伺服控制系统随动系统
- 格式:ppt
- 大小:245.00 KB
- 文档页数:33
伺服控制系统课程作业现代伺服系统综述指导教师:学生:学号:专业:班级:完成日期:摘要在自动控制系统中,把输出量能够以一定准确度跟随输入量的变化而变化的系统称为伺服系统。
伺服系统也叫位置随动系统,以精确运动控制和力能输出为目的,综合运用机电能量变换与驱动控制技术、检测技术、自动控制技术、计算机控制技术等,实现精确驱动与系统控制。
伺服系统主要包括电机和驱动器两部分,广泛用于航空、航天、国防及工业自动化等自动控制领域。
伺服系统按其驱动元件划分有步进式伺服系统、直流电动机伺服系统和交流电动机伺服系统。
随着微处理器技术、大功率高性能半导体功率器件技术、电机永磁材料制造工艺的发展及电力电子、控制理论的应用,交流电动机伺服系统近年来获得了迅速发展,广泛用于工业生产的各个领域,如数控机床的进给驱动和工业机器人的伺服驱动等。
因此,在相当大的范围内,交流电动机伺服系统取代了步进电动机与直流电动机伺服系统,时至目前,具备了宽调速范围、高稳速精度、快速动态响应及四象限运行等良好的技术性能,其动、静态特性已完全可与直流伺服系统相媲美,已成为伺服系统的主流。
关键词:伺服系统自动控制驱动元件1 伺服系统的发展阶段伺服系统的发展与它的驱动元件——伺服电动机的不同发展阶段相联系,并结合老师在第一章所讲的伺服系统分类的知识,伺服电动机至今经历了三个主要的发展阶段。
(1)第一个发展阶段(20世纪60年代以前):步进电动机开环伺服系统;伺服系统的驱动电机为步进电动机或功率步进电动机,位置控制为开环系统。
步进电机是一种将电脉冲转化为角位移的执行机构,两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72°、0.36°;步进电机存在一些缺点:在低速时易出现低频振动现象;一般不具有过载能力;步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转现象,停止时转速过高易出现过冲现象。
一、相关概念伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。
伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。
它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制非常灵活方便。
在机器人中,伺服驱动器控制电机的运转。
驱动器采用速度环,位置环,电流环三环闭环电路,内部还设有错误检出和保护电路。
驱动器通过通信连接器,控制连接器,编码连接器跟外部输入信号和输出信号相连。
通信连接器主要用于跟电脑或控制器通信。
控制连接器用于跟伺服控制器联接,驱动器所需的输入信号、输出信号、控制信号和一些方式选择信号都通过该控制连接器传输,它是驱动器最为关键的连接器。
编码连接器跟电机编码器连接,用于接收编码器闭环反馈信号,即速度反馈和换向信号。
伺服电机主要用于驱动机器人的关节。
关节越多,机器人的柔性和精准度越高,所需要使用的伺服电机的数量就越多。
机器人对伺服电机的要求非常高,必须满足快速响应、高起动转矩、动转矩惯量比大、调速范围宽,要适应机器人的形体做到体积小、重量轻,还必须经受频繁的正反向和加减速运行等苛刻的条件,做到高可靠性和稳定性。
伺服电机分为直流、交流和步进,工业机器人用的较多的是交流。
机器人用伺服电机二、伺服系统的技术现状2.1视觉伺服系统随着机器人技术的迅猛发展,机器人承担的任务更加复杂多样,传统的检测手段往往面临着检测范围的局限性和检测手段的单一性.视觉伺服控制利用视觉信息作为反馈,对环境进行非接触式的测量,具有更大的信息量,提高了机器人系统的灵活性和精确性,在机器人控制中具有不可替代的作用。
视觉系统由图像获取和视觉处理两部分组成,图像的获取是利用相机模型将三维空间投影到二维图像空间的过程,而视觉处理则是利用获取的图像信息得到视觉反馈的过程。
基本的相机模型主要包括针孔模型和球面投影模型,统一化模型是对球面模型的推广,将各种相机的图像映射到归一化的球面上。
《运动控制系统》复习题第一章伺服系统的作用及组成1.在伺服控制系统中,使输出量能够以一定跟随输入量的变换而变换的系统称为,亦称为伺服系统。
(准确度、随动系统)2.伺服系统按调节理论分类可分为:开环伺服系统、闭环伺服系统、半闭环伺服系统。
3.伺服系统按使用的驱动元件分类可分为:步进伺服系统、直流伺服系统、交流伺服系统。
第二章伺服控制基础知识1.GTO/GTR/MOSFET/IGBT各自的特点及应用范围。
第三章步进电动机的控制1.简述反应式步进电机的工作原理。
2.一台无相步进电动机,工作在十拍方式,转子齿数为48,在单相绕组中测得的电流频率为500Hz,试求电动机的齿距角、步距角和转速。
3.三相步进电动机工作在双三拍方式,已知步距角为3°,最大转矩T max =0.685N.m ,转动部分的转动惯量J=1.725×10-5kg.m 2,试求该步进电动机的自由振荡频率和周期。
4.若一台BF 系列四相反应式步进电动机,其步距角为1.8°/0.9°。
试问:(1) 1.8°/0.9°表示什么意思?(2)写出四相八拍运行方式的一个通电顺序。
(4)在A 相测得电源频率为400Hz 时,每分钟的转速为多少?5.正常情况下步进电机的转速取决于( )A.控制绕组通电频率B.绕组通电方式C.负载大小D.绕组的电流6.某三相反应式步进电机的转子齿数为50,其齿距角为( ) A.7.2° B.120° C.360°电角度 D.120°电角度7.某四相反应式步进电机的转子齿数为60,其步距角为( ) A.1.5° B.0.75° C.45°电角度 D.90°电角度8.某三相反应式步进电机的初始通电顺序为C B A →→,下列可使电机反转的通电顺序为(A )A.A B C →→B.A C B →→C.B C A →→D.C A B →→9.下列关于步进电机的描述正确的是()A.抗干扰能力强B.带负载能力强C.功能是将电脉冲转化成角位移D.误差不会积累10. 某五相步进电机在脉冲电源频率为2400Hz 时,转速为1200rpm ,则可知此时步进电机的步距角为(B )。
伺服系统2.1 什么是控制系统通过执行规定的功能来实现某一给定目标的一些相互关联单元的组合,称为控制系统。
如室内温度、湿度控制,电机的转速控制,工业上的液位控制、压力控制等手动控制(Manual Control)自动控制(Automatic Control)2.2 什么是自动控制系统自动控制是在没有人的直接干预下,利用物理装置对生产设备和工艺过程进行合理的控制,使被控制的物理量按照预定的规律变化的过程。
通过控制装置执行规定的功能来实现某一给定目标的一些相互关联单元的组合,称为自动控制系统。
2.3 自动控制系统的常用术语在自动控制系统中,被控制的设备或过程称为被控对象(或对象);被控制的物理量称为被控量(或输出量);决定被控量的物理量称为控制量或给定量;妨碍控制量对被控量进行正常控制的所有因素称为扰动量。
给定量和扰动量都是自动控制系统的输入量。
扰动量按其来源分内部扰动和外部扰动。
2.4 自动控制系统的两种外作用1、有效输入信号(简称输入信号)输入信号决定系统被控量的变化规律或代表期望值,并作用于系统的输入端。
2、有害干扰信号(简称干扰信号)干扰信号是系统所不希望而又不可避免的外作用信号,它不但可以作用于系统的任何部位,而且可能不止一个。
由于它会影响输入信号对系统被控量的有效控制,严重时必须加以抑制或补偿。
3.1 开环控制和闭环控制以恒温箱为例以书上晶闸管调速系统为例3.1 开环控制和闭环控制开环控制系统(Open-loop Control System)是指系统的输出端和输入端不存在反馈关系,系统的输出量对控制作用不发生影响的系统。
这种系统既不需要对输出量进行测量,也不需要将输出量反馈到输入端与输入量进行比较,控制装置与被控对象之间只有顺向作用,没有反向联系。
闭环控制系统(Close-loop Control System)系统的控制装置和被控对象不仅有顺向作用,而且输出端和输入端之间存在反馈关系,所以称为闭环控制系统,闭环控制系统就是反馈控制系统。
伺服系统在工业机器人的应用工业机器人有4大组成部分,分别为本体、伺服、减速器和控制器。
而其中,工业机器人电动伺服系统的一般结构为三个闭环控制,即电流环、速度环和位置环。
一般情况下,对于交流伺服驱动器,可通过对其内部功能参数进行人工设定而实现位置控制、速度控制、转矩控制等多种功能。
伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。
伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。
伺服系统是以变频技术为基础发展起来的产品,是一种以机械位置或角度作为控制对象的自动控制系统。
伺服系统除了可以进行速度与转矩控制外,还可以进行精确、快速、稳定的位置控制。
广义的伺服系统是精确地跟踪或复现某个给定过程的控制系统,也可称作随动系统。
狭义伺服系统又称位置随动系统,其被控制量(输出量)是负载机械空间位置的线位移或角位移,当位置给定量(输入量)作任意变化时,系统的主要任务是使输出量快速而准确地复现给定量的变化。
伺服系统的结构组成机电一体化的伺服控制系统的结构、类型繁多,但从自动控制理论的角度来分析,伺服控制系统一般包括控制器、被控对象、执行环节、检测环节、比较环节等五部分。
伺服系统组成原理框图1、比较环节比较环节是将输入的指令信号与系统的反馈信号进行比较,以获得输出与输入间的偏差信号的环节,通常由专门的电路或计算机来实现。
2、控制器控制器通常是计算机或PID(比例、积分和微分)控制电路,其主要任务是对比较元件输出的偏差信号进行变换处理,以控制执行元件按要求动作。
3、执行环节执行环节的作用是按控制信号的要求,将输入的各种形式的能量转化成机械能,驱动被控对象工作。
机电一体化系统中的执行元件一般指各种电机或液压、气动伺服机构等。
4、被控对象被控对象指被控制的物件,例如一个机械手臂,或是一个机械工作平台。
5、检测环节检测环节是指能够对输出进行测量并转换成比较环节所需要的量纲的装置,一般包括传感器和转换电路。
第一部分:伺服系统的工作原理伺服系统(servo system)亦称随动系统,属于自动控制系统中的一种,它用来控制被控对象的转角(或位移),使其能自动地、连续地、精确地复规输入指令的变化规律。
它通常是具有负反馈的闭环控制系统,有的场合也可以用开环控制来实现其功能。
在实际应用中一般以机械位置或角度作为控制对象的自动控制系统,例如数控机床等。
使用在伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量较大等特点,这类专用的电机称为伺服电机。
其基本工作原理和普通的交直流电机没有什么不同。
该类电机的专用驱动单元称为伺服驱动单元,有时简称为伺服,一般其内部包括转矩(电流)、速度和/或位置闭环。
其工作原理简单的说就是在开环控制的交直流电机的基础上将速度和位置信号通过旋转编码器、旋转变压器等反馈给驱动器做闭环负反馈的PID调节控制。
再加上驱动器内部的电流闭环,通过这3个闭环调节,使电机的输出对设定值追随的准确性和时间响应特性都提高很多。
伺服系统是个动态的随动系统,达到的稳态平衡也是动态的平衡。
全数字伺服系统一般采用位置控制、速度控制和力矩控制的三环结构。
系统硬件大致由以下几部分组成:电源单元;功率逆变和保护单元;检测器单元;数字控制器单元;接口单元。
相对应伺服系统由外到内的"位置"、"速度"、"转矩" 三个闭环,伺服系统一般分为三种控制方式。
在使用位置控制方式时,伺服完成所有的三个闭环的控制。
在使用速度控制方式时,伺服完成速度和扭矩(电流)两个闭环的控制。
一般来讲,我们的需要位置控制的系统,既可以使用伺服的位置控制方式,也可以使用速度控制方式,只是上位机的处理不同。
另外,有人认为位置控制方式容易受到干扰。
而扭矩控制方式是伺服系统只进行扭矩的闭环控制,即电流控制,只需要发送给伺服单元一个目标扭矩值,多用在单一的扭矩控制场合,比如在小角度裁断机中,一个电机用速度或位置控制方式,用来向前传送材料,另一个电机用作扭矩控制方式,用来形成恒定的张力。
随动系统控制原理-概述说明以及解释1.引言1.1 概述随动系统是一种可以根据外界变化自动调整其输出以实现特定目标的系统。
它根据传感器获得的反馈信号来调整自身的操作,使其能够实时响应和适应环境的变化。
随动系统的控制原理是这种系统能够实现自动调节的基础,它涉及传感器、执行器、控制算法等多个方面。
随动系统的控制原理的核心思想是通过不断收集来自传感器的信息,并运用控制算法实时地对系统进行调节,以使系统的输出能够达到预期的目标。
控制原理需要建立良好的反馈闭环,在实时监测和调整的过程中保持系统的稳定性和可靠性。
随动系统的控制原理与传统的开环控制系统相比具有很大的优势。
传统的开环控制系统仅仅根据输入信号进行运算,无法根据系统的实际输出进行调节,容易受到外界干扰的影响。
而随动系统利用反馈信号实时调整操作,能够更好地适应外界的变化,并且具有较高的鲁棒性和可靠性。
在实际应用中,随动系统的控制原理可以广泛应用于各种领域,例如飞行器的飞行控制、机器人的运动控制、医疗设备的工作调节等。
通过精确的控制原理,随动系统可以实现自主导航、自动追踪和自动调节等功能,提高系统的性能和效率。
本文将重点介绍随动系统的控制原理,包括随动系统的基本概念、控制原理的关键要素和算法、控制系统的设计与实现等方面内容。
通过深入了解和掌握随动系统的控制原理,读者可以更好地理解和应用随动系统,为实际工程和科研提供有力的支持。
1.2 文章结构文章结构部分的内容可以如下编写:文章结构:本文分为引言、正文和结论三个部分。
引言部分主要对随动系统控制原理的概述、文章结构和目的进行介绍。
正文部分包括随动系统的基本概念和随动系统的控制原理两个小节。
在随动系统的基本概念部分,将介绍随动系统的定义、特点和应用领域。
在随动系统的控制原理部分,将详细讲解随动系统的控制原理、工作原理以及相关的数学模型和算法。
通过对随动系统的控制原理的系统分析和阐述,读者将能够深入了解随动系统的运作机制和控制方法。