最难初中几何题
- 格式:doc
- 大小:87.50 KB
- 文档页数:3
几何经典难题1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD =GF .(初三)2、已知:如图,P 是正方形ABCD 内点,∠PAD=∠PDA=150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二)A P CDB4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.5、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC 于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初三)6、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初三)7、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.求证:AP=AQ.(初三)8、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.求证:点P到边AB的距离等于AB的一半.(初二)9、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.(初二)10、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.(初二)11、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)12、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)13、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)14、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)15、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)16、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)17、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L <2.18、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.19、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.20、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.解答1.如下图做GH⊥AB,连接EO。
几何经典难题1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初三)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .5、已知:△ABC 中,H 为垂心(各边高线的交点)(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初三)A P C D BA FG CE B O D D 2C 2 B 2 A 2D 1C 1B 1C B DA A 1 BF6、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初三)7、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初三 )8、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.N9、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)10、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .11、设P 是正方形ABCD 一边BC求证:PA =PF .(初二)12、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)E E P13、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)14、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)15、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)16、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .17、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.AP C B PA D CB CB D AFPDECBA18、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.19、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.20、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.CCD解答1.如下图做GH ⊥AB,连接EO 。
4e d c 经典难题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A FG CEBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1F经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典难 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD .(初三)经典难1、已知:△ABC是正三角形,P求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) 经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.FPDE CBAAPCBACBPDEDCA A CBPD经典难题(一)1.如下图做GH⊥AB,连接EO。
初中竞赛几何必做100 题第一题:已知:ABC 外接于⊙O ,BAC 60 ,AE BC ,CF AB ,AE 、CF 相交于点H ,点D 为弧BC 的中点,连接HD 、AD .求证:AHD 为等腰三角形.第二题:如图,F 为正方形ABCD 边CD 上一点,连接AC 、AF ,延长AF 交AC 的平行线DE 于点E ,连接CE ,且AC=AE.求证:CE CF .ABC 中, AB AC , BAC 20 , BDC AD BC .第三题: 已知30ABC 中, D 为 AC 边的中点, A 3 C , ADB 45 . AB BC .第四题: 已知第五题:如图,四边形ABCD 的两条对角线AC 、BD 交于点 E ,BAC 50 ,ABD 60 ,CBD 20 ,CAD 30 ,ADB 40 ,求ACD .AADC 60 , AD DC ,求证: AB 2 BC 2 BD 2.第六题: ABC 30 ,第七题:如图, PC 切 ⊙ O 于 C , AC 为圆的直径, PEF 为 ⊙ O 的割线,AE 、 AF 与直线 PO 相 交于 B 、 D .求证:四边形 ABCD 为平行四边形 . DE PB第八题:已知:在 求证:ABC 中, AB AC , A 80 , OBC 10 , OCA 20 . AB OB .第九题:ABCD 中,OAD ODA 15 ,求证:OBC 为正三角形.E 、F 为 AD 、 DC 的中点,连接 BE 、 AF ,相交于点 P ,连第十题: 已知:正方形 ABCD 中 , 接 PC .如图,ACB 与ADE 都是等腰直角三角形,交BE 于F ,求证:CFD 90 .A ADE ACB 90 ,CDF 45 ,DF第十一题:DF第十二题:已知:ABC 中,CBA 2 CAB ,CBA的角平分线BD 与CAB 的角平分线AD 相交于点D ,且BC AD .求证:ACB 60 .第十三题:ABC 中,AC BC , C 100 ,AD 平分CAB .求证:AD CD AB .第十四题:已知:ABC 中,AB BC ,D 是AC 的中点,过D 作DE BC 于E,连接A E ,取D E 中点F ,连接B F . 求证:A E B F .ABC 中, A 24 , C 30 , D 为 AC 上一点, AB CD ,连接 AB BC BD AC .第十五题: 已知BD .第十六题: 已知:的中点求证:ABCD 与 A 1B 1C 1D 1均为正方形, A 2 、 B 2 、 C 2 、 D 2 分别为 AA 1 、 BB 1 、 CC 1 、 DD 1 A 2 B 2C 2 D 2为正方形 .第十七题:45 ,如图,在ABC三边上,向外做三角形A BR 、BCP 、CAQ ,使CBP CAQBCP ACQ 30 ,ABR BAR 15 .求证:RQ 与RP 垂直且相等.第十八题:如图,已知AD 是⊙ O 的直径,D 是BC 中点,AB 、AC 交⊙ O 于点 E 、F ,EM 、FM 是⊙ O 的切线,EM 、FM 相交于点M ,连接DM .求证:DM BC .第十九题:如图,三角形ABC 内接于⊙O ,两条高AD 、BE 交于点H ,连接AO 、OH 。
经典难题(一)1、已知:如图,0是半圆的圆心,C、E是圆上的两点,CE U AB EF丄AB, EGLCO2、已知:如图, P是正方形ABCD内点,求证:C[> GF (初二)求证:△ PBC是正三角形.(初二)3、如图,已知四边形ABCD ABQD都是正方形,/ PAB的中点.求证:四边形AB2C2D2是正方形.(初二)4、已知:如图,在四边形ABCD中, A»BC M线交MN于E、F.求证:/ DEN=Z F .1、已知:△ ABC中,H为垂心(各边高线的交点),0为外心,且OM L BC于M(1) 求证:AH= 20M经典难题(三)求证:CE= CF.(初二)求证:AE= AF.(初二) 3、设P 是正方形ABCD-边BC 上的任一点,PF 丄AP,求证:P 心PF.(初二)2、设MN 是圆0外一直线,过0作0A ±MN 于A ,自A 引圆的两条直线,交圆于 B 、C 及D E ,直线EB 及CD 分别交MN 于P 、Q.求证:A 吐AQ (初二)3、如果上题把直线 MN 由圆外平移至圆内,设MN 是圆0的弦,过 MN 的中点A 任作两弦BC DE 设CD EB 分别交MN 于P 、Q.求证:A 吐AQ (初二)4、如图,分别以厶ABC 的 AC 和BC 为一边,在△ ABC 的外侧作正方ACDE 和正方形CBFG 点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二1、如图,四边形ABC 助正方形,DE// AC ,AE= AC ,AE 与 CD 相交于 F .2、如图,四DE// AC ,且 CE= CA线EC 交DA 延长线,CEE4、如图,PC切圆0于C, AC为圆的直径,PEF为圆的割线,AE AF与直线PO相交于B、D.求求:/ APB的度数.(初二)2、设P是平行四边形ABCM部的一点,且/ PBA^Z求证:/ PAB=Z PCB (初二)3、设ABC助圆内接凸四边形,求证:AB- CM AD- BO AC- BD (初三)4、平行四边形ABC冲,设E、F分别是BC AB上的一点,AE与QF相交且AE= CF.求证:/ DPA F Z DPC (初二)经典难题(五)1、设P 是边长为1的正△ ABC 内任一点,L = PA + PB + PC ,求证:< L V 2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA + PB+ PC 的最小值.~C DB ADA / DCA CB GFHkZCAC B°,Z EBAC3、P 为正方形ABCD 内的一点,并且 PA = a , P 吐2a , PO 3a ,求正方形的边长.4、如图,△ ABC 中,/ ABC=ZACB= 80°, D E 分别是 AB =20°,求/ BED 勺度数. 经典难题(一)1.如下图做GH L AB,连接EQ 由于GOF 四点共圆,所以/ 即厶GHI ^A OGE 可得匹GQ =CO,又 CO=EQ 所以 CD=G 得证。
初中竞赛几何必做100题第一题:已知:ABCAE⊥,ABCF⊥,AE、CF相交BAC,BC∆外接于⊙O,︒=∠60于点H,点D为弧BC的中点,连接HD、AD.∆为等腰三角形.求证:AHD第二题:如图,F为正方形ABCD边CD上一点,连接AC、AF,延长AF交AC的平行线DE于点E,连接CE,且AC=AE.CE .求证:CFE第三题:已知:ABC ∆中,AC AB =,︒=∠20BAC ,︒=∠30BDC . 求证:BC AD =.B第四题:已知:ABC ∆中,D 为AC 边的中点,C A ∠=∠3,︒=∠45ADB . 求证:BC AB ⊥.AC第五题:如图,四边形ABCD 的两条对角线AC 、BD 交于点E ,︒=∠50BAC ,︒=∠60ABD ,︒=∠20CBD ,︒=∠30CAD ,︒=∠40ADB ,求ACD ∠.BD第六题:已知,︒=∠30ABC ,︒=∠60ADC ,DC AD =,求证:222BD BC AB =+.DB第七题:如图,PC切⊙O于C,AC为圆的直径,PEF为⊙O的割线,AE、AF与直线PO相交于B、D.求证:四边形ABCD为平行四边形.第八题:已知:在ABC ∆中,AC AB =,︒=∠80A ,︒=∠10OBC ,︒=∠20OCA . 求证:OB AB =.CB第九题:已知:正方形ABCD 中,︒=∠=∠15ODA OAD ,求证:OBC ∆为正三角形.第十题:已知:正方形ABCD中,E、F为AD、DC的中点,连接BE、AF,相交于点P,连接PC.PC .求证:BC第十一题:如图,ACB ∆与ADE ∆都是等腰直角三角形,︒=∠=∠90ACB ADE ,︒=∠45CDF ,DF 交BE 于F ,求证:︒=∠90CFD .EB第十二题:已知:ABC ∆中,CAB CBA ∠=∠2,CBA ∠的角平分线BD 与CAB ∠的角平分线AD 相交于点D ,且AD BC =. 求证:︒=∠60ACB .第十三题:已知:在ABC ∆中,BC AC =,︒=∠100C ,AD 平分CAB ∠. 求证:AB CD AD =+.AB第十四题:已知:ABC ∆中,BC AB =,D 是AC 的中点,过D 作BC DE ⊥于E ,连接AE ,取DE 中点F ,连接BF . 求证:BF AE ⊥.A第十五题:已知:ABC ∆中,︒=∠24A ,︒=∠30C ,D 为AC 上一点,CD AB =,连接BD . 求证:AC BD BC AB ⋅=⋅.A第十六题:已知:ABCD 与1111D C B A 均为正方形,2A 、2B 、2C 、2D 分别为1AA 、1BB 、1CC 、1DD 的中点.求证:2222D C B A 为正方形.A第十七题:如图,在ABC ∆三边上,向外做三角形ABR 、BCP 、CAQ ,使︒=∠=∠45CAQ CBP ,︒=∠=∠30ACQ BCP ,︒=∠=∠15BAR ABR .求证:RQ 与RP 垂直且相等.Q第十八题:如图,已知AD是⊙O的直径,D是BC中点,AB、AC交⊙O于点E、F,EM、FM 是⊙O的切线,EM、FM相交于点M,连接DM.DM .求证:BCB第十九题:如图,三角形ABC 内接于⊙O ,两条高AD 、BE 交于点H ,连接AO 、OH 。
几何经典难题1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初三)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .5、已知:△ABC 中,H 为垂心(各边高线的交点)(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初三)A P C D BA FG CE B O D D 2C 2 B 2 A 2D 1C 1B 1C B DA A 1 BF6、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初三)7、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初三 )8、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.N9、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)10、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .11、设P 是正方形ABCD 一边BC求证:PA =PF .(初二)12、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)E E P13、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)14、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)15、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)16、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .17、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.AP C B PA D CB CB D AFPDECBA18、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.19、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.20、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.CCD解答1.如下图做GH ⊥AB,连接EO 。
经典难题(一)之樊仲川亿创作1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C2D 24、已知:如图,在四边形ABCD 中,AD 的中点,AD 、BC 的延长线交MN 求证:∠DEN =∠F .经典难1、已知:△ABC 中,H 且OM ⊥BC 于M .(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A 直线,交圆于B 、C 及D 、E ,直线EB 及CD 求证:AP =AQ .(初二)3、如果上题把直线MN题:设MN 是圆O 的弦,过MN CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 方形ACDE 和正方形CBFG ,点P 是EF求证:点P 到边AB 的距离等于AB经典难1、如图,四边形ABCD 为正方形,DE ∥交于F .求证:CE =CF 2、如图,四边形ABCD 交DA 延长线于F .求证:AE =AF 3、设P 是正方形ABCD DCE .求证:PA =PF 4、如图,PC 切圆O 于AF 与直线PO 相交于B 1、已知:△ABC 4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB+PC 的最小值.3、P 为正方形ABCD 内的一点,而且PA =a ,PB =正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E的点,∠DCA =300,∠EBA =200,求∠BED APC B P ADCBCBD A F PDE CBAAPC B经典难题(一)⊥AB,连接EO。
初二比较难的数学练习题在初二的数学学习中,遇到一些难题是很常见的。
这些题目需要我们掌握一定的数学知识和解题技巧才能顺利解答。
下面,我将为大家列举一些初二比较难的数学练习题。
一、立体几何题1. 某矩形纸片的长是宽的四倍,将该矩形剪成两个正方形,剪下的两个正方形面积之和是矩形面积的81%,求矩形的长和宽分别是多少?2. 下面的解析几何图形中,点A、B、C、D、E、F六点不在同一平面中,求ADE面与BCF面的夹角。
3. 设一条直线通过坐标轴上的点A(a, 0)和B(0, b),且直线与y轴交于点C(0, c),若三点A、B、C共线,求a、b、c之间的关系。
二、初中代数题4. 已知方程组:2x + 3y = 114x + ky = 15求k的值,使得方程组有唯一解。
5. 某数学题库有机试题100道,其中单选题每个题目的正确答案有4个选项,多选题每个题目的正确答案有5个选项,则这100道题中的选择题正确答案选项总数为多少?三、数列题6. 在等差数列{an}中,已知a1 = 3,a2 = 7,a4 = 17,则an的通项公式是什么?7. 若等比数列{bn}满足b1 = 2,b2 = 6,b4 = 90,则bn的通项公式是什么?四、概率题8. 一件商品的质量服从正态分布,已知其平均值为μ,标准差为σ。
若70%的商品质量在80kg到100kg之间,求μ和σ的值。
9. 一枚正六面体骰子有6个面,分别刻有1、2、3、4、5、6这6个数字。
现随机扔一枚骰子,连续扔5次,且每次都得到数字4的概率是多少?五、面积和体积题10. 在长方体中,一条对角线为18,长和宽的比为3:2,求长方体的体积和表面积。
以上是初二比较难的数学练习题,希望通过解题过程,能帮助大家加深对数学知识的理解和运用。
在解答这些题目时,我们要掌握相应的数学概念,并善于运用所学的数学方法和技巧进行推导和计算。
祝愿大家在数学学习中取得优异的成绩!。
不准用三角函数,只能用初中几何的知识:全等三角形,相似三角形等,求出下面
两幅图中角 x 的大小。
此问题在网上流传的很广,所以不难搜到答案,但是如果你不知道答案的话,不妨
试一试自己的水平。
答案见下:
1.做CF⊥AB于F,做AH,使得∠BAH=60°,交CF于G,交CB于H,连接DH,
则△ABG是等边三角形,而∠ADB=∠BHA=40°,易得△ADB≌△BHA,故AH=BD,从而△DGH也是等边三角形,且∠DHE=∠ABC=80°.
而HA=HC=DC,∠DCG=∠HAE=10°,∠EHA=∠GDC=140°,故△DCG≌△HAE,故DG=HE,
而DG=DH,故HE=HD,故∠HED=∠HDE=(180°-80°)/2=50°,又∠AEH=30°,所以∠DEA=50°-30°=20°
2.在BC上取点F,使得∠BAF=20°,连接FA,FD,则AD=AB=AF,∠FAD=60°,故△FAD 为等边三角形,所以FA=FD,
又∠FEA=∠FAE=40°,故FA=FE,因此有FE=FD,又∠DFE=180°-60°-80°=40°,故∠FED=(180°-40°)/2=70°,故∠DEA=70°-40°=30°。