2-2x+a}, ,且A B ⊂,求a 的取值范围。
17、设函数f(x)=a x+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析1)的值。
(12分式,并求f(-2)、f(218、已知定义在区间(-1, 1)上的偶函数f(x),在(0, 1)上为增函数,f(a-2) -f(4-a2)<0,求实数a 的取值范围.19、已知函数f (x)=x 2+ax ,且对任意的实数x都有f (1+x)=f (1-x) 成立.(1)求实数a的值;(2)利用单调性的定义证明函数f(x)在区间[1,+∞)上是增函数.20、设a ∈R ,函数f (x )=x 2+|x -a |+1,x ∈R ,(1)判断函数的奇偶性;(2)求f (x )的最小值.21、已知:函数()f x 对一切实数,x y 都有()()f x y f y +-=(21)x x y ++成立,且(1)0f =.(1)求(0)f 的值。
(2)求()f x 的解析式。
(3)已知a R ∈,设P :当102x <<时,不等式()32f x x a +<+ 恒成立;Q :当[2,2]x ∈-时,()()g x f x ax =-是单调函数。
如果满足P 成立的a 的集合记为A ,满足Q 成立的a 的集合记为B ,求A ∩R C B (R 为全集)。
答案:一、选择题1、解析:(1)由x 2-3≠1解得x ≠±2.(2)由x 2-3≠2解得x ≠±5.∴x 不能取得值的集合为{±2,±5}.答案:C2、解析:①③表示y 是x 的函数;在②中由⎩⎨⎧≥-≥-01,02x x 知x ∈∅,因为函数定义域不能是空集,所以②不表示y 是x 的函数;在④中若x =0,则对应的y 的值不唯一,所以④不表示y 是x 的函数.答案:C3、解析:由|3x -1|<3,解得-32<x <34. ∴162492+-x x +41292++x x =2)43(-x +2)23(+x =|3x -4|+|3x +2|=-(3x -4)+(3x +2)=6.答案:C4、解析:|f (x )-4|<a 等价于|x -1|<3a , 由|x -1|<b ⇒|x -1|<3a , ∴b ≤3a . 答案:B 5、解析:由f -1(x )=213+-x x 解得f (x )= x x -+312=312---x x . 又f (x )= cx b ax ++,∴a =-2,b =-1,c =-3. 答案:B6、解法一:由题意可得f (2)<0,即4+(a -3)×2+1<0,解得a <21. 解法二:由题意知方程x 2+(a -3)x +1=0的两根为x 1、x2.∴⎩⎨⎧<-->∆.0)2)(2(,021x x ∴⎩⎨⎧<++->∆,04)(2,02121x x x x 即⎩⎨⎧<+--∙->+-.04)]3([21,0562a a a 解得a <21. 答案:B7、解析:因为f (x )>0且f (x )在I 上是减函数,故y =3-2f (x ),y =1+)(2x f ,y =1-)(x f 为I 上的增函数,故选C.答案:C8、B9、B10、A二.填空题11、解析:由题意可知,x =-2是f (x )=2x 2-mx +3的对称轴,即-4m -=-2, ∴m =-8.∴f (x )=2x 2+8x +3.∴f (1)=13.12、(][)3,21,1⋃-13、 解析:函数没有不动点,即方程x 2+ax +1=x 无解,即x 2+(a -1)x +1=0无解.∴Δ=(a -1)2-4<0.得-1<a <3.答案:(-1,3)14、解析:用待定系数法求函数解析式.设f (x )=ax +b (a ≠0),则f [f (x )]=af (x )+b =a (ax +b )+b=a 2x +ab +b . 由f [f (x )]=2x -1,得⎩⎨⎧-=+=,1,22b ab a 解得⎪⎩⎪⎨⎧-==21,2b a 或⎪⎩⎪⎨⎧+=-=.21,2b a答案: 2x +1-2或-2x +1+215、解析:|f (x +1)|<1即-1<f (x +1)<1,∴f (0)<f (x +1)<f (3).∵f (x )在R 上单调递增,∴0<x +1<3.∴-1<x <2.答案:{x |-1<x <2}三.解答题16、(]2,∞-∈a17、5)21(,1649)2,34)(==-∴+=f f x f x , 18、(3, 2)∪(2, 5)19、解析:(1)由f (1+x )=f (1-x )得,(1+x )2+a (1+x )=(1-x )2+a (1-x ),整理得:(a +2)x =0,由于对任意的x 都成立,∴ a =-2. (7分)(2)根据(1)可知 f ( x )=x 2-2x ,下面证明函数f (x )在区间[1,+∞)上是增函数.设121x x >≥,则12()()f x f x -=)2(121x x --)2(222x x -=(2212x x -)-2(12x x -)=(12x x -)(12x x +-2)∵121x x >≥,则12x x ->0,且12x x +-2>2-2=0,∴ 12()()f x f x ->0,即12()()f x f x >,故函数f (x )在区间[1,+∞)上是增函数. (8分)20、解:(1)当x ≥a 时,f (x )=x 2+x -a +1 =(x +21)2-a +43, 若a ≤-21时,则f (x )在[a ,+∞)上的最小值为f (-21)=43-a ; 若a >-21时,则f (x )在[a ,+∞)上单调递增,(2)当x ≤a 时,f (x )=x 2-x +a +1=(x -21)2+a +43]; 若a ≤21时,则f (x )在(-∞,a ]上单调递减,f (x )min =f (a )=a 2+1; 当a >21时,则f (x )在(-∞,a ]上的最小值为f (21)=43+a . 综上所述,当a ≤-21时,f (x )的最小值为43-a ; 当-21<a ≤21时,f (x )的最小值为a 2+1; 当a >21时,f (x )的最小值为43+a . 21、解析:(1)令1,1x y =-=,则由已知(0)(1)1(121)f f -=--++∴(0)2f =- (3分)(2)令0y =, 则()(0)(1)f x f x x -=+又∵(0)2f =-∴2()2f x x x =+- (3分)(3)不等式()32f x x a +<+ 即2232x x x a +-+<+即21x x a -+<当102x <<时,23114x x <-+<, 又213()24x a -+<恒成立 故{|1}A a a =≥ (3分)22()2(1)2g x x x ax x a x =+--=+--又()g x 在[2,2]-上是单调函数,故有112,222a a --≤-≥或 ∴{|3,5}B a a a =≤-≥或 (3分)∴A ∩R C B ={|15}a a ≤< (3分)。