核分析原理及技术第八章1
- 格式:ppt
- 大小:19.87 MB
- 文档页数:66
第八章 旋转水射流第一节 概 述所谓旋转射流是指在射流喷嘴不旋转的条件下产生的具有三维速度的、射流质点沿螺旋线轨迹运动而形成的扩散式射流,也称之为旋动射流。
这种射流与常规的普通圆射流的主要不同点在于其外形呈明显扩张的喇叭状,具有较强的扩散能力和卷吸周围介质参与流动的能力,并能够形成较大的冲击面积,产生良好的雾化效果。
旋转射流作为一种特殊射流,早巳被用于工农业生产中。
喷洒农药的雾化器就是一个典型实例,液体农药通过管道被压到一个装有旋流片的雾化器中,使农药液流产生高速旋转,并喷出雾化器,达到雾化农药的目的。
工程技术中常常利用旋风原理来组织燃烧炉中的燃烧过程,如旋风燃烧室、旋风预燃室等。
因为燃料的燃烧过程可分为三个基本阶段:燃料与助燃空气的混合、燃料与空气的混合物升温到藉火温度,以及燃烧反应过程。
燃烧反应过程也就是燃料和空气中氧气之间进行的氧化过程,这个阶段实际上是瞬间完成的。
而前两个阶段则需要较长的时间。
因此,组织混合的过程决定着整个燃烧过程和火焰的特性,从而决定着炉膛内的温度分布和对工艺要求的适应程度。
在旋风燃烧室或顶燃室中,由于旋转射流能使流体质点以较高的速度旋转前进,形成扩散,产生一定程度的雾化,并且在强旋射流的内部形成一个回流区.旋转射流不但从射流外侧卷吸周围介质,而且还从回流区中卷吸介质,故它有较好的“抽气”能力,使大量的高温烟气回流到火炬根部,使燃料与空气充分掺混 ,提高温度和浓度的均匀分布程度,保证燃料顺利着火和火炬稳定燃烧,提高燃烧效率。
另外,在石油钻并工程中使用的固控设备(如除砂器、除泥器、离心机等),也是利用旋转流体的离心力原理将流体中的因相颗粒进行分离清除,以保持洗井浓的性能,满足钻井过程中的安全快速钻进之需要,旋转射流的流动见图8·1所示。
通常用圆柱坐标来描述旋转射流的运动,将射流各质点的流速分解为三个v w分量:轴向流速u,径向流速和切向流速,这三个流速分量的时均流场和脉动流场就可表示旋转射流的运动状态。
第一章—核反应堆的核物理基础直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里发射出来,而中子却留在了靶核内的核反应。
中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反应过程。
非弹性散射:中子首先被靶核吸收而形成处于激发态的复合核,然后靶核通过放出中子并发射γ射线而返回基态。
弹性散射:分为共振弹性散射和势散射。
微观截面:一个中子和一个靶核发生反应的几率。
宏观截面:一个中子和单位体积靶核发生反应的几率。
平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。
核反应率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。
中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内所有中子在单位时间内穿行距离的总和。
多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也逐渐减小,这种现象称为多普勒效应或多普勒展宽。
瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约10-14s)发射出来的,把这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中发射出来的,把这些中子叫缓发中子。
第二章—中子慢化和慢化能谱慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。
扩散时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。
平均寿命:在反应堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最后被俘获的平均时间,称为中子的平均寿命。
慢化密度:在r处每秒每单位体积内慢化到能量E以下的中子数。
分界能或缝合能:通常把某个分界能量E c以下的中子称为热中子,E c称为分界能或缝合能。
第三章—中子扩散理论中子角密度:在r处单位体积内和能量为E的单位能量间隔内,运动方向为 的单位立体角内的中子数目。
慢化长度:中子从慢化成为热中子处到被吸收为止在介质中运动所穿行的直线距离。
1.核分析技术是利用中子、光子、离子、正电子与物质原子或者原子核的相互作用,采用核物理实验技术,研究物质成分和结构的一种分析方法。
它包括活化分析、离子束分析、核效应分析三大类。
2.中子活化分析在微量和痕量元素分析中有重要的地位:高灵敏度,多元素、非破坏性元素分析的可靠方法。
中子活化分析应用:热中子:地质样品分析,环境样品分析,生物医学样品分析,考古样品分析;快中子:金属中O,Be元素分析,蛋白质,碳氢化合物中的N分析原理:中子活化分析是利用中子辐照样品,使其与原子核发生核反应,生成具有一定寿命的放射性核素,然后对生成的放射性核素鉴别,从而确定样品中的核素成分和含量的一种分析方法。
步骤:样品制备、中子辐照样品、取出样品冷却,分离、测量、数据处理。
中子活化设备:辐照中子源,样品传送设备及必要的分离设备,射线能量和强度测量设备,数据记录和处理设备。
中子源1012-1015/cm2.s,但不均匀,中子能量单一,且产额各向同性,但通量大小会随时间变化,多用于快中子活化分析;量小。
中子活化反应:(n,γ)、(n,p)、(n,α),【(n,2n)】射线一般为γ射线,探测器:以前是NaI(Tl),现在多用Ge(Li)或者高纯锗探测器不同元素通过不同的中子反应道形成相同的待分析核素(裂变反应也可以提供初级干扰)。
如63Cu(n,γ)64Cu 【64Zn(n,p)64Cu】;59Co(n,γ)60Co【60Ni(n,p)60Co】;干扰元素的含量。
3.带电粒子活化分析的对象:表面层轻元素分析(轻元素库仑势垒低)及某些重元素分析(用的样品均为固体样品),只能给出薄层轻元素总量,不能给出深度分布应用:半导体中的轻元素分析(如O(3He,p),C(d,n),B(p,n))光子与原子核的反应都是阈能反应。
带电粒子活化生成的核素大多具有+β衰变,故可测正电子淹没辐射光子强度来确定元素含量。
采用符合相加法可以减少本底计数。
干扰多为初级干扰。
11-核技术应⽤作业答题要点第⼀篇X射线荧光分析1、什么是X荧光?试述XRF的⼯作原理。
2、吸收限的定义是什么?它对原⼦的激发和特征X射线的产⽣有何意义?3、在什么情况下必须使⽤滤⽚?滤⽚能否改善探测器的能量分辨率?说明平衡滤⽚对的⼯作原理。
4、室内研究和校正基体效应的⽅法有哪些?试归纳出它们的依据、特点和应⽤条件。
答题要点:1答:X荧光:原⼦近核轨道电⼦丢失造成电⼦跃迁⽽导致的各种闪光。
XRF的⼯作原理:利⽤外界辐射激发待分析样品中的原⼦,使原⼦发出特征X射线(荧光),通过测定这些特征X射线的能量和强度,可以确定样品中微量元素的种类和含量,这就是X射线荧光分析,也叫做源激发X荧光分析。
2答:射线从给定元素原⼦特定能级上逐出⼀个电⼦所需的最⼩能量(或最⼤波长),称为该元素该能级的吸收限,对应相应电⼦的结合能。
激发相应电⼦壳层的X射线,所⽤射线能量以略⼤于吸收限为宜,由此可以选择性地激发相应元素的原⼦产⽣特征X射线。
3答:在X射线荧光现场测量中,主要使⽤的闪烁计数器谱仪,其能量分辨率往往不能区别相邻元素的X 射线荧光,此时如不便于使⽤分辨率较好的半导体探测器,则必须使⽤滤⽚。
不能。
利⽤两种物质吸收限能量的差别形成能量通带,使能量通带内的吸收系数差别很⼤,能量通带外的吸收系数近似相等,以排除通带外能量(主要来⾃周围伴⽣元素)的⼲扰,使分辨率较差的探测器也能分别测定相邻元素X射线荧光照射量率。
第⼆章中⼦活化分析1、简述中⼦活化分析的⼯作原理;感⽣放射性核素的积累与衰变有何规律? 答题要点:(⽤⾃⼰的语⾔合理表述)⽤中⼦照射样品,使待测核素发⽣核反应,产⽣放射性核素,测定其放射性活度、射线能谱和半衰期根据活化反应截⾯、中⼦通量等,确定被测样品的元素成分和含量的分析⽅法。
积累:衰变:第三章放射性同位素⽰踪1、什么是放射性同位素⽰踪?其基本性质是什么?2、在不同领域应⽤放射性同位素⽰踪技术时,需要考虑那些基本问题?答题要点: 1答:放射性同位素⽰踪:利⽤放射性核素作为⽰踪剂对研究对象进⾏标记的微量分析技术。
·X射线:连续谱和标示谱·特征X射线能量范围:0.05kev~114.59kev L系(8~20kev)·产生特征X射线(俄歇电子)的方式:光电效应。
内转换电子,电子俘获,核衰变。
·能量关系:EK>EL>EM, β2>β1>α1>α2·莫塞来定律:同一谱线X射线荧光频率的平方根与元素原子序数成正比·俄歇电子:光电效应不一定发射俄歇电子。
俄歇电子的动能:取决于光电效应引起电子跃迁的能量差以及发射俄歇电子的壳层的吸收限。
·对大多数元素,L系X射线的荧光产额都较低,基本都低于K系·轻元素发射K系X射线的几率甚低,轻元素探测不利;·同一元素的测定,尽可能采用K系谱线,而避免采用L系谱线。
在一般情况下,M系谱线只作为参考或旁证。
·物质对X射线的吸收是光电效应起主导作用(E稍大于吸收限),康普顿效应·X射线荧光方法是根据X射线的能量和照射量率及其变化来研究试样中的物质成分及分布的·激发X射线方式(产生电子空位):电子激发,带正电粒子激发,电磁辐射激发,内转换,核衰变,效率最高:E稍大于吸收限·在利用谱线分支比作谱线辨认及谱线分解时,必须是在同一激发条件(包括加速高压)、同一测量条件下取得的有关参数,否则将造成错误·质子与物质作用时的辐射损失值为电子辐射损失的10-6倍。
质子激发的X射线荧光分析是在极低的本底条件进行的,具有很低的检出下限。
这对微量、痕量元素的分析非常有利·带电粒子激发的本底主要在低能端。
·能量色散X射线荧光方法主要弱点:检出限较高。
优化的方法是:降低散射本底计数·单色滤光片:通常选择其吸收限波长刚好在靶材料的K 线和Kβ线之间的材料作为滤波材料。
一般是比靶材料原子序数小1或2的元素·X射线源:55-Fe(5.898/6.489)109-Cd (22.16/24.95kev)·在薄试样情况下,iK与厚度成正比,与吸收系数无关。