(2) 已 知a 2, b1, a与b之 间 的 夹
为, 那 么 向m量 a4b的 模(为 )
3
A 2. B 2.3 C 6. D 1.2
讲授新课
探究: 已知两个非零a向(x量 1, y1),
b(x2, y2),怎样用 a 和b的坐标 表 示ab?
1. 平面两向量数量积的坐标表示: 两个向量的数量积等于它们对应 坐标的乘积的和. 即
2. 两个向量的数量积的性质: (3)当 a与 b同向 , ab 时 ab. 当 a与 b反向 , ab时 ab.
复习引入
2. 两个向量的数量积的性质: (3)当 a与 b同向 , ab 时 ab. 当 a与 b反向 , ab时 ab.
2
特别 , a地 aa 或 a aa.
讲解范例:
例2. 设a(5,7),b(6, 4),求
ab及a、 b间的夹 (精 角确1o)到 .
讲解范例:
例3. 已 知a(1, 3), b( 31, 31),
则a 与b的 夹 角 是?多 少
讲解范例:
例3. 已 知a(1, 3), b( 31, 31),
则a 与b的 夹 角 是?多 少
|a|(x1x2)2(y1y2)2
3. 向量垂直的判定: ab x1x2y1y20.
课后作业
1. 阅读教材P109到P112; 2.2. P108 A组 3.第9、10、11题
课后思考:
1. 以原点和A(5, 2)为顶点作等腰直角 2.△OAB,使B=90,求点B和向量 的坐标.
2
特别 , a地 aa 或 a aa.
(4) cos a b . (5) ab a b.
ab
复习引入
3. 练习:
(1)已知 a1, b 2, 且 (ab)与 a垂,直 则a与b的夹(角)是