乳状液和胶体
- 格式:ppt
- 大小:1.04 MB
- 文档页数:41
乳状液的稳定性理论乳状液是一种多相分散体系,液珠与介质之间存在着很大的相界面,体系的界面能很大,属于热力学不稳定体系。
关于乳状液的形成和稳定性,直到现在为止还没有一个完整的理论。
因此,在某种意义上讲,乳状液的稳定理论还停留在解释乳状液性质的阶段。
所谓稳定,是指所配制的乳状液在一定条件下,不破坏、不改变类型。
根据乳化剂的作用,乳状液的形成、稳定原因可归纳为以下几个方面:界面张力的降低;界面膜的形成;扩散双电层的建立;固体的润湿吸附作用等。
低界面张力乳状液是多相粗分散物系,界面总面积及界面能是很大的,是热力学不稳定体系,加入乳化剂(一般为表面活性剂)能降低界面张力,促使乳状液稳定。
例如,煤油与水的界面张力一般为49mN/m,加入适当的乳化剂(如聚氧乙烯聚氧丙烯嵌段聚醚类表面活性剂)后界面张力可降至1mN/m以下,此时可形成比较稳定的乳状液。
但是,油水界面间仍然还有界面能,还是不稳定。
由此看来,只靠降低界面张力和界面能,还不足以维持乳状液的稳定。
并非任何一种表面活性剂都能形成稳定的乳状液。
乳化剂对稳定乳状液有一定的选择性,最常用的判断方法是根据HLB值(HydropHile-LipopHile Balance)作出选择。
表7–2为各种体系所要求的HLB值范围。
一般地讲,HLB值有加合性,因而可以据此预测一种混合乳化剂的HLB值。
表7–2 HLB值范围及其应用HLB值应用3~6 W/O乳化剂7~9 润湿剂8~18 O/W乳化剂13~15 洗涤剂15~18 加溶剂界面膜的性质在油–水体系中加入表面活性剂后,在降低界面张力的同时,根据Gibbs吸附定理,表面活性剂必然在界面发生吸附,形成界面膜,膜的强度和紧密程度是乳状液稳定的决定因素。
若界面膜中吸附分子排列紧密,不易脱附,则膜具有一定的强度和粘弹性,对分散相液珠起保护作用,使其在相互碰撞时不易聚结,从而形成稳定的乳状液。
界面膜与不溶性膜相似,当表面活性剂浓度较低时,界面上吸附的分子较少,膜中分子排列松散,膜的强度差,形成的乳状液不稳定。
乳化的概念:乳化是液-液界面现象,两种不相溶的液体,如油与水,在容器中分成两层,密度小的油在上层,密度大的水在下层。
若加入适当的表面活性剂在强烈的搅拌下,油被分散在水中,形成乳状液,该过程叫乳化。
乳化理论:乳状液是化妆品中最广泛的剂型,从水样的流体到粘稠的膏霜等。
因此,乳状液的讨论对化妆品的研究和生产及保存和使用有着极其重要的意义。
一、乳状液概述乳状液(或称乳化体)是一种(或几种)液体以液珠形式分散在另一不相混容的液体之中所构成的分散体系。
乳状液中被分散的一相称作分散相或内相;另一相则称作分散介质或外相。
显然,内相是不连续相,外相是连续相。
乳状液的分散相液珠直径约在0.1-10μm,故乳状液是粗分散体系的胶体。
因此,稳定性较差和分散度低是乳状液的两个特征。
两个不相混容的纯液体不能形成稳定的乳状液,必须要加入第三组分(起稳定作用),才能形成乳状液。
例如,将苯和水放在试管里,无论怎样用力摇荡,静置后苯与水都会很快分离。
但是,如果往试管里加一点肥皂,再摇荡时就会形成象牛奶一样的乳白色液体。
仔细观察发现,此时苯以很小的液珠形式分散在水中,在相当长的时间内保持稳定,这就是乳状液。
这里称形成乳状液的过程为乳化。
而称在此过程中所加入的添加物(如肥皂)为乳化剂。
在制备乳状液时,通常乳状液的一相是水,另一相是极性小的有机液体,习惯上统称为“油”。
根据内外相的性质,乳状液主要有两种类型,一类是油分散在水中,如牛奶、雪花膏等,简称为水包油型乳状液,用O/W表示;另一种是水分散在油中,如原油、香脂等,简称为油包水型乳状液,用W/O表示。
这里要指出的是,上面讲到的油、水相不一定是单一的组分,经常每一相都可包含有多种组分。
实验:胶体与乳液的制备及性质一、实验目的1. 了解溶胶的制备及基本性质。
2. 了解乳状液制备原理。
3. 掌握乳状液以及鉴别其性质的方法二、实验原理 (此部分不用全抄,主要意思有就行)胶体分散系是分散相粒径为1~100nm的一种分散体系。
它主要包括溶胶和高分子化合物溶液。
溶胶的分散相粒子与分散剂之间存在相界面,它是一种高分散度的多相分散系,因而胶粒有聚集的趋势,是热力学不稳定体系;溶胶胶粒对光有散射作用,因而具有明显的丁铎尔(Tyndall)效应;溶胶胶粒带电,因而在电场中向与其电性相反的一极泳动,这种现象称为电泳;胶粒在溶剂分子热运动的推动下作布朗运动,所以说溶胶是动力学稳定体系。
实验室制备溶胶一般采用凝聚法,即通过水解或复分解反应生成难溶物,在适当的浓度、温度等条件下使生成物分子聚集成较大颗粒的胶核而形成溶胶。
为克服其聚集的趋势,胶核选择吸附与其组成相关的离子作为第一吸附层,后者又吸附带相反电荷的离子形成电荷总数少一些的第二吸附层。
胶核和其吸附的双电层构成了带电的胶粒,它们带同种电荷、互相排斥,加之对水分子的吸引,形成水化膜,使溶胶得以稳定。
例如用水解反应制Fe(OH)3溶胶,其反应如下沸腾FeCl3 + 3H2O === Fe(OH)3 + 3HCl△Fe(OH)3 + HCl === FeOCl + 2H2OFeOCl === FeO+ + Cl-氢氧化铁溶胶的胶粒结构为[{Fe(OH)3}m·nFeO+·(n-x)Cl―]x+,胶粒带正电荷,称正溶胶。
又如用复分解反应制AgI溶胶,其反应如下AgNO3+KI===AgI+KNO3当AgNO3过量则胶核选择吸附Ag+,第二吸附层为NO3―,胶粒带正电荷,若为KI过量,则胶核选择吸附I―,第二吸附层为K+,胶粒带负电荷。
但若电解质离子过多,则与胶粒带相反电荷的离子再进入第二吸附层,中和胶粒的电荷,促使溶胶聚沉;若将正、负溶胶混合则会互相中和电荷导致聚沉。