8-2 空气压缩制冷循环
- 格式:pdf
- 大小:746.63 KB
- 文档页数:6
压缩空气制冷循环压缩空气制冷循环以空气为工质,其循环的装置简图见图6-21,循环的图和图如图6-22所示。
从冷库出来的空气状态为1,其温度(为冷库温度)压力为,接着进入压缩机进行压缩,升温升压到、,再进入冷却器进行定压放热,温度下降到(=),然后进入膨胀机实现膨胀,使压力下降到,温度进一步下降到最后进(),入冷库进行定压吸热过程完成循环。
循环的最高压力与最低压力之比称作增压比,用表示。
进行循环分析时,为突出主要问题,假定所有的过程都是可逆过程、在压缩机内的压缩过程及膨胀机内的膨胀过程均为可逆绝热过程并且空气可作为比热容取定值的理想气体。
压缩空气理想制冷循环的构成与燃气轮机装置定压加热理想循环一样仅是方向相反?是的,在热力学分析上,压缩空气制冷循环可以视为布雷敦逆循环。
参看图6-22,循环中工质从低温热源(冷库)吸热量亦即循环中工质的制冷量:排向高温热源的热量为压气机消耗的功为膨胀气缸中回收的功为所以,循环消耗的净功是因此,循环的制冷系数为考虑到1-2,3-4都是可逆绝热过程,因而有将之代入制冷系数表达式可得(6-20)上式表明,循环增压比越小,制冷系数越大。
但增压比越小,单位质量工质的制冷量也越小。
当由(/)下降到(/)时制冷量也由面积1-4-4’-1’-1下降为面积1-9-9’-1’-1。
所以,不能太小。
在相同的低温热源(冷库)和高温热源之间工作的卡诺逆循环的制冷系数为与式(6-20)比较,因为,所以,这里再次看到相同温度两热源(和)之间卡诺逆循环的制冷系数最大。
压缩空气制冷循环的制冷量为 (6-21)式中,是循环工质的质流量。
可见制冷量取决于温差和质流量。
压缩空气制冷循环的制冷系数,循环压力比
压缩空气制冷循环的制冷系数是与工质的压缩比和膨胀比有关,其表达式为:COP=\frac{T_{4}-T_{1}}{T_{2}-T_{1}}
其中,T_1为外界温度,T_2为压缩前的空气温度,T_4为膨胀后的空气温度。
循环压力比是指膨胀机出口压力与压缩机入口压力之比,即:
PR=\frac{P_{4}}{P_{2}}
其中,P_4为膨胀机出口压力,P_2为压缩机入口压力。
对于压缩空气制冷循环来说,制冷系数和循环压力比之间存在一定的关系,通常情况下随着循环压力比的增加,制冷系数也会有所提高。
但是,循环压力比过高也会导致系统的效率下降和能量消耗的增加,因此需要根据实际情况进行合理的选择。
目录一、制冷循环的工作原理 (1)二、压缩式制冷 (3)三.吸收式制冷 (5)四、其他制冷方式 (6)1、蒸汽喷射制冷 (6)2、空气压缩制冷 (7)3、声能(热声效应)制冷技术 (8)4、热管式制冷技术 (10)5、磁制冷技术 (10)6、吸附式制冷 (11)7、热电制冷 (12)浅谈制冷循环生活中,存在着各种制冷循环,电冰箱、空调、汽车等,它与我们的生活密切相关。
通过对制冷循环的研究与改进,可以有效地实现节能降耗。
一、制冷循环的工作原理与动力装置相反,制冷循环装置是通过外界对系统提供能量,使制冷工质将热量从低温物体(如冷库等)移向高温物体(如大气环境)的循环过程,从而将物体冷却到低于环境温度,并维持此低温。
制冷循环由压缩过程、冷凝过程、膨胀过程、蒸发过程组成。
就是利用有限的制冷剂在封闭的制冷系统中,反复地将制冷剂压缩、冷凝、膨胀、蒸发,不断的在蒸发器处吸热汽化,进行制冷降温。
逆卡诺循环是理想制冷循环,它的工作过程如下:绝热压缩过程1'—2',制冷剂的温度由T0'升至Tk',外界输入功w ;等温冷凝过程2'—3',制冷剂在等温Tk'向高温热源放出热量qk';绝热膨胀过程3'—4',制冷剂的温度由Tk‘降至T0’,膨胀机输出功we ;等温蒸发过程4'—1',制冷剂在等温T0'吸收低温热源中的热量q0'制冷循环的重要参数是制冷系数, 制冷系数是指单位功耗所能获得的能量,也称制冷性能系数,用符号COP 表示,它是制冷系统(制冷机)的一项重要技术经济指标。
制冷性能系数大,表示制冷系统(制冷机)能源利用效率高。
逆卡诺循环的制冷系数: )0/(0))(0/()(0/q0'''''''c T Tk T S S T Tk S S T W b a b a c -=---==ε在一定的环境温度下,冷库温度越低,制冷系数就越小。
制冷循环工作原理
制冷循环是一种常用于制冷和空调设备中的运行原理,它通过循环流动的制冷剂来吸收空气中的热量,并将其排放到室外。
制冷循环的工作原理如下:
1. 蒸发器:制冷循环的第一步是将制冷剂注入蒸发器中。
蒸发器通常位于需要冷却的区域内部。
当制冷剂进入蒸发器时,它处于液态,并且通过与周围空气接触,吸收室内的热量。
这个过程将导致制冷剂从液态变为气态。
2. 压缩机:当制冷剂从蒸发器中蒸发后,它以气态进入压缩机。
压缩机起到将制冷剂压缩的作用,使其成为高压高温的气体。
这个过程需要消耗一定的能量。
3. 冷凝器:高压高温的制冷剂接下来进入冷凝器。
冷凝器位于室外,其内部有一些细小的管道或片状散热器。
当制冷剂通过冷凝器时,它与环境的空气进行热交换,并排放掉吸收的热量。
这个过程将导致制冷剂从气态变为液态。
4. 膨胀阀:从冷凝器出来的制冷剂经过膨胀阀的节流作用,降低其压力和温度。
这使得制冷剂能够再次进入蒸发器,并重新开始循环。
通过不断重复上述循环,制冷循环能够从室内吸收热量并排放到室外,从而实现了制冷或空调的效果。
此外,制冷剂在循环过程中经历相态变化,从液态到气态再到液态,这使得系统能
够高效地吸收和释放热量。
制冷循环工作原理的基本原理和组成部分类似于常见的冷冻冷藏设备或汽车空调系统。
压缩机吸入从蒸发器出来的较低压力的工质蒸汽,使之压力升高后送入冷凝器,在冷凝器中冷凝成压力较高的液体,经节流阀节流后,成为压力较低的液体后,送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,再送入蒸发器的入口,从而完成制冷循环。
压缩机(compressor)常用压缩机有两种:制冷压缩机、空气压缩机。
1制冷压缩机是输送气体和提高气体压力的一种从动的流体机械。
是制冷系统的心脏,它从吸气管吸入低温低压的制冷剂气体,通过电机运转带动活塞对其进行压缩后,向排气管排出高温高压的制冷剂气体,为制冷循环提供动力,从而实现压缩→冷凝→膨胀→蒸发( 吸热) 的制冷循环。
2空气压缩机简称空压机,特点是由电动机直接驱动压缩机,使曲轴产生旋转运动,带动连杆使活塞产生往复运动,引起气缸容积变化。
由于气缸内压力的变化,通过进气阀使空气经过空气滤清器(消声器)进入气缸,在压缩行程中,由于气缸容积的缩小,压缩空气经过排气阀的作用,经排气管,单向阀(止回阀)进入储气罐,当排气压力达到额定压力0.7MPa时由压力开关控制而自动停机。
当储气罐压力降至0.5--0.6MPa时压力开关自动联接启动。
蒸发器蒸发器就是把经过压缩、液化的制冷剂气化,由液态变为气态,同时吸收热量,作用就是降低周围介质的温度,起到制冷作用。
机械蒸汽再压缩式蒸发器(MVR),是将二次蒸汽经压缩机压缩后,使加热热量得到循环利用。
该系统能耗低,结构简单,运行稳定,无需冷凝器、冷却塔等设备,也无需生蒸汽、冷却水等公用工程。
该技术也适用于企业原有的多效蒸发系统的改造。
以每年蒸发量为10吨/小时的蒸发器为例,MVR运行费用比三效蒸发器的节省367.2万元。
技术特点:1)低能耗、低运行费用;2)占地面积小;3)公用工程配套少,工程总投资少,4)运行平稳,自动化程度高;5)无需原生蒸汽;6)可以在40℃以下蒸发而无需冷冻设备,特别适合于热敏性物料。
技术参数:1)蒸发一吨水需要耗电为23-70度电;2)可以实现蒸发温度17-40℃的低温蒸发(无需冷冻水系统);3)无需生蒸汽;4)无需冷凝器以及冷却水。
两级压缩制冷循环工作过程
压缩制冷循环是一种常见的制冷方式,通过不断压缩、冷却、膨胀和加热气体,来实现制冷的目的。
其中,两级压缩制冷循环是一种比较高效的制冷系统,下面我们将详细介绍它的工作过程。
第一阶段:压缩
在两级压缩制冷循环中,首先需要进行第一阶段的压缩。
在这个阶段,制冷剂被压缩成高压气体,这样就可以提高其温度。
通常,压缩是通过压缩机完成的,压缩机会不断将气体压缩,使其温度和压力都随之升高。
第二阶段:冷却
经过第一阶段的压缩后,高温高压的气体需要进行冷却。
这个阶段通常通过冷凝器完成,冷凝器会将气体中的热量散发出去,从而使气体冷却下来。
在这个过程中,气体会逐渐凝结成液体,并释放出热量。
第三阶段:膨胀
经过冷却后的液体制冷剂会进入膨胀阀,通过膨胀阀的作用,液体会迅速膨胀成为低温低压的气体。
这个过程会使气体吸收周围的热量,从而使周围环境变得更加凉爽。
第四阶段:加热
最后一个阶段是加热阶段,气体会通过蒸发器吸收热量,从而再次
升温。
这样就形成了一个循环,气体不断被压缩、冷却、膨胀和加热,从而实现了制冷的目的。
总结
两级压缩制冷循环通过不断的压缩、冷却、膨胀和加热气体的过程,实现了制冷的效果。
这种制冷方式在工业和家用领域都有广泛的应用,可以实现高效的制冷效果。
通过了解其工作原理,我们可以更好地理解制冷系统的运行机理,从而更好地利用和维护制冷设备。
希望通过本文的介绍,读者对两级压缩制冷循环有了更深入的了解。
第六章 水蒸气性质和蒸汽动力循环思 考 题1. 理想气体的热力学能只是温度的函数,而实际气体的热力学能则和温度及压力都有关。
试根据水蒸气图表中的数据,举例计算过热水蒸气的热力学能以验证上述结论。
[答]: 以500℃的过热水蒸汽为例,当压力分别为1bar 、30bar 、100bar 及300bar 时,从表中可查得它们的焓值及比容,然后可根据u h pv =-计算它们的热力学能,计算结果列于表中:由表中所列热力学能值可见:虽然温度相同,但由于是实际气体比容不同,热力学能值也不同。
2. 根据式(3-31)ch T pp =⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥∂∂可知:在定压过程中d h =c p d T 。
这对任何物质都适用,只要过程是定压的。
如果将此式应用于水的定压汽化过程,则得d h = c p d T =0(因为水定压汽化时温度不变,d T =0)。
然而众所周知 , 水在汽化时焓是增加的 (d h >0)。
问题到底出在哪里?[答] :的确,d h =c p d T 可用于任何物质,只要过程是定压过程。
水在汽化时,压力不变,温度也不变,但仍然吸收热量(汽化潜热)吸热而不改变温度,其比热应为无穷大,即此处的p C 亦即为T C ,而T C =∞。
此时0dh =∞=不定值,因此这时的焓差或热量(潜热)不同通过比热和温差的乘积来计算。
3. 物质的临界状态究竟是怎样一种状态?[答] :在较低压力下,饱和液体和饱和蒸汽虽具有相同的温度和压力,但它们的密度却有很大的差别,因此在重力场中有明显的界面(液面)将气液两相分开,随着压力升高,两饱和相的密度相互接近,而在逼近临界压力(相应地温度也逼近临界温度)时,两饱和相的密度差逐渐消失。
流体的这种汽液两相无法区分的状态就是临界状态。
由于在临界状态下,各微小局部的密度起伏较大,引起光线的散射形成所谓临界乳光。
4. 各种气体动力循环和蒸汽动力循环,经过理想化以后可按可逆循环进行计算,但所得理论热效率即使在温度范围相同的条件下也并不相等。
温馨小提示:本文主要介绍的是关于空气压缩机冷干机制冷原理的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。
文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。
本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。
愿本篇空气压缩机冷干机制冷原理能真实确切的帮助各位。
本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。
感谢支持!(Thank you for downloading and checking it out!)空气压缩机冷干机制冷原理一、引言在工业生产过程中,空气压缩机的作用至关重要,它为各种机械设备提供稳定的动力来源。
然而,在压缩空气的过程中,会产生大量的热量和水分,这些水分如果不被及时排出,将会对压缩机的运行造成影响,甚至可能引起设备故障。
空气压缩机冷干机应运而生,其主要作用就是对压缩空气进行冷却和干燥处理,保证空气压缩机的正常运行。
制冷技术在空气压缩机中的应用,解决了压缩空气中水分和热量的问题。
通过制冷系统,冷干机能够将压缩空气中的热量吸收,使其温度降低,再通过干燥剂吸附空气中的水分,从而达到干燥的目的。
这样一来,空气压缩机排放的空气湿度得到有效控制,提高了设备的运行效率和稳定性。
本文将从空气压缩机冷干机的作用和制冷技术在空气压缩机中的应用两个方面进行详细阐述,希望通过本文,能够使读者对空气压缩机冷干机的工作原理和重要性有更深入的了解。
二、空气压缩机冷干机的基本构成压缩机:压缩机是空气压缩机冷干机的核心部分,其主要作用是将输入的低温低压空气压缩至高温高压状态。
压缩机的选型和设计决定了冷干机的压缩效率和能耗,因此压缩机的性能直接影响到冷干机的整体性能。
冷凝器:冷凝器是空气压缩机冷干机中的热交换设备,其主要功能是将压缩机排出的高温高压空气进行冷却,使空气中的水蒸气凝结成水滴,从而实现空气的干燥。
冷凝器的设计和材料对冷干机的制冷效果和耐用性有重要影响。
第七章 思考题1. 什么情况下必须采用多级压缩?多级活塞式压缩机为什么必须采用级间冷却? 答:为进一步提高终压和限制终温,必须采用多级压缩。
和绝热压缩及多变压缩相比,定温压缩过程,压气机的耗功最小,压缩终了的气体温度最低,所以趋近定温压缩是改善压缩过程的主要方向,而采用分级压缩、中间冷却是其中一种有效的措施。
采用此方法,同样的压缩比,耗功量比单级压缩少,且压缩终温低,温度过高会使气缸里面的润滑油升温过高而碳化变质。
理论上,分级越多,就越趋向于定温压缩,但是无限分级会使系统太复杂,实际上通常采用2-4级。
同时至于使气缸里面的润滑油升温过高而碳化变质,必须采用级间冷却。
2. 从示功图上看,单纯的定温压缩过程比多变或绝热压缩过程要多消耗功,为什么还说压气机采用定温压缩最省功?答:这里说的功是技术功,而不是体积功,因为压缩过程是可看作稳定流动过程,不是闭口系统,在p-v 图上要看吸气、压缩和排气过程和p 轴围成的面积,不是和v 轴围成的面积。
3. 既然余隙不增加压气机的耗功量,为什么还要设法减小它呢?答:有余隙容积时,虽然理论压气功不变,但是进气量减少,气缸容积不能充分利用,当压缩同量的气体时,必须采用气缸较大的机器,而且这一有害的余隙影响还随着增压比的增大而增加,所以应该尽量减小余隙容积。
4. 空气压缩制冷循环能否用节流阀代替膨胀机,为什么?答:蒸汽制冷循环所以采用节流阀代替膨胀机,是因为液体的膨胀功很小,也就是说液体的节流损失是很小的,而采用节流阀代替膨胀机,成本节省很多,但是对于空气来说,膨胀功比液体大的多,同时用节流阀使空气的熵值增加很大,从T-s 图上可以看出,这样使吸热量减少,制冷系数减少。
5. 绝热节流过程有什么特点?答:缩口附近流动情况复杂且不稳定,但在缩口前后一定距离的截面处,流体的流态保持不变,两个截面的焓相等。
对于理想气体,绝热节流前后温度不变。
6. 如图7-15(b)所示,若蒸汽压缩制冷循环按351212' 运行,循环耗功量没有变化,仍为h 2-h 1,而制冷量则由h 1-h 4增大为h 1-h 5,这显然是有利的,但为什么没有被采用? 答:如果按351212'运行,很难控制工质状态,因此采用节流阀,经济实用。