实变函数与泛函分析基础+第三版_(程其襄+张奠宙+着)+高等教育出版社+课后答案
- 格式:pdf
- 大小:6.72 MB
- 文档页数:32
第七章习题解答1、设(,)X d 为一度量空间,令00(,){|,(,)}U x x x X d x x εε=∈< 00(,){|,(,)}S x x x X d x x εε=∈≤,问0(,)U x ε的闭包是否等于0(,)S x ε。
解答:在一般度量空间中不成立00(,)(,)U x S x εε=,例如:取1R 的度量子空间[0,1][2,3]X =,则X 中的开球(1,1){;(1,)1}U x X d x =∈<的的闭包是[0,1],而(1,1){;(1,)1}[0,1]{2}S x X d x =∈≤=2、设[,]C a b ∞是区间[,]a b 上无限次可微函数全体,定义()()()()01|()()|(,)max 21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑,证明:[,]C a b ∞按(,)d f g 构成度量空间。
证明:(1)显然(,)0d f g ≥且(,)0d f g =⇔()()()()1|()()|,max021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈有()()|()()|0r r f t g t -=,特别当0,[,]r t a b =∀∈时有|()()|0f t g t -=⇒[,]t a b ∀∈有 ()()f t g t =。
(2)由函数()1t f t t=+在[0,)+∞上单调增加,从而对,,[,]f g h C a b ∞∀∈有 ()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max 21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立(,)(,)(,)d f g d f h d h g ≤+。
主要内容本章的中心内容是建立一种新的积分——勒贝格积分理论.它也是实变函数数论研究的中心内容.一、关于勒贝格积分的建立.本章首先引入测度有限点集上有界函数的积分,这是全章的基础,建立有界函数的积分时应注意两点:一是黎曼积分意义下的积分区间,现已被一般点集所代替;二是分划的小区间长度,现已被点集的测度所代替.一般集合上i般函数的积分是通过两步完成的.第一步是建立非负函数的积分.它是通过非负函数表示为有界函数列的极限、把无穷测度集合表示为测度有限集列的极限来完成的.第二步是建立一般函数的积分,它是将其分解两个非负函数(正部与负部)的差的办法来完成的.二、勒贝格积分的性质.勒贝格积分的性质主要反映在以下儿个方面:(1)勒贝格积分是一种绝对收敛积分,即兀兀)在E上可积当且仅当|/(兀)|在E上可积(/(x)在E上可测).这是它与黎曼积分重要区别之一.(2)勒贝格积分的绝对连续性.设/(力在E上可积,则对任意£>0,存在》〉0,使当e u E且加£<5时,恒有(3)勒贝格积分的唯一性.即£|/(x)|ck = 0的充要条件是/(x) = 0 a.e. T E・由此可知,若f(x)与巩兀)几乎相等,则它们的可积性与积分值均相同.(4)可积函数可用连续函数积分逼近•设/(兀)是可积函数,对任意£>0,存在[°,切上的连续函数從无),使此外尚有许多与黎曼积分类似的性质,如线性性、单调性、介值性等,望同学们自己总结、比较.三、关于积分极限定理.积分极限定理是本章的重要内容,这是由于积分号下取极限和逐项积分,无论在理论上还是应用上都有着十分重要的意义.其中列维渐升函数列积分定理(定理5.4. 1),勒贝格控制收敛定理(定理5. 4. 2),和法都定理(定理5.4. 3)在现代数学中都有广泛的应用.同学们不难发现,与黎曼积分相比较,勒贝格积分与极限换序的条件大大减弱,这也是勒贝格积分优越于黎曼积分的重要之处.|H|、关于勒贝格积分同黎曼积分之间的关系.我们知道,若[°,切上的有界函数/(兀)黎曼可积,则必勒贝格可积口二者积分值相等.值得注意的是,上述结论对于广义黎曼积分并不成立.实际上,广义黎曼可 积函数成为勒贝格可积的充要条件是该函数广义黎曼绝对可积.关于勒贝格积分的计算,一般是应用积分的定义借助于积分的性质将其转化 为黎曼积分.五、勒贝格重积分换序的富比尼定理指出,只要/(x, y)在R 〃xRq 上可积即 可将重积分化为累次积分.特别是对非负可测函数来说,可无条件换序,这是勒 贝格积分较黎曼积分的又一优越之处.复习题(一)一、判断题1、 设/(x)是可测集E^R n上的非负简单函数,则f /(x)cLr -定存在。
《实变函数与泛函分析基础》目录简介内容简介本次修订是在第二版的基础上进行的,作者根据多年来的使用情况以及数学的近代发展,做了部分但是重要的修改。
《实变函数与泛函分析基础(第3版)》共11章:实变函数部分包括集合、点集、测度论、可测函数、积分论、微分与不定积分;泛函分析则主要涉及赋范空间、有界线性算子、泛函、内积空间、泛函延拓、一致有界性以及线性算子的谱分析理论等内容。
这次修订继续保持简明易学的风格,力图摆脱纯形式推演的论述方式,着重介绍实变函数与泛函分析的基本思想方法,尽量将枯燥的数学学术形态呈现为学生易于接受的教育形态;同时,补充了一些现代化的内容,如“分形”的介绍。
《实变函数与泛函分析基础(第3版)》可作为高等院校数学类专业学生的教学用书,也可作为自学参考书。
目录第一篇实变函数第一章集合1 集合的表示2 集合的运算3 对等与基数4 可数集合5 不可数集合第一章习题第二章点集1 度量空间,n维欧氏空间2 聚点,内点,界点3 开集,闭集,完备集4 直线上的开集、闭集及完备集的构造5 康托尔三分集第二章习题第三章测度论1 外测度2 可测集3 可测集类4 不可测集第三章习题第四章可测函数1 可测函数及其性质2 叶果洛夫定理3 可测函数的构造4 依测度收敛第四章习题第五章积分论1 黎曼积分的局限性,勒贝格积分简介2 非负简单函数的勒贝格积分3 非负可测函数的勒贝格积分4 一般可测函数的勒贝格积分5 黎曼积分和勒贝格积分6 勒贝格积分的几何意义·富比尼定理第五章习题第六章微分与不定积分1 维它利定理2 单调函数的可微性3 有界变差函数4 不定积分5 勒贝格积分的分部积分和变量替换6 斯蒂尔切斯积分7 L-S测度与积分第六章习题第二篇泛函分析第七章度量空间和赋范线性空间1 度量空间的进一步例子2 度量空间中的极限,稠密集,可分空间3 连续映射4 柯西点列和完备度量空间5 度量空间的完备化6 压缩映射原理及其应用7 线性空间8 赋范线性空间和巴拿赫空间第七章习题第八章有界线性算子和连续线性泛函1 有界线性算子和连续线性泛函2 有界线性算子空间和共轭空间3 广义函数第八章习题第九章内积空间和希尔伯特(Hilbert)空间1 内积空间的基本概念2 投影定理3 希尔伯特空间中的规范正交系4 希尔伯特空间上的连续线性泛函5 自伴算子、酉算子和正常算子第九章习题第十章巴拿赫空间中的基本定理1 泛函延拓定理2 C[a,b]的共轭空间3 共轭算子4 纲定理和一致有界性定理5 强收敛、弱收敛和一致收敛6 逆算子定理7 闭图像定理第十章习题第十一章线性算子的谱1 谱的概念2 有界线性算子谱的基本性质3 紧集和全连续算子4 自伴全连续算子的谱论5 具对称核的积分方程第十一章习题附录一内测度,L测度的另一定义附录二半序集和佐恩引理附录三实变函数增补例题参考书目。
1. 证明:()B A A B -=的充要条件就是A B ⊂、证明:若()B A A B -=,则()A B A A B ⊂-⊂,故A B ⊂成立、反之,若A B ⊂,则()()B A A B A B B -⊂-⊂,又x B ∀∈,若x A ∈,则()x B A A ∈-,若x A ∉,则()x B A B A A ∈-⊂-、总有()x B A A ∈-、故()B B A A ⊂-,从而有()B A A B -=。
证毕2. 证明c A B AB -=、证明:x A B ∀∈-,从而,x A x B ∈∉,故,cx A x B ∈∈,从而x A B ∀∈-, 所以cA B A B -⊂、另一方面,c x A B ∀∈,必有,c x A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-,所以 c AB A B ⊂-、综合上两个包含式得cA B AB -=、 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式与定理9、 证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂、证:若x A λλ∈∧∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈,这说明A B λλλλ∈∧∈∧⊂、定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=、 证:若()x A B λλλ∈∧∈,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂、反过来,若()()x A B λλλλ∈∧∈∧∈则x A λλ∈∧∈或者x B λλ∈∧∈、不妨设x A λλ∈∧∈,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂、故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂、综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=、定理6中第二式()c c A A λλλλ∈∧∈∧=、证:()c x A λλ∈∧∀∈,则x A λλ∈∧∉,故存在'λ∈∧ ,'x A λ∉所以'c c x A A λλλ∈∧∉⊂从而有()c c A A λλλλ∈∧∈∧⊂、反过来,若c x A λλ∈∧∈,则'λ∃∈∧使'c x A λ∉,故'x A λ∉,x A λλ∈∧∴∉,从而()c x A λλ∈∧∈()c c A A λλλλ∈∧∈∧∴⊃、 证毕定理9:若集合序列12,,,,n A A A 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==(相应地)1lim n n n A ∞→∞==、证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==、故从定理8知11liminf n i m n m i mm A A A ∞∞∞→∞=====另一方面,m n ∀,令m i i mS A ∞==,从1m m A A +⊂对m N ∀∈成立知11111()()m i mi m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==、故定理8表明1111limsup liminf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========故1lim limsup liminf n n n m n n n m A A A A ∞→∞→∞→∞====、4、 证明()()A B B A B B -=-的充要条件就是B =∅、证:充分性若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅必要性 若()()A B B A B B -=-,而B ≠∅则存在x B ∈、所以()()x A B B A B B ∈-=-即所以,x A B x B ∈∉这与x B ∈矛盾,所以x B ∈、 4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A 、又如果1;1,2,3,,S n n⎧⎫==⎨⎬⎩⎭01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭,问()()01,F A F A 就是什么、解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅、若011111;1,2,3,,;1,,,,3521S n A n n i ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭, 易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭、 {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭、 令11;1,2,,;1,2,212B i C i i i⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭、 {}{}{}1,F A S AK A B K C K A =∅==∅为的子集,或、证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭的任何子集()1F A 、所以有()1B F A ∈,而cB C =,故()1C F A ∈,又()1F A ∅∈、 任取B 的一子集A ,()1A A F A ∅=∈,且()1AC F A ∈、显S A ∈,故只用证A 的确就是一个σ-域、(1) ,c cS S A ∅==∅∈,且B ∀的子集A ,若K =∅,则,c KA A A C ∅==(B A -就是B 的子集,故()()ccA A C F A ∅=∈)又B ∀的子集A ,()ccc cAC A C A B ==、 显然就是B 的子集,所以()()ccAC A B A =∅∈、又若n A 为B 的子集()1,2,3,,n n K C ==或∅、 则()111nn n n n n n A K A K A K ∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭、这里1n n A A B ∞==⊂就是B 的子集、1n n K K C ∞===或∅、所以()1n n n A K A ∞=∈、若n A 中除B 的子集外,还有S ,则()1n n n A K S A ∞==∈、若n A 中有∅,不影响1n n A B ∞=⊂、故A 就是σ-域,且()1F A A =、 证毕、6、对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf n n A A x x ϕϕ= (2)()()limsup limsup n n A A x x ϕϕ=证明:x S ∀∈,若()liminf n A x x ϕ∈则()liminf 1n A x ϕ=。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载第三版实变函数论课后答案地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容证明:的充要条件是. 证明:若,则,故成立.反之,若,则,又,若,则,若,则.总有.故,从而有。
证毕证明.证明:,从而,故,从而,所以.另一方面,,必有,故,从而,所以.综合上两个包含式得. 证毕证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9. 证明:定理4中的(3):若(),则.证:若,则对任意的,有,所以()成立知,故,这说明.定理4中的(4):.反过来,若则或者.不妨设,则有使.故.综上所述有.定理6中第二式.证:,则,故存在,所以从而有.反过来,若,则使,故,,从而. 证毕定理9:若集合序列单调上升,即(相应地)对一切都成立,则(相应地). 证明:若对成立,则.故从定理8知另一方面,令,从对成立知.故定理8表明故.4. 证明的充要条件是.必要性若,而则存在. 所以即所以这与矛盾,所以.设,求.又如果,,问是什么.解:若,则.若,则从,易知..令..证明: 因为的任何子集. 所以有,而,故,又.任取的一子集,,且.显,故只用证的确是一个域. (1) ,且的子集,若,则(是的子集,故)又的子集,.显然是的子集,所以.又若为的子集或.则.这里是的子集.或.所以.若中除的子集外,还有,则.若中有,不影响.故是域,且.证毕.6.对于的子集,定义的示性函数为证明:(1)(2)证明:,若则。
且只有有限个,使得所以使得时从而有故若,则且有无限个故所以 .故(1)成立.(2)的证明:,若则.且有无穷个使得,所以注意到所以 .若,则且只有有限个使得所以使得时,所以 .所以(2)也成立.也可以这样证(2):注意 ..7.设f(x)是定义于E上的实函数,a为一常数,证明(1)(2).证明:(1)我们有,故存在使(因为)所以.从而有;反过来:若,则所以(1)成立.下证(2)我们有从而有反过来,若8.若实函数序列在上收敛于,则对于任意常数都有证明:先证第一个等式由定理8知我们有对成立。
泛函分析讲义张恭庆答案【篇一:《泛函分析》课程标准】>英文名称:functional analysis课程编号:407012010 适用专业:数学与应用数学学分数:4一、课程性质泛函分析属于数学一级科下的基础数学二级学科,在数学与应用数学专业培养方案中学科专业教育平台中专业方向课程系列的一门限选课程。
二、课程理念1、培育理性精神,提高数学文化素养基础数学研究数学本身的内在规律,是整个数学学科的基础,它在数学学科其他领域、物理学、工程及社会科学中都有着广泛的应用。
《泛函分析》课程是数学与应用数学本科学生的专业课程之一,是数学分析、高等代数、实变函数等基础课程的后继课程,是研究生学习的基础,。
它不仅在数学学科占有十分重要的地位,而且在其他学科领域也有广泛的应用,掌握泛函分析的方法对学生更好地理解基础课程的理论将有很大的益处。
该课程培养学生的抽象思维能力、逻辑推理能力,体现知识、能力和素质的统一,符合应用型人才培养的目标要求。
2、良好的学习状态,提高综合解题能力本课程面对的是数学与应用数学专业四年级的学生。
学生刚刚结束教育实习,准备考研的学生进入紧张复习阶段,另一部分学生开始准备找工作。
《泛函分析》这门课内容比较抽象,课时又少,所以,如何让学生安保持良好的学习状态,是本门课要面对的一个重要问题,也是学生要面对的一个具体问题。
需要师生共同努力去正确面对才能顺利完成本门课的教学任务。
为学习研究生课程和现代数学打下必要的基础;进一步提高学生的数学素养。
3、内容由浅入深本课程的框架结构是根据教学对象和教学任务来安排的:“度量空间”泛函分析的基本概念之一,十分重要。
首先,引入度量空间的概念,并在引入度量的基础上定义了度量空间中的极限、稠密集、可分空间、连续映照、柯西点列、完备度量空间,对于一般的度量空间,给出了度量空间的完备化定理,并证明了压缩映照原理。
然后,在度量空间上定义线性运算并引入范数,就得到线性赋范空间以及巴拿赫空间。
主要内容本章的中心内容是建立一种新的积分−− 勒贝格积分理论.它也是实变函数数论研究的中心内容.一、关于勒贝格积分的建立.本章首先引入测度有限点集上有界函数的积分,这是全章的基础,建立有界函数的积分时应注意两点:一是黎曼积分意义下的积分区间,现已被一般点集所代替;二是分划的小区间长度,现已被点集的测度所代替.一般集合上一般函数的积分是通过两步完成的.第一步是建立非负函数的积分.它是通过非负函数表示为有界函数列的极限、把无穷测度集合表示为测度有限集列的极限来完成的.第二步是建立一般函数的积分,它是将其分解两个非负函数(正部与负部)的差的办法来完成的.二、勒贝格积分的性质.勒贝格积分的性质主要反映在以下几个方面:(1)勒贝格积分是一种绝对收敛积分,即)(x f 在E 上可积当且仅当)(x f 在E 上可积()(x f 在E 上可测).这是它与黎曼积分重要区别之一.(2)勒贝格积分的绝对连续性.设)(x f 在E 上可积,则对任意0>ε,存在0>δ,使当E e ⊂且 δ<e m 时,恒有(3)勒贝格积分的唯一性.即0d )(=⎰Ex x f 的充要条件是..0)(e a x f =于E .由此可知,若)(x f 与)(x g 几乎相等,则它们的可积性与积分值均相同.(4)可积函数可用连续函数积分逼近.设)(x f 是可积函数,对任意0>ε,存在],[b a 上的连续函数)(x ϕ,使此外尚有许多与黎曼积分类似的性质,如线性性、单调性、介值性等,望同学们自己总结、比较.三、关于积分极限定理.积分极限定理是本章的重要内容,这是由于积分号下取极限和逐项积分,无论在理论上还是应用上都有着十分重要的意义.其中列维渐升函数列积分定理(定理,勒贝格控制收敛定理(定理,和法都定理(定理同学们不难发现,与黎曼积分相比较,勒贝格积分与极限换序的条件大大减弱,这也是勒贝格积分优越于黎曼积分的重要之处.四、关于勒贝格积分同黎曼积分之间的关系.我们知道,若],[b a 上的有界函数)(x f 黎曼可积,则必勒贝格可积且二者积分值相等.值得注意的是,上述结论对于广义黎曼积分并不成立.实际上,广义黎曼可积函数成为勒贝格可积的充要条件是该函数广义黎曼绝对可积.关于勒贝格积分的计算,一般是应用积分的定义借助于积分的性质将其转化为黎曼积分.五、勒贝格重积分换序的富比尼定理指出,只要),(y x f 在q p R R ⨯上可积即可将重积分化为累次积分.特别是对非负可测函数来说,可无条件换序,这是勒贝格积分较黎曼积分的又一优越之处.复习题(一)一、判断题1、设()f x 是可测集nE R ⊆上的非负简单函数,则()d Ef x x ⎰一定存在。
实变函数与泛函分析基础(第三版)-----第三章_复习指导主要内容本章介绍了勒贝格可测集和勒贝格测度的性质.外测度和内测度是比较直观的两个概念,内外测度一致的有界集就是勒贝格可测集. 但是,这样引入的可测概念不便于进一步讨论. 我们通过外测度和卡拉皆屋铎利条件来等价地定义可测集(即定义),为此,首先讨论了外测度的性质(定理). 注意到外测度仅满足次可列可加(而非可列可加)性,这是它和测度最根本的区别.我们设想某个点集上可以定义测度,该测度自然应该等于这个集合的外测度,即测度应是外测度在某集类上的限制. 这就容易理解卡拉皆屋铎利条件由来,因为这个条件无非是一种可加性的要求.本章详细地讨论了勒贝格测度的性质. 其中,最基本的是测度满足在空集上取值为零,非负,可列可加这三条性质. 由此出发,可以导出测度具有的一系列其它性质,如有限可加,单调,次可列可加以及关于单调集列极限的测度等有关结论.本章还详细地讨论了勒贝格可测集类. 这是一个对集合的代数运算和极限运算封闭的集类. 我们看到勒贝格可测集可以分别用开集、闭集、型集和型集逼近.正是由于勒贝格可测集,勒贝格可测集类,勒贝格测度具有一系列良好而又非常重要的性质,才使得它们能够在勒贝格积分理论中起着基本的、有效的作用.本章中,我们没有介绍勒贝格不可测集的例子. 因为构造这样的例子要借助于策墨罗选择公理,其不可测性的证明还依赖于勒贝格测度的平移不变性. 限于本书的篇幅而把它略去. 读者只须知道:任何具有正测度的集合一定含有不可测子集.复习题一、判断题1、对任意nE R ?,*m E 都存在。
(√ )2、对任意nE R ?,mE 都存在。
(× )3、设nE R ?,则*m E 可能小于零。
(× )4、设A B ?,则**m A m B ≤。
(√ ) 5、设A B ?,则**m A m B <。
(× ) 6、**11()n n n n m S m S ∞∞===∑。