一元二次方程韦达定理、应用
- 格式:doc
- 大小:58.00 KB
- 文档页数:2
浅谈韦达定理在高中数学学习中的应用【摘要】韦达定理是高中数学中重要的定理之一,通过证明和相关推导可以帮助学生理解其原理。
在解决高中数学题目中,韦达定理的应用不仅能够简化计算,还能够提高解题效率。
特别是在几何问题中,利用韦达定理可以更快速地找到解答。
韦达定理与其他数学定理之间也存在联系,通过举例说明可以更好地理解其实际应用。
总结来看,韦达定理在高中数学学习中扮演着重要的角色,展望未来,它仍有着广阔的应用前景,将继续为学生提供帮助和启发。
【关键词】韦达定理、高中数学、引言、正文、结论、证明、推导、应用、几何问题、联系、实际应用、作用、应用前景1. 引言1.1 介绍韦达定理的基本概念韦达定理是代数学中一个非常重要的定理,它可以用来解决关于多项式方程的根的问题。
韦达定理由法国数学家韦达于16世纪提出,至今仍然被广泛应用于数学领域。
韦达定理的核心思想是:对于一个n 次多项式方程,它的n个根之和等于多项式方程的一次项系数的相反数,而且这n个根两两之间的乘积等于多项式方程的二次项系数的相反数。
具体来说,对于一个n次多项式方程\[a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 = 0\]其n个根分别为\(x_1, x_2, ..., x_n\),则有\[x_1 + x_2 + ... + x_n = - \frac{a_{n-1}}{a_n}\]\[x_1x_2 + x_1x_3 + ... + x_{n-1}x_n = \frac{a_{n-2}}{a_n}\]韦达定理在高中数学学习中的应用非常广泛,可以帮助学生更好地理解多项式方程的根与系数之间的关系,从而更加深入地理解代数学的相关知识。
通过学习韦达定理,学生可以更加灵活地解决各种数学问题,为以后的学习打下坚实的基础。
1.2 韦达定理在高中数学学习中的重要性在高中教学中,韦达定理的学习不仅有助于拓展学生的数学思维,更可以培养学生的逻辑思维能力和解决问题的能力。
一元二次方程根与系数的关系及应用题一、 根与系数的关系(韦达定理);1、定理来源,用配方法推导出来的一元二次方程的求根公式中,由两个根的相互运算而得,2、定理内容,(1)12b x x a +=- (2) 12cx x a=3、定理特征:和与积的形式特点。
4、定理的延伸:当二次项系数为1时,两根之和等于一次项系数的相反数,两根之积为常数项。
5、解一元二次方程的又一种方法:观察法,总结观察法的知识要点:用了根的定义和韦达定理,是一种综合性题目,是竞赛中常见的一种题型。
若0a b c ++=,则有:11x =,2c x a =,(2)若0a b c -+=,则有:11x =-,2cx a= 这里的0a b c ++=是指各项系数不变号和为零的情况,这里的0a b c -+=是指要改变一次项系数符号后和为零的情况。
如: (1)2543215432210x x ++= (2)()219981997199910x x -⨯-=例1.(1)如果x x 12、是方程3x x 2720-+=的两个根,那么x x 12+=_______ x x 12=_______. (2)如果x x 12、是方程2x x 2350--=的两个根,那么x x 12+=________ x x 12=________. (3)如果方程20542=--x x 的两个根是x 1和x 2,则21x x +________ 21x x =_________.例2 已知32-是一元二次方程042=+-c x x 的一个根,则方程的另一根是 ;例3 已知关于x 的一元二次方程230x x --=的两个实数根分别为βα、,求: (1)11αβ+;(2)()()33++βα的值; (3)22αβ+; (4)αβ-.例 4 已知βα、是关于x 的一元二次方程()03222=+++m x m x 的两个不相等的实数根,且满足1-11=+βα,求m 的值.例5 △ABC 的一边长为4,另外两边是方程23150x x m -+=的两根,求m 的取值范围.变式练习:1.设1x ,2x是方程220x -+=的两根,求1211x x +的值.2.下列方程中,两根均为正数的有 个。
专题12 韦达定理及其应用1.一元二次方程根与系数的关系(韦达定理)如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,acx x =21。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
2.根与系数的关系的应用,主要有如下方面: (1)验根;(2)已知方程的一根,求另一根; (3)求某些代数式的值; (4)求作一个新方程。
【例题1】(2020•泸州)已知x 1,x 2是一元二次方程x 2﹣4x ﹣7=0的两个实数根,则x 12+4x 1x 2+x 22的值是 . 【答案】2【分析】根据根与系数的关系求解. 【解析】根据题意得则x 1+x 2=4,x 1x 2=﹣7 所以,x 12+4x 1x 2+x 22=(x 1+x 2)2+2x 1x 2=16﹣14=2【对点练习】(2019湖北仙桃)若方程x 2﹣2x ﹣4=0的两个实数根为α,β,则α2+β2的值为( ) A .12 B .10 C .4 D .﹣4【答案】A【解析】∵方程x 2﹣2x ﹣4=0的两个实数根为α,β,∴α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=4+8=12【例题2】(2020•江西)若关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,则这个一元二次方程的另一个根为.【答案】-2【分析】利用根与系数的关系可得出方程的两根之积为﹣2,结合方程的一个根为1,可求出方程的另一个根,此题得解.【解析】∵a=1,b=﹣k,c=﹣2,=−2.∴x1•x2=ca∵关于x的一元二次方程x2﹣kx﹣2=0的一个根为x=1,∴另一个根为﹣2÷1=﹣2.【对点练习】已知方程的一个根是-1/2,求它的另一个根及b的值。
【答案】x1=3 b=-5【解析】设方程的另一根为x1,则由方程的根与系数关系得:解得:【点拨】含字母系数的一元二次方程中,若已知它的一个根,往往由韦达定理可求另一根,并确定字母系数的值。
一元二次方程韦达定理的应用条件一元二次方程是高中数学中非常重要的一个知识点,而韦达定理则是解一元二次方程的一种常用方法。
了解一元二次方程韦达定理的应用条件对于提高数学解题的效率和准确性非常有帮助。
在本文中,我将详细介绍一元二次方程韦达定理的应用条件,并结合具体的数学例子进行讲解,以便你更全面地理解这一知识点。
一元二次方程通常具有如下形式:\[ax^2 + bx + c = 0\]其中,\(a\)、\(b\)、\(c\)为已知常数,\(x\)为未知数。
而韦达定理是指,对于一元二次方程:\[ax^2 + bx + c = 0\]其根可以表示为:\[x_1 + x_2 = -\frac{b}{a}\]\[x_1 \cdot x_2 = \frac{c}{a}\]下面我们来具体看一下一元二次方程韦达定理的应用条件。
对于一元二次方程来说,应当满足以下条件:1. 方程的二次项系数\(a\)不为0,即\(a \neq 0\);2. 方程的根是实数根或者虚数根(复数形式),即\(\Delta = b^2 - 4ac \geq 0\)或\(\Delta = b^2 - 4ac < 0\);3. 方程的根是有理数根或者实根,即\(\frac{b^2 - 4ac}{a}\)是一个平方数或者一个完全平方数,或者判别式\(\Delta\)为完全平方数。
举个例子,对于一元二次方程 \(2x^2 + 3x - 2 = 0\),我们可以应用韦达定理进行求解。
首先根据公式 \(x_1 + x_2 = -\frac{b}{a}\) 和\(x_1 \cdot x_2 = \frac{c}{a}\),代入系数,可以求得该方程的两个根。
这样,我们就可以利用韦达定理来快速求解一元二次方程的根。
了解一元二次方程韦达定理的应用条件对于解题非常重要。
只有在满足特定条件的情况下,我们才能够有效地使用韦达定理来求解一元二次方程的根。
希望通过本文的讲解,你能更加深入地理解一元二次方程韦达定理的应用条件,并在实际解题中灵活运用。
初中数学一元二次方程的韦达定理有什么应用一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算一元二次方程根的和与积的方法。
韦达定理在实际生活中有着广泛的应用,下面将详细介绍一些常见的应用场景。
1. 判定方程根的性质:韦达定理可以用来判定方程的根的性质。
通过计算根的和与积,我们可以得到关于根的一些信息。
例如,当根的和与根的积都为正数时,说明方程的两个根都是正数;当根的和为负数而根的积为正数时,说明方程的两个根一个为正数一个为负数。
这种信息对于解决实际问题非常有用,可以帮助我们了解方程的解的情况。
2. 求解方程的根:韦达定理可以用于求解一元二次方程的根。
通过将方程的系数带入韦达定理的公式,我们可以计算出方程的根的和与积。
进一步求解根的具体数值,可以使用一些代数方法,如配方法、因式分解或求根公式。
韦达定理为我们提供了一个快速计算根的和与积的方法,从而更方便地解决一元二次方程。
3. 拟合数据:韦达定理可以用于数据的拟合。
通过找到满足给定数据点的一元二次方程,我们可以使用韦达定理计算方程的根的和与积。
根的和与积可以提供关于数据的整体趋势和特征的信息。
这种方法在统计学和数据分析中非常有用,可以帮助我们找到最佳拟合曲线并预测未知数据的值。
4. 解决实际问题:韦达定理在解决实际问题中起到重要的作用。
例如,在物理学中,我们可以使用韦达定理来计算自由落体运动中物体的最大高度和落地时间;在经济学中,韦达定理可以用来分析成本和收益之间的关系,帮助我们做出合理的决策;在工程学中,韦达定理可以用于计算电路中的电流和电压,从而设计合适的电路。
总结:一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算方程根的和与积的方法。
韦达定理在判定方程根的性质、求解方程的根、拟合数据以及解决实际问题等方面有着广泛的应用。
了解韦达定理及其应用可以帮助我们更好地理解和解决一元二次方程相关的数学问题,同时也可以在实际生活中应用这些知识来解决各种问题。
超级韦达定理韦达定理是初中数学中常见的一个定理,用于求解一元二次方程的根。
然而,有一天,一位数学家发现了一种更加强大的定理,被称为超级韦达定理。
这个定理不仅可以解决一元二次方程,还可以应用于更高阶的多项式方程。
本文将介绍超级韦达定理的原理、应用以及一些相关的例子。
超级韦达定理是基于韦达定理推导出来的,因此我们先来回顾一下韦达定理。
韦达定理是指对于一元二次方程ax^2 + bx + c = 0,其根可以用下面的公式计算:x = (-b ± √(b^2 - 4ac)) / (2a)在这个公式中,±表示两个根的取正负号的不同组合。
当判别式Δ= b^2 - 4ac大于零时,方程有两个不相等的实根;当Δ等于零时,方程有两个相等的实根;当Δ小于零时,方程有两个共轭复数根。
超级韦达定理的核心思想是将多项式方程转化为一元二次方程,然后应用韦达定理来求解。
对于一个n阶的多项式方程,如f(x) =a_nx^n + a_{n-1}x^{n-1} + ... + a_0 = 0,我们可以通过变量替换来将其转化为一元二次方程。
令y = x^n,我们可以得到一个一元二次方程g(y) = a_ny^2 + a_{n-1}y^{n-1} + ... + a_0 = 0。
然后,我们可以通过韦达定理来解这个方程,得到y的根,然后再将y的根转化为x的根。
这种转化多项式方程的方法使得我们可以利用已有的韦达定理的求根公式来解决更高阶的多项式方程。
它极大地简化了多项式方程的求解过程,并且广泛应用于数学、物理、工程等领域。
下面我们通过一些例子来详细说明超级韦达定理的应用。
例子1:解三次方程考虑方程f(x) = 2x^3 + 3x^2 - 2x - 1 = 0。
我们可以通过变量替换y = x^3,得到一个一元二次方程g(y) = 2y^2 + 3y - 2y - 1 = 0。
通过韦达定理,我们可以求得y的根为y1 = 1/2和y2 = -1。
一元二次方程的判别式、韦达定理应用举例抛物线
1. 判别式:
判别式是用来判别一元二次方程的根(解)是实根、重根还是无解的
一个实用公式,它是欧拉定理的重要应用。
判别式的表达式为:D=b²-4ac。
其中a、b、c分别为一元二次方程中的系数:ax²+bx+c=0。
2. 韦达定理应用举例:
韦达定理是欧几里得几何中的重要定理,可以用来证明几何图形的线
段关系。
举例说明:
假设有ABC三角形,设三点的坐标分别为A(2,3),B(-1,-4),C(1,-1),根据韦达定理可得:
d(AB)² + d(BC)² =d(AC)²
即求出d(AB)² + d(BC)² 与d(AC)²的值,如果相等,证明该三角形
是等腰的。
3. 抛物线:
抛物线是第二次多项式函数的一类,表达式为:y=ax²+bx+c,其中a、b、c分别为常数,x为变量。
抛物线的性质:当a>0时,抛物线是一条开
口向上的“U”形线,当a<0时,抛物线是一条开口向下的“∩”形线。
专题 一元二次方程及韦达定理【基本知识】1.一元二次方程符合三个条件:①一个未知数;②未知数的最高次数为;③整式方程。
任何一个关于x 的一元二次方程都可以化成下面的形式:ax 2+bx +c = 0(a 、b 、c 是常数,且a ≠0)2.了解形如(x +m )2= n (n ≥0)的一元二次方程的解法 —— 直接开平方法3.用配方法解一元二次方程的一般步骤:(1)把常数项移到方程右边;(2)在方程的两边各加上一次项系数的一半的平方,使左边成为完全平方;(3)利用直接开平方法解之。
4.一元二次方程20(0)ax bx c a ++=≠的求根公式:242b b ac x a -±-= (240b ac -≥) 5.一元二次方程ax 2+bx +c = 0(a≠0)的根的情况可由b 2-4ac 来判定:当b 2-4ac >0时,方程有两个不相等的实数根; 当b 2-4ac = 0时,方程有两个相等的实数根;当b 2-4ac < 0时,方程没有实数根。
我们把b 2-4ac 叫做一元二次方程ax 2+bx +c = 0的根的判别式。
6. 设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系: 12b x x a +=-,12c x x a⋅=; 7、用一元二次方程解决实际问题要经历怎样的过程?(一审、二找、三设、四列(列代数式、列方程)、 五解、六验、七答)8. 用一元二次方程解决问题的关键是什么?(寻找题中的等量关系)巩固练习1.关于x 的方程20x px q ++=的两根同为负数,则( )A .0p >且0q >B .0p >且0q <C .0p <且0q >D .0p <且0q < 2.若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=⋅。
一、解一元二次方程1、()()513+=-x x x x2、x x 5322=- 3、2260x y -+= 4、01072=+-x x 5、()()623=+-x x 6、()()03342=-+-x x x 二、根的判别式练习题三、根与系数的关系(韦达定理)1、如果方程)0(02≠=++a c bx ax 的两根是1x 、2x ,那么21x x += ,21x x ⋅= 。
2、已知1x 、2x 是方程04322=-+x x 的两个根,那么:21x x += ;21x x ⋅= ;=+2111x x ;=+2221x x ;=++)1)(1(21x x ;||21x x -= 。
3、以2和3为根的一元二次方程(二次项系数为1)是 。
4、如果关于x 的一元二次方程022=++a x x 的一个根是1-2,那么另一个根是 ,a 的值为 。
5、如果关于x 的方程x 2+6x+k=0的两根差为2,那么k= 。
6、已知方程2x 2+mx -4=0两根的绝对值相等,则m= 。
7、一元二次方程px 2+qx+r=0(p ≠0)的两根为0和-1,则q ∶p= 。
8、已知方程x 2-mx+2=0的两根互为相反数,则m= 。
9、已知关于x 的一元二次方程(a 2-1)x 2-(a+1)x+1=0两根互为倒数,则a = 。
10、已知关于x 的一元二次方程mx 2-4x -6=0的两根为x 1和x 2,且21x x +=-2,则m= ,21x x ⋅ = 。
11、已知方程3x 2+x -1=0,要使方程两根的平方和为913,那么常数项应改为 。
12、已知二次项系数为1的一元二次方程,它的两根之和为5,两根之积为6,则这个方程为 。
13、若α、β为实数且|α+β-3|+(2-αβ)2=0,则以α、β为根的一元二次方程为 。
(其中二次项系数为1)14、已知关于x 的一元二次方程x 2-2(m -1)x+m 2=0。
若方程的两根互为倒数,则m= ;若方程两根之和与两根积互为相反数,则m= 。
一元二次方程韦达定理的应用知识点:一元二次方程根的判别式 :当△>0 时________方程_____________,当△=0 时_________方程有_______________ ,当△<0 时_________方程___________ .韦达定理的应用:1.方程的一个根,求另一个根和未知系数3.方程两根满足某种关系, 确定方程中字母系数的值4.两数的和与积, 求这两个数例 1.关于 x 的一元二次方程 2223840x mx m m --+-=.求证: 当 m>2 时,原方程永远有两个实数根.例 2.关于 x 的方程22(1)10kx x x k -++-=有两个不相等的实数根.(1)求 k 的取值X 围;(2)是否存在实数 k , 使此方程的两个实数根的倒数和等于 0?假如存在, 求出 k 的值;假如不存在, 说明理由.例 3.关于 x 的方程222(3)410x k x k k --+--=(1)假如这个方程有实数根, 求 k 的取值X 围;(2)假如这个方程有一个根为 1, 求 k 的值;例 4.关于 x 的一元二次方程21(2)302x m x m +-+-= (1)求证: 无论m 取什么实数值, 这个方程总有两个不相等的实数根。
(2)假如这个方程的两个实数根12,x x 满足1221x x m +=+, 求 m 的值。
例 5.当 m 为何值时, 方程28(1)70x m x m --+-=的两根:(1) 均为正数; (2)均为负数; (3)一个正数, 一个负数; (4)一根为零; (5)互为倒数; (6)都大于 2.例 6. a,b,c,是△ ABC 的三边长, 且关于 x 的方程 22(1)2(1)0b x ax c x --+-=有两个相等的实根, 求证: 这个三角形是直角三角形。
例 7.假如 n>0 ,关于 x 的方程21(2)04x m n x mn ---=有两个相等的正的实数根, 求m n的值。
第2讲 一元二次方程韦达定理的应用、一元二次方程的应用一、知识要点1. 一元二次方程一般式: ( , )的两根是:--==b b x a a 122,2--==b b x a a22 注意:(根的判别式)当2=b -ac ∆4>0时,方程有两个不相等的实根,当2=b -ac ∆4=0时,方程有两个相等的实根,当2=b -ac ∆4<0时,方程无实根。
2.韦达定理:若x 1,x 2是方程++=ax bx c 20的两个实根,则2=b -0ac ∆≥4 且b +=-a x x 12,c =ax x ⋅12 3. 为什么是0.618(1)什么叫黄金比线段AB 上一点C 分线段AB 成两条线段AC ,BC (AC>BC ),若AB AC =AC BC ,则C 点叫线段AB 的黄金分割点,其中ABAC 叫黄金比,其值为0.618。
(2)列一元二次方程解应用题的一般步骤一、审题;二、设求知数;三、列代数式;四、列方程;五、解方程;六、检验;七、答二、例题和练习例1 已知方程2-+=x x k 240(1)当k 时,方程有两个不相等的实数根;(2)当k 时,方程有两个相等的实数根;(3)当k 时,方程无实数根;变式练习已知a 、b 、c 是三角形的三边,则方程2(a+b)x ++(a+b)=0cx 2的根的情况是( )A.没有实数根B.有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根例2 关于x 的方程2-(+)+-1=x m x m 224120有两个相等的实数根,求m 的值变式练习1 关于x 的方程2-(+)+-1=x m x m 224120有两个实数根,求m 的取值范围变式练习2 (北京海淀九年级上学期期中考试,17)已知关于x 的一元二次方程-2+2k-3=x x 20有两个不相等的实数根。
(1)求k 的取值范围(2)若k 为符合条件的最大整数,求此时方程的根。
例3 一块矩形的土地,长是48m ,宽是24m ,要在它的中央划一块矩形的草地,四周铺上花砖路,路面宽都相等,草地占去矩形土地的59,则花砖路面的宽为 。
一元二次方程根与系数关系的应用一元二次方程根与系数的关系,又名韦达定理,是中学数学方程中根与系数的重要关系,它在训练学生数学思维、培养学生模型思想、创新意识、运用知识解决问题能力等方面有着十分重要的意义。
因此,多年来,运用一元二次方程根与系数关系解答的试题一直是中考和初中数学竞赛的重要内容,其题型多样,灵活性大,思路广阔,针对性强,是考查学生能力的重要题型。
一、定理的内容设x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两个实数根,由求根公式得:x1+x2=-,x1x2=。
这就是一元二次方程的根与系数的关系,也称为韦达定理。
二、韦达定理几种常见变形1.x12+x22=(x1+x2)2-2x1x2。
2.(x1-x1)2=(x1+x2)2-4x1x2。
3.(x1+a)(x2+a)=x1x2+a(x1+x2)+a2。
4.|x1-x2|=(x1+x2)2+4x1x2。
5. +=。
6.+==-2。
三、运用韦达定理构建一元二次方程若x1、x2是一元二次方程的两个实数根,且x1+x2=a,x1x2=b。
那么以x1、x2为根的一元二次方程为x2-ax+b=0。
下面谈谈定理的应用:1.关于两根的对称式求值。
关于两根的对称式求值,常常将代数式化为含有两根和与两根积的式子,再代入求值。
例1.若x1、x2是一元二次方程2x2-3x-1=0的两个根,利用根与系数的关系求下列各式的值:①+;②+;③(x1-2)(x2-2);④x12+x22;⑤(x1-x2)2;⑥|x1-x2|。
例中6个小题是上面几种常见变形的直接运用,熟悉这几种变形,不难求出相应的结果。
2.关于两根的非对称式的求值。
对于含有两根的非对称式子,常常根据根的定义降次,化高次为低次,化不对称为对称;或根据定理构造对称式,化分为整,化繁为简,从而求解问题。
(1)运用根的定义降次,化为对称式。
例2.设x1、x2是一元二次方程x2-x-2013=0的两个实数根,求x13+2014x2-2013的值。
韦达定理的应用及推广 一、 韦达定理概述根据记载,在韦达那个年代,有一个角落们的比例是数学家提出了一个45次方程各国数学家挑战各国数学家挑战。
法国国王便将这个充满挑战的问题交给了韦达,韦达当即就得出了一个正根,再由他研究了一晚上时间就得出了23个正根(另外的22个负根被他舍了),消息传开,让当时整个数学界都为之震惊。
在他阶梯式发现方程的根似乎与某些系数有关联,因此他就对此进行了一系列的研究,在不久以后发现了伟大的韦达定理。
韦达定理:在一元二次方程ax 2+bx+c=0(a ≠0)中,当∆≥b 2−4ac 时,则原方程的两根满足以下规律{x 1+x 2=−bax 1x 2=ca 韦达定理的逆定理:如果x 1,x 2满足{x 1+x 2=−ba x 1x 2=c a,那么x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两个根 二、 韦达定理的证明 1.求根公式法:根据将ax 2+bx+c=0(a ≠0)配方得到的x 1,2=−b±√b 2−4ac2a可得x 1+x 2=−b +√b 2−4ac 2a +−b −√b 2−4ac 2a =−2b 2a =−bax 1×x 2=(−b +√b 2−4ac 2a ×−b −√b 2−4ac 2a )=b 2−(b 2−4ac)4a 2=4ac 4a 2=ca2. 同解方程法 : 若ax 2+bx+c=0(a ≠0)的两根为x 1,x 2,那么知道ax 2+bx+c=a(x −x 1)(x −x 2)左边=ax 2−ax ×x 1−ax ×x 2+ax 1x 2=ax 2−a(x 1+x 2)x +ax 1x 2 比较系数知:−a (x 1+x 2)=b ax 1x 2=c ⟹ x 1+ x 2=−ba ,x 1×x 2=c a与韦达定理有关的推论:|x 1−x 2|=√b 2−4ac |a|三、 韦达定理的应用1. 已知A 、B 为一元二次方程ax 2+bx+c=0的两根A ≠B (1)求A 2+B 2,A 3+B 3,1A2+1B 2,A −B(2)求以1A、1B 为根的方程和以(A 2+A +1)、(B 2+B +1)为根的方程解(1):由韦达定理知{A +B =−b aA ×B =c a∴A 2+B 2=(A +B)2−2AB =b 2a2−2c a=b 2−2ac a 2A 3+B 3=(A +B)3−3AB (A +B )=−b 3a 3+3bc a 2=−b 3+3abca 31A 2+1B 2=A 2+B 2A 2B 2=b 2−2ac a 2÷c 2a 2=b 2−2acc 2A −B =|√(A −B )2|=|√A 2+B 2−2AB|=|√b 2−2ac a 2−2ca|=√b 2−4ac a 2=√b 2−4ac|a |解(2):由韦达定理知{A +B =−ba A ×B =c a⟹ A 2+A +1+B 2+B +1=b 2−2ac a 2−ba+2=b 2−2ac−ab+2a 2a 2(A 2+A +1)(B 2+B +1)=c 2a 2+ac −bc a 2−b a +1+b 2−2ac a 2=a 2+b 2+c 2−ab −bc −caa 2∴此方程为a 2x 2−(b 2+2a 2−2ac −ab )x +(a 2+b 2+c 2−ab −bc −ca)=02. 证明恒等式:x 1n+1+x 2n+1=(x 1+x 2)(x 1n +x 2n )−x 1x 2(x 1n−1+x 2n−2) 证明:设x 1+x 2=A x 1x 2=B ,则x 1、x 2为方程x 2+Ax+B=0的两根∴{x 12=Ax 1−B x 22=Ax 2−B ⟹{x 1n+1=Ax 1n −Bx 1n−1x 2n+1=Ax 2n −Bx 2n−1⟹x 1n+1+x 2n+1=A (x 1n +x 1n)−B(x 1n−1+x 2n−1) ⟹x 1n+1+x 2n+1=(x 1+x 2)(x 1n +x 1n)− x 1x 2(x 1n−1+x 2n−1)3. 已知A 、B 是方程4ax 2−4ax +a +4=0的两个实数根○1适当选取实数a 的值,问能否使(A −2B)(B −2A)的值等于54 ○2求使A 2B2+B 2A 2的值为整数的整数a解○1:此必为一元二次方程,那么a ≠0 △=16a 2-16a(a+4)=-64a ≥0⟹a ≤0由韦达定理知{A +B =−1A ×B =a+44a 若(A −2B )(B −2A )= 54 ⟹ 9AB −2(A +B )2=54⟹9×a+44a−2=54⟹ 52a =36a +36⟹ a =9∵a ≤0又∵a =9>0∴无满足条件的a解○2 原式=(A+B )3−3AB (A+B )AB=1a+44a−3=4a a+4−3a+12a+4=1−16a+4所以a+4被16整除 所以a+4=±1、±2、±4、±8、±16且a ≤0所以满足条件的a=-3,-5,-2,-6,-8,-12,-204. 求证:不存在整数a 、b 、c 使得方程ax 2+bx +c =0与方程(a +1)x 2+(b +1)x +(c +1)=0都有两个整数根。
一、韦达定理[准备知识回顾]:1、一元二次方程)0(02≠=++a c bx ax 的求根公式为)04(2422≥--±-=ac b aac b b x 。
2、一元二次方程)0(02≠=++a c bx ax 根的判别式为:ac b 42-=∆(1)当b 2-4ac>0时,一元二次方程ax 2+bx+c=0(a ≠0)•有两个不相等实数根即x 1=242b b aca-+-,x 2=242b b ac a---.(2)当b-4ac=0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等实数根即x 1=x 2=2b a-. (3)当b 2-4ac<0时,一元二次方程ax 2+bx+c=0(a ≠0)没有实数根.反之:方程有两个不相等的实数根,则 ;方程有两个相等的实数根,则 ;方程没有实数根,则 。
[韦达定理相关知识]如果方程)0(02≠=++a c bx ax 的两个实数根是21,x x ,那么a b x x -=+21,acx x =21.➢ 韦达定理的逆定理:如果实数21,x x 满足acx x a b x x =-=+2121,,那么21,x x 是一元二次方程02=++c bx ax 的两个根.利用韦达定理的逆定理,可以比较简捷地检验解一元二次方程所得结果是否正确. ➢ 韦达定理的两个重要推论:推论1:如果方程02=++q px x 的两个根是21,x x ,那么p x x -=+21,q x x =21. 推论2:以两个数21,x x 为根的一元二次方程(二次项系数为1)是0)(21212=++-x x x x x x .知识重难点梳理韦达定理及一元二次方程的应用➢ 一元二次方程的根与系数的关系的应用:(1)验根,不解方程,利用韦达定理可以检验两个数是不是一元二次方程的两个根. (2)由已知方程的一个根,求出另一个根及未知系数.(3)不解方程,可以利用韦达定理求关于21,x x 的对称式的值,如,2221x x +,1121x x +221212,x x x x +2112121211,,x x x x x x x x ---等等.说明:如果把含21,x x 的代数式中21,x x 互换,代数式不变,那么,我们就称这类代数式为关于21,x x 的对称式.(4)已知方程的两根,求作这个一元二次方程. (5)已知两数的和与积,求这两个数.(6)已知方程两个根满足某种关系,确定方程中字母系数的值. (7)证明方程系数之间的特殊关系.(8)解决其它问题,如讨论根的范围,判定三角形的形状等.根的符号的讨论:利用韦达定理,还可进一步讨论根的符号,设一元二次方程02=++c bx ax )0(≠a 的两根为21,x x ,则:(1)当0,021>≥∆x x 且时,两根同号.①当0,0,02121>+>≥∆x x x x 且时,两根同为正数; ②当0,0,02121<+>≥∆x x x x 且时,两根同为负数. (2)当0,021<>∆x x 且时,两根异号.①当0,0,02121>+<>∆x x x x 且时,两根异号且正根的绝对值较大; ②当0,0,02121<+<>∆x x x x 且时,两根异号且负根的绝对值较大.题型一:由已知方程的一个根,求出另一个根及未知系数. 1、已知方程5x 2+kx-6=0 有一个根为2,求另一个根和k 的值变式训练1.已知方程02)1(32=+--x k x 的一个根是1,则另一个根是 ,=k 。
一元二次方程韦达定理的应用1. 引言一元二次方程,听上去挺复杂的,其实就是形如 (ax^2 + bx + c = 0) 的方程。
今天我们要聊聊韦达定理,这个数学小工具其实蛮厉害的,不仅能帮助我们解决问题,还能让我们觉得数学原来这么有趣!2. 韦达定理是什么?2.1 定义韦达定理是由法国数学家韦达提出的。
简单来说,这个定理告诉我们,给定一元二次方程 (ax^2 + bx + c = 0),它的两个解 (x_1) 和 (x_2) 有两个非常特别的关系。
首先,它们的和等于 (frac{b}{a});其次,它们的积等于 (frac{c}{a})。
听起来是不是很神奇?这其实是个非常有用的规律!2.2 为什么重要?韦达定理的伟大之处在于,它能帮助我们在不知道具体解的情况下,推导出一些有用的信息。
如果我们知道了方程的系数 (a)、(b) 和 (c),就能通过这些定理轻松搞清楚根的关系。
3. 应用示例3.1 找根比如,我们有一个方程 (2x^2 5x + 3 = 0)。
要是我们直接用韦达定理,我们可以先找出两个根的和和积。
根的和就是 (frac{5}{2} = frac{5}{2}),而根的积是 (frac{3}{2})。
这些信息有时候能帮助我们在心里大概知道解的范围,不用费劲去计算具体的根。
3.2 解方程假设你遇到一道题,给了你一个方程 (x^2 4x + 4 = 0),然后问你它的两个根是什么。
我们知道,根的和是 (frac{4}{1} = 4),根的积是 (frac{4}{1} = 4)。
那两个根可能就是(2) 和 (2),因为它们的和和积都符合韦达定理。
这种情况下,我们可以很快找出方程的解,省去不少功夫。
4. 小结总之,韦达定理虽然简单,却是解决一元二次方程的超级好帮手。
它不仅让我们轻松掌握了方程的根与系数之间的关系,还能帮助我们在复杂的数学题目中找到简便的解决方法。
希望你们在今后的数学学习中,多多利用这个小工具,让你的数学之旅更加顺畅!参考资料韦达定理基本概念实际应用案例与示例这样,我们就用一种轻松的方式,深入探讨了韦达定理的奇妙世界。
一元二次方程韦达定理、应用
一.选择题(共12小题)
1.(2020•邵阳)设方程x2﹣3x+2=0的两根分别是x1,x2,则x1+x2的值为()A.3B.﹣C.D.﹣2
2.若x1、x2是方程x2﹣5x+6=0的两个解,则代数式(x1+1)(x2+1)的值为()A.8B.10C.12D.14
3.关于x的一元二次方程x2﹣5x+2p=0的一个根为1,则另一根为()
A.﹣6B.2C.4D.1
4.(2020•雅安)如果关于x的一元二次方程kx2﹣3x+1=0有两个实数根,那么k的取值范围是()A.k B.k且k≠0C.k且k≠0D.k
5.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或4
6.(2020•如东县二模)若x1,x2是方程x2﹣3x﹣2=0的两个根,则x1+x2﹣x1•x2的值是()A.﹣5B.﹣1C.5D.1
7.(2020•仁寿县模拟)已知m、n是一元二次方程x2﹣3x﹣1=0的两个实数根,则=()A.3B.﹣3C.D.﹣
8.(2020•烟台模拟)已知a、b是一元二次方程x2+x﹣c=0的两根,且a+b﹣2ab=5,那么c等于()A.3B.﹣3C.2D.﹣2
9.(2019秋•潮州期末)已知x1,x2是一元二次方程x2+2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12+2x1=0C.x1x2=﹣2D.x1+x2=﹣2
10.(2020•广州)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个
11.(2020•泰兴市一模)一元二次方程x2﹣4x+2=0根的情况是()
A.无实数根B.有两个正根C.有一个正根,一个负根D.有两个负根12.(2020•文登区模拟)已知a,b是方程x2+3x﹣5=0的两个实数根,则a2﹣3b+2020的值是()A.2016B.2020C.2025D.2034
二.填空题(共4小题)
13.(2020•泰州)方程x2+2x﹣3=0的两根为x1、x2,则x1•x2的值为.
14.(2020春•崇川区期末)若方程x2﹣3x+2=0的两根是α、β,则α+αβ+β=.
15.(2020春•九龙坡区校级期末)已知α、β是方程x2+3x﹣8=0的两个实数根,则α2+β2的值为.16.(2020•眉山)设x1,x2是方程2x2+3x﹣4=0的两个实数根,则+的值为.
三.解答题(共6小题)
17.解下列方程(1)x2﹣8x+15=0;(2)﹣=1.
18.(2020•十堰)已知关于x的一元二次方程x2﹣4x﹣2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.
19.(2020•广东)已知关于x,y的方程组与的解相同.
(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b =0的解.试判断该三角形的形状,并说明理由.
20.(2020春•如东县期末)已知关于x的一元二次方程x2+(k﹣1)x+k﹣2=0.
(1)求证:方程总有两个实数根;
(2)若这个方程的两根为x1,x2,且满足x12﹣3x1x2+x22=1,求k的值.
21.(2018秋•和平区期末)如图,在Rt△ABC中,∠C=90°,AC=30cm,BC=21cm,动点P从点C 出发,沿CA方向运动,动点Q从点B出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.那么运动几秒时,它们相距15cm?
22.(2017秋•沈阳月考)某商场销售某种冰箱,冰箱每台进货价为2500元,销售价为2900元,平均每天能售出8台;为促销,经调查销售价每降低50元时,平均每天就能多售出4台,商场要想使冰箱的销售利润平均每天达到4800元,并尽可能的减少库存,那么冰箱的定价为多少元?。