第八章:磁场分解
- 格式:ppt
- 大小:2.05 MB
- 文档页数:16
第八章 磁 场第 1 课时 磁场及其描述基础知识归纳1.磁场(1)磁场: 磁极 、 电流 和 运动电荷 周围存在的一种物质;所有磁现象都起源于 电荷运动 ;磁场对放入其中的 磁体 ( 通电导线 和 运动电荷 )产生力的作用;(2)磁场的方向:规定小磁针在磁场中 N 极的受力方向(或小磁针 静止时 N 极的指向)为该处的磁场方向.2.磁感线及其特点用来形象描述磁场的一组假想曲线,任意一点的 切线方向 为该点磁场方向,其疏密反映磁场的 强弱 ;在磁体外部磁感线由 N 极到 S 极,在内部由 S 极到 N 极,形成一组永不 相交 的 闭合 曲线.3.几种常见的磁感线(1)条形磁铁的磁感线:见图1,外部中间位置磁感线切线与条形磁铁平行;(2)蹄形磁铁的磁感线:见图2.(4)地磁场的磁感线:见图3,地球的磁场与条形磁铁的磁场相似,其主要特点有三个:①地磁场的 N 极在地理 南 极附近, S 极在地理北极附近;②地磁场B 的水平分量(B x )总是从地球南极指向地球北极,而竖直分量B y 在南半球垂直地面向上,在北半球垂直地面向下;③在赤道平面上,距离表面高度相等的各点,磁感应强度相等,且方向水平向北.(5)匀强磁场的磁感线:磁场的强弱及方向处处相同;其磁感线是疏密 相同 ,方向 相同 的平行直线;距离很近的两个异名磁极之间的磁场及通电螺线管内部的磁场(边缘部分除外),都可以认为是匀强磁场.4.磁感应强度图1 图2用来表示磁场强弱和方向的物理量(符号:B ).定义:在磁场中 垂直 于磁场方向的通电导线,所受安培力与电流的比值.大小:B =ILF ,单位:特斯拉(符号:T). 方向:磁场中某点的磁感应强度方向是该点磁场的方向,即通过该点的磁感线的切线方向;磁感应强度的大小由 磁场本身 决定,与放入磁场中的电流无关.磁感应强度是 矢 量.5.磁通量(Φ)在磁感应强度为B 的匀强磁场中,有一个与磁场方向垂直的平面,面积为S ,我们把B 与S 的乘积叫做穿过这个面积的磁通量.用公式表示为: Φ=BS .磁通量是标量,但有方向.重点难点突破一、理解“磁场方向”、“磁感应强度方向”、“小磁针静止时北极的指向”以及“磁感线切线方向”的关系它们的方向是一致的,只要知道其中任意一个方向,就等于知道了其他三个方向.二、正确理解磁感应强度1.磁感应强度是由比值法定义的,磁场中某位置的磁感应强度的大小及方向是客观存在的,由磁场本身的性质决定,与放入的通电导线的电流大小I 、导线长度L 无关,与通电导线是否受安培力无关,即使不放入通电导体,磁感应强度依然存在;2.必须准确理解定义式B =ILF 成立的条件是通电导线垂直..于磁场放置.磁场的方向与安培力的方向垂直;3.磁感应强度是矢量,遵守矢量分解、合成的平行四边形定则.三、安培定则的应用1.判定直线电流形成的磁场方向:大拇指指电流方向,四指指磁场的环绕方向.2.判定环形电流(或通电螺线管)的磁场方向时,四指指电流方向,大拇指指环内中心轴线(或螺线管内部)的磁感线方向.典例精析1.对磁感应强度的理解【例1】以下说法正确的是( )A.电流元在磁场中受磁场力为F ,则B =ILF ,电流元所受磁场力F 的方向即为该点的磁场方向 B.电流元在磁场中受磁场力为F ,则磁感应强度可能大于或等于ILF C.磁场中电流元受磁场力大的地方,磁感应强度一定大 D.磁感应强度为零的地方,一小段通电直导线在该处一定不受磁场力【解析】判断磁感应强度的大小,需在电流元受力最大的前提下进行,且电流元受磁场力方向与该点磁场方向垂直,故A 错,B 对.电流元在磁场中所受磁场力与其放置的位置有关,电流元受力大的地方磁感应强度不一定大,故C 错.【答案】BD【思维提升】(1)准确理解公式B =ILF 成立的条件是B ⊥I ,即受力最大的前提是解题的关键; (2)准确理解磁感应强度的大小、方向是由磁场本身的性质决定的,不能说B 与F 成正比、与IL 的乘积成反比.【拓展1】一根导线长0.2 m ,通有3 A 的电流,垂直磁场放入磁场中某处受到的磁场力是6×10-2 N ,则该处的磁感应强度大小B 为 0.1 T ;如果该导线的长度和电流都减小一半,则该处的磁感应强度大小为 0.1 T.若把这根通电导线放入磁场中的另外一点,所受磁场力为12×10-2 N ,则该点磁感应强度大小为 ≥0.2 T.【解析】通电导线垂直放入磁场中,由定义式得B =ILF =2.031062⨯⨯-T =0.1 T 某点的磁感应强度由磁场本身决定,故B =0.1 T当通电导线在某处所受磁场力一定,将其垂直放入时,对应的B 最小.B min=ILF =2.0310122⨯⨯-T =0.2 T ,故B ′≥0.2 T2.安培定则的应用【例2】当S 闭合时,在螺线管内部的一根小铁棒被磁化,右端为N 极.试判断通电螺线管的极性和电源的极性,这时用绝缘线悬挂的小通电圆环将怎样运动(俯视)?【解析】小磁针(本题中为磁化后的软铁棒)静止时N 极的指向为该点的磁场方向,在螺线管内部磁感线由S 极到N 极,故螺线管内右端为N 极.再根据安培定则及等效法确定电源右端为负极,左端为正极,小通电圆环顺时针转动(同时靠近螺线管).【思维提升】明确磁场方向,小磁针N 极受力方向(或静止时N 极指向)、磁感线在该点的切线方向及磁感应强度B 的方向是同一个方向.明确磁感线在磁体外部是由N 极到S 极,在内部是由S 极到N 极的闭合曲线.【拓展2】弹簧秤下挂一条形磁棒,其中条形磁棒N 极的一部分位于未通电的螺线管内,如图所示.下列说法正确的是( AC )A.若将a 接电源正极,b 接负极,弹簧秤示数将减小B.若将a 接电源正极,b 接负极,弹簧秤示数将增大C.若将b 接电源正极,a 接负极,弹簧秤示数将增大D.若将b 接电源正极,a 接负极,弹簧秤示数将减小【解析】条形磁铁在本题中可以看做小磁针,当a 接电源正极时,条形磁铁的N 极方向与螺线管的磁感线方向相反,相互排斥,示数减小,A 对,B 错;同理C 对,D 错.3.安培定则与磁感应强度的矢量性【例3】如图所示,互相绝缘的三根无限长直导线的一部分ab 、cd 、ef 组成一个等边三角形.三根导线通过的电流大小相等,方向如图所示.O 为三角形的中心,M 、N 分别为O 关于ab 、cd 的对称点.已知三电流形成的合磁场在O 点的磁感应强度的大小为B 1,在M 点的磁感应强度大小为B 2,此时合磁场在N 点的磁感应强度的大小为 .若撤去ef 中的电流,而ab 、cd 中电流不变,则N 点的磁感应强度大小为 .【解析】设每根电流线在O 点产生的磁感应强度大小为B 0,ef 、cd 在M 点产生的磁感应强度大小为B 0′,则在O 点有B 1=B 0① 在M 点有B 2=2B 0′+B 0 ② 在N 点有B N =B 0=B 1 撤去ef 中的电流后,在N 点有B N ′=B 0+B 0′ ③由①②③式解得B N ′=221B B + 【答案】B 1;221B B + 【思维提升】直线电流的磁场方向由安培定则确定,直线电流的磁场强弱与电流I的大小及位置有关,充分利用“对称性”是解本题的关键.【拓展3】三根平行的直导线,分别垂直地通过一个等腰直角三角形的三个顶点,如图所示,现使每条通电导线在斜边中点O 所产生的磁感应强度的大小为B .则该处的实际磁感应强度的大小和方向如何?【解析】根据安培定则,I 1与I 3在O 点处产生的磁感应强度相同,I 2在O 点处产生的磁感应强度的方向与B 1(B 3)相垂直.又知B 1、B 2、B 3的大小均为B ,根据矢量的运算可知O 处的实际磁感应强度的大小B 0=B B B 5)2(22=+,方向三角形平面内与斜边夹角θ=arctan 2,如图所示.易错门诊【例4】如图所示,电流从A点分两路通过环形支路再汇合于B点,已知两个支路的金属材料相同,但截面积不相同,上面部分的截面积较大,则环形中心O处的磁感应强度方向是()A.垂直于环面指向纸内B.垂直于环面指向纸外C.磁感应强度为零D.斜向纸内【错解】根据磁感应强度的矢量性,在O点场强很有可能选择C或D.【错因】对于两个支路的电流产生的磁场在O点的磁场的大小没作认真分析,故选择C,有时对方向的分析也不具体,所以容易选择D.【正解】两个支路在O处的磁感应强度方向均在垂直于圆环方向上,但上面支路的电流大,在O处的磁感应强度较大,故叠加后应为垂直于纸面向里,选择A.【答案】A【思维提升】认真审题,结合电路的结构特点,分析电流的大小关系,利用矢量合成原理分析O处的磁感应强度方向.第 2 课时磁场对电流的作用基础知识归纳1.安培力:磁场对电流的作用力(1)安培力的大小F=BIL sin θ(θ为B与I的夹角).①此公式适用于任何磁场,但只有匀强磁场才能直接相乘.②L应为有效长度,即曲线的两端点连线在垂直于磁场方向的投影长度,相应的电流方向沿L(有效长度)由始端流向终端.任何形状的闭合线圈,其有效长度为零,所以通电后,闭合线圈受到的安培力的矢量和为零.③当θ=90°时,即B、I、L两两相互垂直,F=BIL;当θ=0°时,即B与I平行,F=0;当B与I成θ角时,F=BIL sin θ.(2)安培力的方向:用左手定则来判定(左手定则见课本).安培力(F)的方向既与磁场(B)方向垂直,又与电流I的方向垂直,安培力F垂直于B与I决定的平面,但B与I可不垂直.2.磁电式仪表的原理(1)电流表的构造主要包括:蹄形磁铁、圆柱形铁芯、线圈、螺旋弹簧和指针.蹄形磁铁和铁芯之间的磁场是均匀的辐向分布的,如图所示.无论通电导线处于什么位置,线圈平面均与磁感线平行.给线圈通电,线圈在安培力的力矩的作用下发生转动,螺旋弹簧变形,产生一个阻碍线圈转动的力矩,当两者平衡时,线圈停止转动.电流越大,线圈和指针的偏转角度也就越大,所以根据线圈偏转的角度就可以判断通过电流的大小.线圈的电流方向改变时,安培力的方向也就随着改变,指针偏转的方向也就改变,所以根据指针的偏转方向,就可以判断被测电流的方向.(2)磁电式仪表的优点是灵敏度高,可以测出很弱的电流;缺点是绕制线圈的导线很细,允许通过的电流很小.重点难点突破一、判断通电导体(或磁体)在安培力作用下的运动的常用方法1.电流元受力分析法即把整段电流等效为很多直线电流元,先用左手定则判断出每小段电流元所受安培力的方向,从而判断出整段电流所受合力的方向,最后确定运动方向.2.特殊位置分析法把电流或磁铁转到一个便于分析的特殊位置(如转过90°)后再判断所受安培力的方向,从而确定运动方向.3.等效分析法环形电流可以等效成条形磁铁,条形磁铁也可以等效成环形电流,通电螺线管可等效成很多的环形电流.4.推论分析法(1)两直线电流相互平行时无转动趋势,方向相同时相互吸引,方向相反时相互排斥;(2)两直线电流不平行时有转动到相互平行且方向相同的趋势.5.转换研究对象法:因为电流之间,电流与磁体之间相互作用满足牛顿第三定律,这样定性分析磁体在电流磁场作用下如何运动的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律来确定磁体所受的电流作用力,从而确定磁体所受合力及运动方向.二、安培力与力学知识的综合运用1.通电导体在磁场、重力场中的平衡与加速运动问题的处理方法和纯力学问题一样,无非是多了一个安培力.2.解决这类问题的关键(1)受力分析时安培力的方向千万不可跟着感觉走,牢记安培力方向既跟磁感应强度方向垂直又和电流方向垂直.(2)画出导体受力的平面图.做好这两点,剩下的问题就是纯力学问题了.典例精析1.通电导体在安培力作用下的运动【例1】如图所示,原来静止的圆形线圈通以逆时针方向的电流,当在其直径AB上靠近B点处放一根垂直于线圈平面的固定不动的长导线时(电流方向如图所示),在磁场作用下线圈如何运动?【解析】用电流元分析法:如图(a)直导线周围的磁感线是一簇顺时针的同心圆,我们分别在线圈上找四段电流元A、B、C、D,电流元A、B段的电流与直导线产生的圆形磁场相切,不受安培力,电流元C和D用左手定则分析判断其受安培力方向为垂直纸面向里和垂直纸面向外.由此可以判断线圈将以AB为转轴从左向右看逆时针转动.用等效法分析:把通电线圈等效成放在O点N极指向纸外的小磁针;而通电直导线在O点产生的磁场是垂直于直径AB向上,所以小磁针指向纸外的N极向上转动,即从左向右看线圈将逆时针转动.用特殊位置分析法:设线圈转动90°到与直导线重合的位置(如图b),直线电流左边的磁场向纸外,右边的磁场向纸里,再用左手定则分别判断线圈的左边和右边所受安培力方向均向左,即线圈将向左靠近直导线.用推论分析法:在线圈转到图(b)位置时,直导线左边的线圈电流向下,与直导线电流方向相反,则两者相互排斥,线圈左边受直导线作用方向向左.线圈在直导线右边部分的电流向上,与直导线电流方向相同,两者相互吸引,即直导线右边部分线圈受安培力方向也是向左的.所以可以判断整个线圈将向左运动.综上所述,线圈整个过程的运动情况是:在以直径AB为轴转动的同时向左平动.【思维提升】(1)在判断通电导体(磁体)在安培力作用下的运动时,通常采用“等效法”、“推论分析法”要比“电流元法”简单,根据需要可用“转换研究对象法”.(2)导体(磁体)受安培力作用下的运动,先要判定是参与“平动”还是“转动”,或者“转动”的同时还参与“平动”,再选择恰当的方法求解.【拓展1】如图所示,把轻质导线圈用绝缘细线悬挂在磁铁N极附近,磁铁的轴线穿过线圈的圆心,且垂直于线圈平面,当线圈中通入如图方向的电流后,判断线圈如何运动.【解析】解法一:电流元法首先将圆形线圈分成很多小段,每小段可看做一直线电流,取其中上、下两小段分析,其截面图和受安培力情况如图甲所示.根据对称性可知,线圈所受安培力的合力水平向左,故线圈向左运动.解法二:等效法将环形电流等效成一条形磁铁,如图乙所示,据异名磁极相吸引知,线圈将向左运动.同时,也可将左侧条形磁铁等效成一环形电流,根据结论“同向电流相吸引,异向电流相排斥”,亦可得到相同的答案.2.安培力与力学知识的综合运用【例2】在倾角为α的光滑斜面上置一通有电流I 、长为L 、质量为m 的导体棒,如图所示.(1)欲使棒静止在斜面上,外加匀强磁场的磁感应强度B 的最小值和方向;(2)欲使棒静止在斜面上且对斜面无压力,外加匀强磁场的磁感应强度的大小和方向;(3)若使棒静止在斜面上且要求B 垂直于L ,可外加磁场的方向范围.【解析】此题属于电磁学和静力学的综合题,研究对象为通电导体棒,所受的力有重力mg 、弹力F N 、安培力F ,属于三个共点力平衡问题.棒受到的重力mg ,方向竖直向下,弹力垂直于斜面,大小随安培力的变化而变化;安培力始终与磁场方向及电流方向垂直,大小随磁场方向不同而变.(1)由平衡条件可知:斜面的弹力和安培力的合力必与重力mg 等大、反向,故当安培力与弹力方向垂直即沿斜面向上时,安培力大小最小,由平衡条件知B =ILmg ,所以,由左手定则可知B 的方向应垂直于斜面向上.(2)棒静止在斜面上,且对斜面无压力,则棒只受两个力作用,即竖直向下的重力mg 和安培力F 作用,由平衡条件可知F =mg ,且安培力F 竖直向上,故B =ILmg ,由左手定则可知B 的方向水平向左. (3)此问的讨论只是问题的可能性,并没有具体研究满足平衡的定量关系,为了讨论问题的方便,建立如图所示的直角坐标系.欲使棒有可能平衡,安培力F 的方向需限定在mg 和F N 的反向延长线F 2和F 1之间.由图不难看出,F 的方向应包括F 2的方向,但不能包括F 1的方向,根据左手定则,B 与+x 的夹角θ应满足α<θ≤π【思维提升】本题属于共点力平衡的问题,所以处理的思路基本上和以往受力平衡处理思路相同,难度主要是在引入了安培力,最终要分析的是磁感应强度的方向问题,但只要准确分析了力的方向,那么磁感应强度的问题也就容易了.【拓展2】有两个相同的电阻都为9 Ω的均匀光滑圆环,固定于一个绝缘的水平台面上,两环分别在两个互相平行的、相距为20 cm 的竖直平面内,两环的连心线恰好与环面垂直,两环面间有方向竖直向下的磁感应强度B =0.87 T 的匀强磁场,两环的最高点A 和C 间接有一内阻为0.5 Ω的电源,连接导线的电阻不计.今有一根质量为10 g 、电阻为1.5 Ω的棒置于两环内侧且可顺环滑动,而棒恰好静止于如图所示的水平位置,它与圆弧的两接触点P 、Q 和圆弧最低点间所夹的弧对应的圆心角均为θ=60°,取重力加速度g =10 m/s 2,试求此电源电动势E 的大小.【解析】在题图中,从左向右看,棒的受力如图所示,棒所受的重力和安培力F B 的合力与环对棒的弹力F N 是一对平衡力,且有F B =mg tan θ=3mg而F B =IBL ,故I =2.087.010*******⨯⨯⨯⨯=-BL mg A =1 A 在题图所示的电路中两个圆环分别连入电路中的电阻为R ,则 R =9)399(39-⨯Ω=2 Ω由闭合电路欧姆定律得E =I (r +2R +R 棒)=1×(0.5+2×2+1.5) V =6 V3.安培力的实际应用【例3】如图所示是一个可以用来测量磁感应强度的装置,一长方体绝缘容器内部高为L ,厚为d ,左右两管等高处装有两根完全相同的开口向上的管子a 、b ,上、下两侧装有电极C (正极)和D (负极),并经开关S 与电源连接.容器中注满能导电的液体,液体密度为ρ.将容器置于一匀强磁场中,磁场方向垂直纸面向里.当开关断开时,竖直管子a 、b 中的液面高度相同;开关S 闭合后,a 、b 管中液面出现高度差.若闭合开关S 后,a 、b 管中液面将出现高度差为h ,电路中电流表的读数为I ,求磁感应强度B 的大小.【解析】开关S 闭合后,导电液体中有电流由C 流向D ,根据左手定则可知导电液体要受到向右的安培力F 的作用,在液体中产生附加压强p ,这样a 、b 管中液面将出现高度差.设液体中产生附加压强为p ,则 p =SF ① F =BIL ② S =Ld ③ 所以磁感应强度B 的大小为B =Ighd ④ 【思维提升】由于习惯于理想的物理模型,学生往往迷惑于新颖陌生的实际问题.解题的关键要利用原型启发、类比、联想等思维方法,通过对题给情景的分析来获知其原理,建立起熟悉的物理模型.第 3 课时 带电粒子在磁场中的运动基础知识归纳1.洛伦兹力运动电荷在磁场中受到的力叫洛伦兹力.通电导线在磁场中受到的安培力是在导线中定向移动的电荷受到的洛伦兹力的合力的表现.(1)大小:当v ∥B 时,F = 0 ;当v ⊥B 时,F = qvB .(2)方向:用左手定则判定,其中四指指向 正 电荷运动方向(或 负 电荷运动的反方向),拇指所指的方向是 正 电荷受力的方向.洛伦兹力 垂直于 磁感应强度与速度所决定的平面.2.带电粒子在磁场中的运动(不计粒子的重力)(1)若v ∥B ,带电粒子做平行于磁感线的 匀速直线 运动.(2)若v ⊥B ,带电粒子在垂直于磁场方向的平面内以入射速度v 做 匀速圆周运动 .洛伦兹力提供带电粒子做圆周运动所需的 向心力 ,由牛顿第二定律qvB =Rv 2得带电粒子运动的轨道半径R = qB mv ,运动的周期T = π2 qB m .重点难点突破一、对带电体在洛伦兹力作用下运动问题的分析思路1.确定对象,并对其进行受力分析.2.根据物体受力情况和运动情况确定每一个运动过程所适用的规律(力学规律均适用).总之解决这类问题的方法与纯力学问题一样,无非多了一个洛伦兹力,要注意:(1)洛伦兹力不做功,在应用动能定理、机械能守恒定律时要特别注意这一点;(2)洛伦兹力可能是恒力也可能是变力.二、带电粒子做匀速圆周运动的圆心、半径及运动时间的确定1.圆心的确定一般有以下四种情况:(1)已知粒子运动轨迹上两点的速度方向,作这两速度的垂线,交点即为圆心.(2)已知粒子入射点、入射方向及运动轨迹上的一条弦,作速度方向的垂线及弦的垂直平分线,交点即为圆心.(3)已知粒子运动轨迹上的两条弦,作出两弦垂直平分线,交点即为圆心.(4)已知粒子在磁场中的入射点、入射方向和出射方向(不一定在磁场中),延长(或反向延长)两速度方向所在直线使之成一夹角,作出这一夹角的角平分线,角平分线上到两直线距离等于半径的点即为圆心.2.半径的确定和计算.圆心找到以后,自然就有了半径,半径的计算一般是利用几何知识,常用到解三角形的方法及圆心角等于弦切角的两倍等知识.3.在磁场中运动时间的确定,利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角θ的大小,由公式t =︒360θT 可求出运动时间,有时也用弧长与线速度的比t =v l . 三、两类典型问题1.极值问题:常借助半径R 和速度v (或磁场B )之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,求出临界点,然后利用数学方法求解极值.注意:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切;(2)当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.2.多解问题:多解形成的原因一般包含以下几个方面:(1)粒子电性不确定;(2)磁场方向不确定;(3)临界状态不唯一;(4)粒子运动的往复性等.典例精析1.在洛伦兹力作用下物体的运动【例1】一个质量m =0.1 g 的小滑块,带有q =5×10-4 C 的电荷,放置在倾角α=30°的光滑斜面上(斜面绝缘),斜面置于B =0.5 T 的匀强磁场中,磁场方向垂直纸面向里,如图所示.小滑块由静止开始沿斜面下滑,其斜面足够长,小滑块滑至某一位置时,要离开斜面.问:(1)小滑块带何种电荷?(2)小滑块离开斜面时的瞬时速度多大?(3)该斜面的长度至少多长?【解析】(1)小滑块沿斜面下滑过程中,受到重力mg 、斜面支持力F N 和洛伦兹力F .若要小滑块离开斜面,洛伦兹力F 方向应垂直斜面向上,根据左手定则可知,小滑块应带负电荷.(2)小滑块沿斜面下滑时,垂直斜面方向的加速度为零,有qvB +F N -mg cos α=0当F N =0时,小滑块开始脱离斜面,此时qvB =mg cos α得v =431055.02310101.0 cos --⨯⨯⨯⨯⨯=qB mg αm/s=23m/s(3)下滑过程中,只有重力做功,由动能定理得mgx sin α=21mv 2斜面的长度至少应是x =5.0102)32( sin 222⨯⨯=αg v m =1.2 m 【思维提升】(1)在解决带电粒子在磁场中运动的力学问题时,对粒子进行受力分析、运动情况分析是关键;(2)根据力学特征,选用相应的力学规律求解,但由于洛伦兹力与速度有关,要注意动态分析.【拓展1】如图所示,质量为m 的带正电小球,电荷量为q ,小球中间有一孔套在足够长的绝缘细杆上,杆与水平方向成θ角,与球的动摩擦因数为μ,此装置放在沿水平方向、磁感应强度为B 的匀强磁场中,若从高处将小球无初速度释放,小球在下滑过程中加速度的最大值为 g sin θ ,运动速度的最大值为) cos sin ( θμθ+Bq mg . 【解析】分析带电小球受力如图,在释放处a ,由于v 0=0,无洛伦兹力,随着小球加速,产生垂直杆向上且逐渐增大的洛伦兹力F ,在b 处,F =mg cos θ,Ff =0此时加速度最大,a m =g sin θ,随着小球继续加速,F 继续增大,小球将受到垂直杆向下的弹力F N ′,从而恢复了摩擦力,且逐渐增大,加速度逐渐减小,当F f ′与mg sin θ平衡时,小球加速结束,将做匀速直线运动,速度也达到最大值v m .在图中c 位置:F N ′+mg cos θ=Bqv m ① mg sin θ=F f ′ ② F f ′=μF N ′ ③ 由①②③式解得v m =) cos sin (θμθ+Bq mg 2.带电粒子在有界磁场中的运动【例2】两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x 轴和y 轴,交点O 为原点,如图所示.在y >0、0<x <a 的区域有垂直于纸面向里的匀强磁场,在y >0、x >a 的区域有垂直纸面向外的匀强磁场,两区域内的磁感应强度大小均为B .在O点处有一小孔,一束质量为m 、带电荷量为q (q >0)的粒子沿x 轴经小孔射入磁场,最后打在竖直和水平的荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各数值.已知速度最大的粒子在0<x <a 的区域中运动的时间与在x >a的区域中运动的时间之比为2∶5,在磁场中运动的总时间为7T /12,其中T 为该粒子在磁感应强度为B 的匀强磁场中做圆周运动的周期.试求两个荧光屏上亮线的范围(不计重力的影响).【解析】如右图所示,粒子在磁感应强度为B 的匀强磁场中运动的半径为r =qB mv速度小的粒子将在x <a 的区域走完半圆,射到竖直屏上.半圆的直径在y轴上,半径的范围从0到a ,屏上发亮的范围从0到2a .轨道半径大于a 的粒子开始进入右侧磁场,考虑r =a 的极限情况,这种粒子在右侧的圆轨迹与x 轴在D 点相切(图中虚线),OD =2a ,这是水平屏上发亮范围的左边界.速度最大的粒子的轨迹如图中实线所示,它由两段圆弧组成,圆心分别为C 和C ′,C 在y 轴上,由对称性可知C ′在x =2a 的直线上.设t 1为粒子在0<x <a 的区域中运动的时间,t 2为在x >a 的区域中运动的时间,由题意可知5221=t t ,t 1+t 2=127T 由此解得t 1=6T ,t 2=125T 再由对称性可得∠O C M =60°,∠M C ′N =60°∠M C ′P =360°×125=150° 所以∠N C ′P =150°-60°=90° 即为1/4圆周.因此圆心C ′在x 轴上.设速度为最大值时粒子的轨道半径为R ,由直角△CO C ′可得2R sin 60°=2a ,R =332a 由图可知OP =2a +R ,因此水平荧光屏发亮范围的右边界坐标x =2(1+33)a。
第八章磁场编制人:刘向军适用时间:案序:领导签字:考纲:第一单元磁场的描述磁场对电流的作用第一课时学案本单元考纲解读:1. 磁场、磁感应强度、磁感线(Ⅰ)。
2.通电直导线和通电线圈周围磁场的方向(Ⅰ)。
3. 安培力、安培力的方向(Ⅰ)。
4.匀强磁场中的安培力(Ⅱ)。
高考对本部分的考查主要集中与安培力有关的通电导体在磁场中的加速或平衡问题。
本章知识常与电场、恒定电流以及电磁感应、交流电等章节知识广泛联系综合考查,是高考的热点。
学习目标:知识与技能1.磁场、磁感应强度、磁感线。
2.通电直导线和通电线圈周围磁场的方向。
3.安培力、安培力的方向。
4.匀强磁场中的安培力。
过程与方法通过自主学习,培养分析解决问题的能力情感态度与价值观通过合作学习培养自己有主动与他人合作的精神,具有团队精神。
重点难点匀强磁场中的安培力。
☆梳理案(参照《创新设计》132—133页;要求写下来并记住)知识梳理一、磁场、磁感应强度、磁通量(考纲要求)1.基本特性:2.磁感应强度:⑴物理意义:⑵大小:⑶方向:⑷单位:3.匀强磁场⑴定义:⑵特点:4.磁通量⑴概念:⑵公式:⑶单位:二、磁感线通电指导线和通电线圈周围磁场的方向(考纲要求)1.磁感线:⑴磁感线:⑵条形磁铁和蹄形磁铁的磁场磁感线分布:(要求画出来)三、安培力、安培力的方向、匀强磁场中的安培力1.安培力的大小⑴磁场和电流垂直时:⑵磁场和电流平行时:2.安培力的方向⑴用左手定则判定⑵安培力的方向特点:预习自测一、概念规律题组1.地球是一个大磁体:①在地面上放置一个小磁针,小磁针的南极指向地磁场的南极;②地磁场的北极在地理南极附近;③赤道附近地磁场的方向和地面平行;④北半球地磁场方向相对地面是斜向上的;⑤地球上任何地方的地磁场方向都是和地面平行的.以上关于地磁场的描述正确的是()A.①②④B.②③④C.①⑤D.②③2.关于通电直导线周围磁场的磁感线分布,下图中正确的是()3.下列关于磁感应强度的方向的说法中,正确的是()A.某处磁感应强度的方向就是一小段通电导体放在该处时所受磁场力的方向B.小磁针N极受磁场力的方向就是该处磁感应强度的方向C.垂直于磁场放置的通电导线的受力方向就是磁感应强度的方向D.磁场中某点的磁感应强度的方向就是该点的磁场方向4.有关磁感应强度的下列说法中,正确的是()A.磁感应强度是用来表示磁场强弱的物理量B.若有一小段通电导体在某点不受磁场力的作用,则该点的磁感应强度一定为零C.若有一小段长为L,通以电流为I的导体,在磁场中某处受到的磁场力为F,则该处磁感应强度的大小一定是F/ILD.由定义式B=F/IL可知,电流强度I越大,导线L越长,某点的磁感应强度就越小二、思想方法题组5.当接通电源后,小磁针A的指向如右图所示,则()A.小磁针B的N极向纸外转B.小磁针B的N极向纸里转C.小磁针B不转动D.因电流未标出,所以无法判断小磁针B如何转动6.如图2所示,框架面积为S,框架平面与磁感应强度为B的匀强磁场方向垂直,则穿过平面的磁通量的情况是()A.如图所示位置时等于BSB.若使框架绕OO′转过60°角,磁通量为BS/2C.若从初始位置转过90°角,磁通量为零D.若从初始位置转过180°角,磁通量变化为2BS我的困惑:☆探究案1.如图所示,直导线AB、螺线管C、电磁铁D三者相距较远,它们的磁场互不影响,当开关S 闭合后,则小磁针的北极N(黑色一端)指示出磁场方向正确的是()A. a、cB. b、cC. c、dD. a、d2.以下说法正确的是()A.由B=F/IL可知,磁感应强度B与一小段通电直导线受到的磁场力F成正比。
第八章 磁场8-1一个静止的点电荷能在它的周围空间任一点激起电场;一个线电流元是否也能够在它的周围空间任一点激起磁场?提示:不能。
由毕奥——沙伐尔定律可知在电流元所在的直线上各点电流元不激起磁场。
8-2在下面三种情况下,能否用安培环路定理求磁感强度B ?为什么? (1)有限长载流直导线产生的磁场; (2)圆电流产生的磁场;(3)两无限长同轴载流圆柱面之间的磁场。
提示: 安培环路定律只能适用于恒定电流所产生的磁场情况,即涉及到的载流导线必须是闭合的,否则不能使用。
所以:(1)和(2)不能安培环路定理求磁感强度B ,但(3)可以。
8-3在一载流螺线管外做一平面圆回路L ,且其平面垂直于螺线管的轴,圆心在轴上。
则环路积分Ld ⋅⎰B l 等于多少?有人说,0Ld ⋅=⎰ B l ,有人根据安培环路定理认为0Ld I μ⋅=⎰ B l ,究竟哪种说法正确?提示:可分为两种情况: (1)密绕的无限长螺旋管,这是一个理想化的模型,可认为螺旋管是由一个个相同的圆电流彼此紧靠在一起组成,此时外部磁感应强度0B 外=,管内磁场均匀,0B nI μ=内,此时,L0d =⎰ B l ;(2)实际上的长直螺旋管外部磁感应强度,0B≠外,此时应有0Ld I μ⋅=⎰ B l 。
8-4将空螺线管通以正弦交流电,由其空心螺线管的一端沿中心轴线射入一束电子流,如8-4题图所示。
则电子在空心螺线管内的运动情况是( B )A 、简谐运动;B 、匀速直线运动;C 、匀加速直线运动;D 、匀减速直线运动提示:由洛伦兹力判别q =⨯f B υ,磁力线与螺线管轴线平行。
8-5一电量为q 的粒子在均匀磁场中运动,下列哪些说法是正确的?(1)只要速度大小相同,所受的洛伦兹力就一定相同;(2)速度相同,电量分别为+q 和-q 的两个粒子,它们受磁场力的方向相反,大小相等; (3)质量为m ,电量为q 的带电粒子,受洛伦兹力作用,其动能和动量都不变; (4)洛伦兹力总与速度方向垂直,所以带电粒子运动的轨迹必定是圆。