受激辐射 受激吸收与自发辐射
- 格式:pptx
- 大小:338.71 KB
- 文档页数:14
激光原理知识点
激光原理的知识点包括:
1.黑体和黑体辐射:黑体是一种理想化的辐射体,黑体辐射是描述黑体发出的辐射规律的理论。
2.自发辐射、受激辐射和受激吸收:这是激光产生的基本过程。
即自发辐射产生光子,受激辐射放大光子,受激吸收则吸收光子。
3.光腔理论:涉及到光腔的稳定性条件、共轴球面腔的稳定性条件、开腔模式的物理概念和行射理论分析方法、高斯光東的基本性质及特征参数等。
4.电磁场和物质的共振相互作用:描述了光和物质相互作用的经典理论。
以及谱线加宽和线型函数等概念。
5.激光振落特性:涉及到激光的特性,如相干性好、方向性好、单色性好、亮度高,这些特性可以归结为激光具有很高的光子简并度。
6.光子简并度:是描述激光光子相干性的物理量。
7.光的多普勒效应:描述了光波在运动中由于光源和观察者的相对运动而产性频率变化的现象。
8.均匀增宽与非均匀增宽:描述了光谱线增宽的两种类型,均匀增宽通常是由于原子或分子的自然热运动引起的,而非均匀增宽则通常是由于原子或分子之间的碰撞弓|起的。
9.自然增宽和多普勒堵宽:自然增宽是由于原子或分子自旋的统计分布引起的,多普勒增宽是由于原子或分子的热运动引起的。
以上只是简单的列举,实际上激光原理所涵盖的知识点还有很多,需
要系统学习和实践。
制表:审核:批准:。
1、自发辐射与受激辐射的区别自发辐射:处于激发态的原子中,电子在激发态能级上只能停留一段很短的时间,就自发地跃迁到较低能级中去,同时辐射出一个光子,这种辐射叫做自发辐射。
受激辐射:当原子处于激发态E2时,如果恰好有能量 (这里E2 )E1)的光子射来,在入射光子的影响下,原子会发出一个同样的光子而跃迂到低能级E1上去,这种辐射叫做受激辐射。
区别:与自发辐射不同,辐射一定要在外来光作用下发生并发射一个与外来光子完全相同的光子.受激辐射光是相干光。
受激辐射光加上原来的外来光,使光在传播方向上光强得到放大。
自发辐射是不受外界辐射场影响的自发过程,各个原子在自发跃迁过程中是彼此无关的,不同原子产生的自发辐射光在频率、相位、偏振方向及传播方向都有一定的任意性。
2、试总结激光的原理、特点、分类1)原理激光是光受激辐射的放大,它通过辐射的受激放射而实现光放大。
光放大即是一个光子射入一个原子体系之后,在离开此原子体系时,成了两个或更多个特征完全相同的光子。
但光子射入原子体系后与原子体系的相互作用时,总总包含吸收、自发辐射与受激辐射三种过程。
要得到激光必须使受激辐射胜过吸收和自发辐射在三个过程中居主导地位.2)特点主要特点:定向发光、亮度极高、颜色极纯、能量密度极高其他特点:激光是单色或单频的;激光是相干光,其所有的光波都同步,整束光就好像一个“波列”;激光是高度集中的,即它要走很长的一段距离才会出现分散或者收敛的现象.3)分类按工作介质的不同来分类:固体激光器、气体激光器、液体激光器和半导体激光器.按激光输出方式的不同分类:连续激光器和脉冲激光器。
(其中脉冲激光的峰值功率可以非常大)按发光的频率和发光功率大小分类等。
光子的能级跃迁涉及到原子物理学的知识,主要有三种过程,分别是自发辐射、受激吸收和受激辐射。
自发辐射过程:处于高能级E的一个原子自发的向低能级E跃迁,并发射一个能量为hv的光子,这种过程称为自发跃迁,由原子自发跃迁发出的光被称为自发辐射。
自发辐射的光子是自发产生的,其辐射是独立的。
受激吸收过程:处于低能态E的一个原子,在频率为v的辐射场作用下,吸收一个能量为hv的光子并向高能态E跃迁,这种过程称为受激吸收跃迁。
这个过程是非自发的,需要外来光照射,而且能够增强光的强度。
与原光子性质、状态完全相同。
受激辐射过程:处于上能级E的原子在频率为v的辐射场作用下,跃迁至低能态E ,并辐射一个能量为hv的光子。
这个过程只有在外来光子的能量恰好等于能级差时才会发生,受激辐射所发出的光子与外来光子的特性完全相同,即频率相同、相位相同、偏振方向相同、传播方向相同。
以上信息仅供参考,建议查阅物理书籍或咨询物理专业人士以获取更深入的了解。
自发辐射,受激辐射和受激吸收
自发辐射、受激辐射和受激吸收都是物理学中的概念,与原子和分子的能级结构有关。
在能级结构中,原子或分子会存在多个能级,不同能级的能量是不同的。
当原子或分子从一个能级跃迁到另一个能级时,会释放或吸收能量,这种能量以电磁波的形式传播,即辐射。
而这种辐射分为三种情况:
1. 自发辐射:当原子或分子从一个高能级跃迁到一个低能级时,会自发地释放能量,这种辐射称为自发辐射。
这种辐射是随机的,不需要外界的干预。
2. 受激辐射:当原子或分子在一个高能级上受到外界电磁波的刺激时,会跃迁到低能级并释放出辐射,这种辐射称为受激辐射。
这种辐射是受外界刺激而发生的,需要外界电磁波的存在。
3. 受激吸收:当原子或分子在低能级时受到外界电磁波的刺激,它们会吸收能量并跃迁到高能级,这种现象称为受激吸收。
这种辐射也是受外界刺激而发生的,需要外界电磁波的存在。
以上三种辐射在物理学中起到了重要的作用,如在激光技术、核物理、天文学等领域得到广泛应用。
- 1 -。
【预习报告】光信息专业实验说明:半导体泵浦激光原理实验【实验目的】:1. 了解及掌握半导体泵浦激光实验原理及调节光路的方法。
2. 掌握腔内倍频技术,并了解倍频技术的意义。
3. 掌握测量阈值及相位匹配等基本参数的方法。
【实验原理】:1. 光与物质的相互作用光与物质粒子相互作用有三个基本物理过程,分别为:1)受激吸收;2)受激发射;3)自发辐射。
1) 受激吸收处于较低能级1ϕ(具有能量1E )的粒子与能量为21ννh h =的光子相互作用,粒子吸收了光子,从1ϕ态跃迁到较高的能级2ϕ(具有能量2E )。
这个过程称为受激吸收。
2) 自发辐射自发辐射与受激吸收可以看作是两个相反的过程。
处于较高能级2ϕ的粒子不稳定,即使没有外界辐射场的作用,也会自发地从较高的能级2ϕ跃迁到较低的能级1ϕ,并且放出光子,光子的能量为1221E E h -=ν。
这个过程称为自发辐射。
粒子的自发辐射是一个随机的过程。
各个发光粒子的发光过程是各自独立,即所辐射的光在发射方向上是无规则的,发散向各个方向的,而且位相、偏振态等也各不相同。
因此,自发辐射的光是非相干的。
3) 受激辐射处于较高能级2ϕ的粒子与能量为21ννh h =的光子相互作用,从2ϕ态跃迁至较低的能级1ϕ,并且同时发射出一个新的光子,能量为νh 。
新的光子的频率、方向、相位、偏振均与入射光子相同,即入射光子与新发射的光子是相干的。
并且这两个相干的光子又与其它处于2ϕ能级的粒子相互作用,产生更多的相干光子,从而实现光放大。
光与物质的相互作用的三个过程可以用下面的简图表示图1 光子与物质的相互作用的三个过程2. 光学倍频激光倍频是将频率为ω的光,通过晶体中的非线性作用,产生频率为ω2的光。
当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系:+++=32E E E P γβα式中α,β,γ,……均为与物质有关的系数,而且逐次减小,他们的数量级之比为原子E 1=== βγαβ 其中原子E 为原子中的电场,其量级为cm V /108,当时上式中的非线性项2E 、3E 等均为小量,可忽略,如果E 很大,非线性项就不能忽略。
第二节 受激辐射、受激吸收与自发辐射黑体辐射场,可以理解为组成黑体的原子和光场(或电磁波)相互作用的结果。
光波的产生和传播过程都不可避免涉及光和原子之间的相互作用。
在电磁场理论中,证明了电磁辐射来源于具有加速度的带电物体。
这个结论我们可以从很多方面得到验证。
医院的X 光机利用高能电子快速减速辐射X 射线;高能电子加速器所产生的电磁辐射就来源于具有加速度的电子;电真空微波器件输出的微波也来源于具有加速度的电子辐射。
光在物质中传播时,原子中的正电荷和负电荷受光场中电场作用,向相反方向运动,形成电偶极子,电偶极子向空间辐射光,和入射光场叠加在一起,形成物质中的总光波。
电磁场理论这些结论在用于宏观物质时,没有出现问题。
但用于解释原子发光过程时,却出项了难以调和的矛盾。
二十世纪初,通过实验已经知道电子是物质的基本组成部分,电子带负电,但物质都是电中性的,所以物质中一定还有带正电的部分。
通过测量电子的荷质比(m e /),知道电子质量比原子质量小得多。
很重的带正电的部份称为原子核。
在这个基础上,物理学家开始猜想原子模型。
最早的原子模型是汤姆孙(J.J.Thomson )提出的,他设想原子就是带正电荷的那一部分均匀分布为一个胶状的球体,带负电的电子镶嵌在这个胶体上,原子就像一个面上有芝麻的面包。
原子发光的频率(光谱)就是这样一个球体的振动频率。
这个模型被后来的电子散射和α粒子的散射实验证明是不对的。
卢瑟福(E.Rutherford )1909年α粒子散射实验说明,原子大部分是空的,不是一个实心球。
所谓α粒子,就是由两粒带正电荷的质子和两粒中性的中子组成,相当于一个氦原子核。
在自然界内大部分的重元素(例如铀和镭,原子序数为82或以上)在衰变时辐射α粒子。
卢瑟福用α粒子去轰击铂薄片,按照汤姆孙模型,带正电的α粒子受到带正电的铂原子核的散射,α粒子应该偏离入射方向。
但实验发现,只有少量的α粒子发生大角度的偏转,大量原子直接穿过铂薄片,说明大量α粒子没有受到铂原子的作用,原子中的绝大部分空间空无一物。
自发辐射,受激辐射和受激吸收的特点1.自发辐射是一种原子核或原子外层电子自发放出能量的过程。
Spontaneous emission is a process in which a nucleus or outer electron of an atom emits energy spontaneously.2.自发辐射不受外界影响,是由原子或分子自身性质决定的。
Spontaneous emission is not affected by external factors, and is determined by the intrinsic properties of the atom or molecule.3.自发辐射的能量和频率与原子或分子的能级有关。
The energy and frequency of spontaneous emission are related to the energy levels of the atom or molecule.4.自发辐射通常发生在原子或分子的激发态向基态跃迁的过程中。
Spontaneous emission typically occurs during thetransition of an atom or molecule from an excited state to a ground state.5.自发辐射的特点是不需要外界能量的输入,而是自身发出能量。
The characteristic of spontaneous emission is that itdoes not require input of external energy, but emits energyon its own.6.受激辐射是指分子或原子在外界刺激下放出辐射。
Stimulated emission refers to the emission of radiationby a molecule or an atom under external stimulation.7.受激辐射需要外界刺激才能发生。