伺服技术
- 格式:doc
- 大小:76.00 KB
- 文档页数:10
机械工程中的伺服控制技术研究与应用引言:近年来,随着科技的飞速发展,机械工程中的伺服控制技术在日常生活和工业领域中得到了广泛的应用。
伺服控制技术能够实现精确的运动控制和位置定位,提高生产效率和产品质量,成为机械制造领域不可或缺的关键技术。
一、伺服控制技术的基本原理伺服控制技术是通过精确的信号传递和反馈机制,实现对电机或执行器的动作控制。
其基本原理是通过测量和比较输入信号和反馈信号的差异,以调整系统的输出。
在伺服控制系统中,传感器用于测量执行器的位置、速度或力度等物理参数,将这些参数转换成电信号送回控制系统,控制系统根据所设定的目标值和实际反馈值做出相应的调整。
其中,控制系统通常由控制器、功率放大器和电机组成。
二、伺服控制技术的应用领域1. 工业自动化伺服控制技术在工业自动化领域中的应用非常广泛。
例如,自动化生产线中的机器人可以通过伺服控制技术实现精确的动作控制和路径规划,提高生产效率和产品质量。
另外,伺服控制技术还可以应用于机械加工、装配线、材料搬运等各个环节,实现全自动化的生产过程。
2. 交通运输伺服控制技术也被广泛应用于交通运输领域。
例如,高速铁路和地铁的驱动系统采用伺服控制技术,确保车辆在不同的速度和负载情况下能够稳定运行。
此外,汽车、船舶、飞机等交通工具的控制系统也离不开伺服控制技术的支持。
3. 医疗器械现代医疗器械中的伺服控制技术,使得医生可以通过精确的控制实现对患者体内的治疗、手术过程和病人康复的辅助。
例如,手术机器人可以通过伺服控制技术进行精细且准确的手术操作,减小手术风险,提高手术成功率。
4. 人工智能伺服控制技术在人工智能领域中的应用也越来越广泛。
例如,智能家居中,可以通过伺服控制技术实现对家居设备的智能控制,包括灯光、温度和安全系统等。
此外,智能机器人和无人机等技术的发展也得益于伺服控制技术的支持。
三、机械工程中伺服控制技术的研究进展伺服控制技术的研究一直是机械工程领域的热点问题。
伺服技术的应用前景和解决方案伺服技术是一种用于控制和驱动运动提供精确位置和速度控制的技术。
它在许多行业中有着广泛的应用,并具有巨大的发展前景。
本文将讨论伺服技术的应用前景以及解决方案。
一、伺服技术的应用前景1. 工业自动化领域伺服技术在工业自动化领域中有着重要的应用前景。
伺服驱动器和伺服电机的高精度定位和运动控制特性,使得它们能够广泛应用于自动化设备,如机床、印刷设备、包装机械等。
随着工业自动化需求的增加,伺服技术的应用前景也在逐渐扩大。
2. 机器人领域伺服技术对于机器人领域的应用也具有巨大的前景。
伺服驱动器和伺服电机的高速、高精度运动控制能力,可以实现机器人的灵活、精确的动作,提高机器人的工作效率和精度。
此外,伺服技术还可以结合传感器和视觉系统,实现机器人的感知和智能化,进一步拓展机器人应用领域。
3. 新能源领域随着新能源行业的快速发展,伺服技术在新能源设备中的应用前景十分广阔。
例如,风力发电机组中的角度调节系统、太阳能光伏跟踪器中的方位调节系统等,都需要伺服技术来实现精确的位置和角度控制,提高能源设备的效率和可靠性。
二、伺服技术的解决方案1. 选型和集成在应用伺服技术时,选型和集成是关键。
首先,需要根据具体的应用需求选择合适的伺服驱动器和伺服电机;其次,需要与其他设备和系统进行集成,实现整体的自动化控制。
选型和集成的成功与否直接影响到伺服系统的性能和稳定性。
2. 精确控制算法伺服技术的精确控制算法是实现高精度运动控制的重要因素。
通过优化控制算法,可以提高伺服系统对于位置和速度的控制精度,降低能耗,提高系统的稳定性和响应速度。
3. 传感器和反馈系统伺服系统的准确反馈是实现精确控制的基础。
传感器和反馈系统可以实时获取伺服电机的位置、速度和扭矩等参数,反馈给控制系统进行补偿控制。
选择合适的传感器和反馈系统,能够提高伺服系统的控制精度和稳定性。
4. 故障检测和维护为了确保伺服系统的长期稳定运行,需要进行故障检测和维护。
伺服教学大纲伺服教学大纲伺服技术是现代工业领域中不可或缺的一项技术,它广泛应用于机械制造、自动化控制、机器人等领域。
为了培养具备伺服技术应用能力的专业人才,制定一份完善的伺服教学大纲是非常重要的。
一、课程简介伺服教学大纲的第一部分应该是课程简介。
这部分主要介绍课程的目的、重要性以及学习该课程的前提知识。
伺服技术是一门综合性很强的学科,学习者需要具备一定的电子技术、机械制造和控制理论基础。
二、教学目标接下来,教学大纲应该明确教学目标。
伺服技术的教学目标可以分为知识目标、技能目标和能力目标。
知识目标包括学习伺服系统的基本原理、掌握伺服系统的组成部分以及了解伺服系统的常见故障和维修方法。
技能目标包括能够使用伺服系统进行运动控制、能够进行伺服系统的参数调试和优化。
能力目标包括能够独立设计和实现伺服系统,能够解决伺服系统在实际应用中遇到的问题。
三、教学内容教学大纲的核心部分是教学内容。
伺服教学大纲应该包括以下几个方面的内容:1. 伺服系统基础知识:包括伺服系统的定义、分类、组成部分、工作原理等。
学习者需要了解伺服系统的基本概念和基本原理。
2. 伺服系统的参数调试与优化:包括伺服系统的参数设置、调试方法和技巧。
学习者需要学会根据实际应用需求对伺服系统进行参数调试和优化。
3. 伺服系统的故障诊断与维修:包括伺服系统常见故障的诊断方法和维修技巧。
学习者需要学会分析和解决伺服系统故障。
4. 伺服系统的应用案例:通过实际案例的学习,帮助学习者理解伺服系统在不同领域的应用。
案例可以包括机械制造、自动化控制、机器人等领域。
四、教学方法教学大纲还应该明确教学方法。
伺服技术是一门实践性很强的学科,因此,教学方法应该注重实践能力的培养。
可以采用理论教学与实践操作相结合的方式,通过课堂讲解、实验操作、案例分析等方式提高学习者的实践能力。
五、教学评价最后,教学大纲应该明确教学评价的方式和标准。
伺服技术是一门技术性很强的学科,因此,教学评价应该注重学生的实际能力。
一、伺服系统技术要求
1、预应力施加分三级施加预应力(第一次30%,第二次40%,第三次30%);
2、预加轴力为200KN/m,轴力标准值:320、335、355、365、370、395、400、415、435、440、460、465、500、510、550、575、590KN/m;
3、每次最大轴力预加值不小于200KN/m;
4、伺服系统必须与Φ800*20mm的钢管支撑相匹配;
5、服支撑系统应具有控制、调整支撑轴力功能。
伺服系统应设置轴力安全阀值,系统应设置油缸保圧自锁装置;
6、伺服支撑系统应具有实时加压功能;设置断电保护切换装置;宜在施工现场配置可移动应急电源装置;应设置现场声光报警装置,以防现场监测人员未能及时处理系统故障情况下及时报警;
7、每组伺服支撑控制柜、补偿装置等应在现场分别编号,严格管理,设备布置应避开基坑开挖大型设备停放及行走范围,每天定人定时巡视并记录,并设专人交叉检查;
8、满足设计及图纸要求。
变频器中的伺服控制技术应用详解伺服控制技术是在工控系统中被广泛应用的一种自动化控制技术,它使用传感器来监测设备的反馈信号,然后给予机械设备恰当的控制力度,使其能够按照预先设定的程序运动。
伺服控制技术常常和变频器一起被使用,以实现更高效准确的控制。
本文将详细介绍变频器中的伺服控制技术及其应用。
一、伺服控制技术概述伺服控制技术主要应用于工业自动化控制系统中,其主要作用是精确控制运动轨迹和速度。
在伺服控制系统中,电机与传感器紧密结合,通过对传感器信号的采集和计算,实现对电机的精确控制。
伺服控制技术的核心在于控制系统能够根据实际运行过程中的数据来及时调整电机的转速和转向,从而达到更加准确的位置、速度和加速度控制。
二、变频器中的伺服控制技术应用变频器是将电源频率转换为可以控制电机转速的电力设备。
在伺服控制中,变频器作为控制电机转速、实现坐标定位和速度调整的关键部件使用。
通过变频器对电机转速的调节,实现精准的位置控制和速度控制。
变频器中的伺服控制技术应用经常涉及到计数器、编码器和累加器等多种控制元件。
三、伺服控制技术应用场景1. 自动化生产伺服控制技术广泛应用于自动化生产线中,以实现高效的生产和成品质量要求。
通过伺服电机的旋转掌控,实现对物料的精准定位,进而实现更加高效和精确的自动化生产。
2. 机器人控制伺服控制技术在机器人控制系统中也有广泛应用。
机器人的动作精度和可靠性对于伺服电机的控制要求很高,通过伺服控制技术能够精确控制机器人的运动,包括位置、速度、加速度等,满足机器人应用场景下的精确控制需要。
3. 医疗仪器伺服控制技术也被广泛应用于医疗仪器领域,可以实现高精度的医疗仪器控制,包括X射线机、CT机、核磁共振仪等。
这些医疗设备需要高精度的定位和速度控制,伺服控制技术能够满足这些需求,提升医疗诊疗的效率和精确性。
四、结论在当今自动化控制技术领域中,伺服控制技术已经被广泛应用,尤其是在变频器中的伺服控制技术应用更是发挥了极大的作用。
伺服系统伺服系统,servomechanism,是使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。
伺服的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制的非常灵活方便。
[编辑本段]基本概念伺服系统是用来精确地跟随或复现某个过程的反馈控制系统。
又称随动系统。
在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。
伺服系统的结构组成和其他形式的反馈控制系统没有原则上的区别。
伺服系统最初用于船舶的自动驾驶、火炮控制和指挥仪中,后来逐渐推广到很多领域,特别是自动车床、天线位置控制、导弹和飞船的制导等。
采用伺服系统主要是为了达到下面几个目的:①以小功率指令信号去控制大功率负载。
火炮控制和船舵控制就是典型的例子。
②在没有机械连接的情况下,由输入轴控制位于远处的输出轴,实现远距同步传动。
③使输出机械位移精确地跟踪电信号,如记录和指示仪表等。
衡量伺服系统性能的主要指标有频带宽度和精度。
频带宽度简称带宽,由系统频率响应特性来规定,反映伺服系统的跟踪的快速性。
带宽越大,快速性越好。
伺服系统的带宽主要受控制对象和执行机构的惯性的限制。
惯性越大,带宽越窄。
一般伺服系统的带宽小于15赫,大型设备伺服系统的带宽则在1~2赫以下。
自20世纪70年代以来,由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,使带宽达到50赫,并成功应用在远程导弹、人造卫星、精密指挥仪等场所。
伺服系统的精度主要决定于所用的测量元件的精度。
因此,在伺服系统中必须采用高精度的测量元件,如精密电位器、自整角机、旋转变压器、光电编码器、光栅、磁栅和球栅等。
此外,也可采取附加措施来提高系统的精度,例如将测量元件(如自整角机)的测量轴通过减速器与转轴相连,使转轴的转角得到放大,来提高相对测量精度。
采用这种方案的伺服系统称为精测粗测系统或双通道系统。
通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。
伺服系统按所用驱动元件的类型可分为机电伺服系统、液压伺服系统和气动伺服系统。
最基本的伺服系统包括伺服执行元件(电机、液压缸等)、反馈元件和伺服驱动器,但是要让这个系统运转起来还需要一个上位机构,PLC,专门的运动控制卡,工控机+PCI卡,以便于给伺服驱动器发送指令。
[编辑本段]有关伺服电机的问答什么是伺服电机?有几种类型?工作特点是什么?答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。
分为直流和交流伺服电动机两大类请问交流伺服电机和无刷直流伺服电机在功能上有什么区别?答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。
无刷直流伺服是梯形波。
但直流伺服比较简单,便宜。
[编辑本段]永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。
交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。
90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。
交流伺服驱动装置在传动领域的发展日新月异。
永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。
⑵定子绕组散热比较方便。
⑶惯量小,易于提高系统的快速性。
⑷适应于高速大力矩工作状态。
⑸同功率下有较小的体积和重量。
自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。
到20世纪80年代中后期,各公司都已有完整的系列产品。
整个伺服装置市场都转向了交流系统。
早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行。
到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。
典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。
永磁交流伺服电机的应用趋势自动控制系统不仅在理论上飞速发展,在其应用器件上也日新月异。
模块化、数字化、高精度、长寿命的器件每隔3~5年就有更新换代的产品面市。
传统的交流伺服电机特性软,并且其输出特性不是单值的;步进电机一般为开环控制而无法准确定位,电动机本身还有速度谐振区,pwm调速系统对位置跟踪性能较差,变频调速较简单但精度有时不够,直流电机伺服系统以其优良的性能被广泛的应用于位置随动系统中,但其也有缺点,例如结构复杂,在超低速时死区矛盾突出,并且换向刷会带来噪声和维护保养问题。
目前,新型的永磁交流伺服电机发展迅速,尤其是从方波控制发展到正弦波控制后,系统性能更好,它调速范围宽,尤其是低速性能优越。
伺服电机■定义: 在伺服系统中控制机械元件运转的发动机.是一种补助马达间接变速装置。
■作用:伺服电机,可使控制速度,位置精度非常准确。
将电压信号转化为转矩和转速以驱动控制对象■分类:直流伺服电机和交流伺服电机。
直流伺服电机分为有刷和无刷电机。
有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。
因此它可以用于对成本敏感的普通工业和民用场合。
无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。
控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。
电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。
交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。
大惯量,最高转动速度低,且随着功率增大而快速降低。
因而适合做低速平稳运行的应用。
伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度(线数)。
什么是伺服电机?有几种类型?工作特点是什么?答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。
分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降,请问交流伺服电机和无刷直流伺服电机在功能上有什么区别?答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。
直流伺服是梯形波。
但直流伺服比较简单,便宜。
永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。
交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。
90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。
交流伺服驱动装置在传动领域的发展日新月异。
永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。
⑵定子绕组散热比较方便。
⑶惯量小,易于提高系统的快速性。
⑷适应于高速大力矩工作状态。
⑸同功率下有较小的体积和重量。
自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。
到20世纪80年代中后期,各公司都已有完整的系列产品。
整个伺服装置市场都转向了交流系统。
早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行,分别称为摪胧只瘮或抟旌鲜綌、撊只瘮的永磁交流伺服系统。
到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。
典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。
日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床(最高转速为1000r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。
之后又推出M、F、S、H、C、G 六个系列。
20世纪90年代先后推出了新的D系列和R系列。
由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到7%,并提高了可靠性。
这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足了工作机械、搬运机构、焊接机械人、装配机器人、电子部件、加工机械、印刷机、高速卷绕机、绕线机等的不同需要。
以生产机床数控装置而著名的日本法奴克(Fanuc)公司,在20世纪80年代中期也推出了S系列(13个规格)和L系列(5个规格)的永磁交流伺服电动机。
L系列有较小的转动惯量和机械时间常数,适用于要求特别快速响应的位置伺服系统。
日本其他厂商,例如:三菱电动机(HC-KFS、HC-MFS、HC-SFS、HC-RFS和HC-UFS 系列)、东芝精机(SM系列)、大隈铁工所(BL系列)、三洋电气(BL系列)、立石电机(S系列)等众多厂商也进入了永磁交流伺服系统的竞争行列。
德国力士乐公司(Rexroth)的Indramat分部的MAC系列交流伺服电动机共有7个机座号92个规格。
德国西门子(Siemens)公司的IFT5系列三相永磁交流伺服电动机分为标准型和短型两大类,共8个机座号98种规格。
据称该系列交流伺服电动机与相同输出力矩的直流伺服电动机IHU系列相比,重量只有后者的1/2,配套的晶体管脉宽调制驱动器6SC61系列,最多的可供6个轴的电动机控制。
德国宝石(BOSCH)公司生产铁氧体永磁的SD系列(17个规格)和稀土永磁的SE系列(8个规格)交流伺服电动机和Servodyn SM系列的驱动控制器。