钛锆的基本知识
- 格式:docx
- 大小:107.24 KB
- 文档页数:13
锆和钛材料的合成及其性能研究锆和钛是两种常见的金属材料,在工业、航空航天、医疗等领域广泛应用。
这两种金属材料的结构和性能均有许多优点,但也存在一些限制。
为了克服这些限制,人们开始研究合成锆和钛材料,并对其性能进行研究。
本文将介绍锆和钛材料的合成及其性能研究的相关内容。
一、锆材料的合成及其性能研究1.合成锆是一种贵重金属,其原材料比较珍贵,因此在锆材料的合成过程中,需要精密的控制条件。
常见的锆材料包括锆酸盐、锆合金等。
锆合金主要用于核反应堆的结构材料、航空航天器的结构材料、高速列车的结构材料等。
锆酸盐是锆材料的重要来源,主要通过氟氯氢法合成。
将氢氧化锆和氟氯化镀金进行反应,彻底去除杂质物质,得到锆酸盐。
2.性能研究锆是一种抗腐蚀材料,具有良好的机械性能和化学稳定性。
锆合金在高温环境中能够承受高压力,且不易氧化,因此被广泛应用于航空航天、核反应堆等领域。
同时,锆还具有一定的生物适应性,被应用于人工关节等医疗器械中。
二、钛材料的合成及其性能研究1.合成钛是一种具有广泛应用的金属材料,主要由钛矿石进行提取和冶炼。
钛的纯度越高,其性能也越好。
钛合金是钛材料的一种重要形式,钛合金是一种非常重要的结构材料。
2.性能研究钛具有良好的耐腐蚀性能、生物适应性、化学稳定性,同时还拥有极高的抗拉强度和屈服强度。
因此,钛材料在航空航天、医疗、能源等领域得到了广泛的应用。
总结锆和钛是两种常见的金属材料,拥有广泛的应用前景,同时也存在一些限制。
为了克服这些限制,人们开始研究合成锆和钛材料,并对其性能进行了研究。
经过研究,我们发现锆和钛材料不仅具有优良的机械性能和化学稳定性,还具有较好的耐腐蚀性能和生物适应性,因此在工业、医疗等领域都有广泛的应用前景。
锆合金和钛合金硬度-概述说明以及解释1.引言1.1 概述锆合金和钛合金是两种常见的结构材料,具有相似的性质和应用领域,但在硬度方面存在一定差异。
锆合金是一种以锆为主要成分的合金材料,具有良好的耐热性、耐腐蚀性和高强度。
钛合金则是一种以钛为主要成分的合金材料,具有高强度、轻量化、耐腐蚀等特点。
硬度作为材料力学性能的重要指标之一,对材料的使用性能和工程应用起着关键性的作用。
在硬度方面,锆合金相对于钛合金来说相对较低。
锆合金的硬度主要受到其晶体结构和成分的影响。
锆合金晶体结构为六方最密堆积结构,其晶体间的键结构较弱,因此锆合金的硬度相对较低。
而钛合金具有良好的热处理性能,其中添加不同的合金元素可以显著提高钛合金的硬度。
锆合金和钛合金由于其特殊的物理和化学性质,被广泛应用于航空航天、能源、医疗器械和汽车等领域。
锆合金在核工业中具有重要的应用,可以用于制作核反应堆组件和核燃料包壳,其优异的耐腐蚀性能和高温稳定性使其成为核工程领域的理想材料。
而钛合金由于其优良的强度和轻量化特点,被广泛应用于航空航天和航空制造领域,用于制作飞机结构件和发动机部件。
针对锆合金和钛合金的制备方法,随着科学技术的进步,不断涌现出更多的先进制备技术。
常见的锆合金制备方法包括熔炼法、粉末冶金法和等离子喷涂法等,通过合理的工艺参数可以得到不同组织和性能的锆合金。
而钛合金制备方法主要包括粉末冶金法、熔炼法和等离子喷涂法等,通过优化合金配比和工艺参数可以得到具有不同性能的钛合金材料。
总之,锆合金和钛合金作为常见的结构材料在硬度方面存在一定差异。
随着科学技术的发展和材料制备技术的进步,锆合金和钛合金的硬度特性将得到进一步的优化和改进,为其在不同领域的广泛应用提供更好的支持。
1.2 文章结构文章结构:本文分为引言、正文和结论三个部分。
引言部分包括概述、文章结构和目的三个小节。
首先在概述部分,介绍了锆合金和钛合金硬度这一话题的背景和重要性。
接着在文章结构部分,说明了本文的大纲和各个章节的内容安排,以及各章节之间的逻辑关系。
钛锆矿用途
钛锆矿是一种重要的矿物资源,广泛应用于多个领域。
1. 钛金属制造:钛锆矿中含有大量的钛元素,可以用于制造高
强度、耐腐蚀的钛合金材料。
这种材料广泛应用于航空、航天、船舶、汽车等领域。
2. 瓷器和陶瓷制造:钛锆矿可以用于制造高硬度、高耐磨的瓷
器和陶瓷。
这种材料在制造器皿、装饰品等方面得到广泛应用。
3. 人造宝石制造:钛锆矿中的锆元素可以用于制造人造宝石。
这种人造宝石具有良好的硬度、透明度和颜色,广泛用于珠宝、手表等产业。
4. 核能领域:钛锆矿可以用于制造核反应堆燃料棒,这种燃料
棒具有高热稳定性和较长的使用寿命,是核能发电的重要材料。
5. 医药领域:钛锆矿可以用于制造人工关节等医疗器械。
这种
人工关节具有良好的生物相容性和耐腐蚀性,可以帮助患者重获健康。
总之,钛锆矿在工业、医疗、珠宝等多个领域都有广泛的应用,具有重要的经济和社会意义。
- 1 -。
锆钛矿是一种常见的重矿物,主要含有锆石(ZrSiO4)和金红石(FeTiO3)。
在工业生产中,锆钛矿是一种非常重要的原材料,用于制造陶瓷、玻璃、铸造等产品。
因此,对锆钛矿品位的了解至关重要。
一、锆钛矿品位的定义锆钛矿品位是指锆钛矿中锆石和金红石的含量。
通常以锆石和金红石的总量为基础,计算出锆钛矿的品位,以百分比表示。
例如,锆钛矿品位为50%,表示锆钛矿中锆石和金红石的总含量占锆钛矿重量的50%。
二、锆钛矿品位的影响因素1.地质条件锆钛矿的分布与地质条件密切相关。
一般来说,锆钛矿主要分布在形成于中、新生代的碱性岩体和超基性岩体中。
这些岩体通常富含高品位的锆钛矿矿床。
2.采矿技术锆钛矿的品位还受到采矿技术的影响。
采矿技术的不同,会对锆钛矿的品位产生影响。
例如,采用浮选法可以提高锆钛矿的品位,并使得难以分离的矿物质量得到提高。
3.地质环境地质环境也是锆钛矿品位的一个重要影响因素。
锆钛矿矿床的形成与地球表层物质循环和某些地质过程密切相关。
例如,在富含铁、钛元素的碱性岩体中,锆钛矿矿床常常形成。
而在一些特殊的地质环境中,锆钛矿的品位会受到严重影响。
三、锆钛矿品位的检测方法锆钛矿品位的检测方法主要有以下几种:1.化学分析法化学分析法是锆钛矿品位检测中最常用的方法。
该方法通过将锆钛矿样品溶解,并使用化学试剂进行反应,最终得出锆石和金红石的含量。
2.X射线荧光光谱法X射线荧光光谱法是通过测量锆钛矿样品中的元素含量来确定锆钛矿品位的一种方法。
该方法不需要对样品进行溶解,因此较为方便,但需要专业的仪器进行测试。
3.红外光谱法红外光谱法是一种基于样品分子振动和转动特性的检测方法。
使用该方法可以对锆钛矿样品的成分进行分析,并计算出锆钛矿的品位。
四、锆钛矿品位的应用锆钛矿广泛应用于陶瓷、玻璃、铸造等工业领域。
其中,陶瓷和玻璃制造是锆钛矿最主要的应用领域。
锆钛矿在陶瓷和玻璃制造中起到增强材料硬度和耐磨性的作用。
此外,锆钛矿还可以用于制造高温合金、催化剂等产品。
钛锆钝化工艺研究报告
钛锆合金是一种广泛应用于航空、航天、石油、化工和医疗等领域的高强度、耐腐蚀性能优良的材料。
然而,由于钛锆合金的表面活性较高,容易受到外界环境的侵蚀。
钝化工艺是通过表面处理来改善钛锆合金的耐腐蚀性能,提高其使用寿命。
本次研究旨在探究钛锆钝化工艺对其耐腐蚀性能的影响。
实验采用了不同的钝化剂和工艺参数,对钛锆合金进行了表面处理,并进行了耐蚀性测试。
首先,实验制备了一种钛锆合金样品,并在室温下进行了表面处理。
钝化剂方面,我们选择了硝酸、硫酸和酒石酸作为试验剂,分别对样品进行了处理。
处理时间分别为30分钟、60分钟、90分钟三种情况。
处理后,对样品进行了光学显微镜观察、X射线衍射分析和电化学测试。
实验结果表明,不同的钝化剂和处理时间对钛锆合金的表面形貌、晶体结构和耐蚀性能有明显的影响。
硝酸钝化剂处理可以获得较为光滑的表面,并且能够形成一层致密的氧化层,这有利于提高钛锆合金的耐蚀性能。
硫酸和酒石酸钝化剂处理后的样品表面较为粗糙,氧化层形成不完整,导致耐蚀性能略差。
此外,处理时间对钛锆合金的钝化效果也有一定的影响。
处理时间过短时,钝化效果不明显;处理时间过长时,可能会导致氧化层过厚,反而降低了材料的耐蚀性能。
因此,合适的处理时间是保证钝化效果的关键。
综上所述,钛锆钝化工艺对其耐蚀性能具有重要的影响。
硝酸钝化剂处理可获得最佳的钝化效果,其形成的致密氧化层能够有效保护钛锆合金的表面免受腐蚀侵蚀。
适当选择合适的处理时间也是保证钝化效果的关键。
本次研究为进一步优化钛锆钝化工艺提供了可靠的理论基础。
钛合金中zr元素的作用
钛合金是一种重要的金属材料,其中的锆元素在钛合金中起到了重要的作用。
本文将从不同的角度探讨锆元素在钛合金中的作用。
锆元素可以提高钛合金的强度和硬度。
锆元素与钛元素形成的固溶体具有较高的强度和硬度,这使得钛合金具有出色的力学性能。
锆元素的加入可以有效地阻碍钛合金的晶体生长,使其晶界更加细小和均匀,从而提高材料的强度和硬度。
锆元素可以改善钛合金的耐腐蚀性能。
锆元素在钛合金中可以形成致密的氧化物膜,并且这种氧化物膜具有较好的耐腐蚀性能,能够有效地防止钛合金与外界环境的接触,减少了钛合金的腐蚀速度。
因此,锆元素的加入可以提高钛合金的耐腐蚀性能,延长其使用寿命。
锆元素还可以改善钛合金的加工性能。
由于锆元素的加入可以细化钛合金的晶粒,使其具有更好的塑性和可锻性。
这使得钛合金在加工过程中更容易塑性变形,提高了其可锻性和可塑性。
同时,锆元素还可以降低钛合金的热变形温度,减少加工过程中的变形阻力,提高加工效率。
锆元素还可以改善钛合金的热稳定性。
锆元素的加入可以阻止钛合金晶粒的长大,减缓了晶粒的长大速率,提高了钛合金的热稳定性。
这使得钛合金在高温环境下具有更好的性能,能够保持其原有的力
学性能和耐腐蚀性能。
锆元素在钛合金中起到了多方面的作用。
它不仅可以提高钛合金的强度和硬度,改善其耐腐蚀性能,还可以改善其加工性能和热稳定性。
因此,在钛合金的研发和应用中,锆元素的加入是非常重要的。
随着对钛合金性能要求的不断提高,锆元素在钛合金中的作用将得到更加深入的研究和应用。
钛材、ta2、镍材、钽材、锆材和哈氏合金是材料科学领域中常见的材料,它们在工业和科研应用中发挥着重要作用。
本文将对这些材料进行解释,从深度和广度的角度来全面评估这些材料的特性和应用,并根据要求进行撰写有价值的文章。
我们来对这些材料进行简要的介绍。
钛材指的是钛合金,具有高强度、低密度、耐腐蚀等优点,广泛应用于航空航天、生物医药、化工等领域。
ta2是常见的钛合金牌号之一,具有良好的可加工性和耐蚀性,被广泛应用于航空器结构件、汽车零部件等领域。
镍材是指镍基合金,具有耐高温、耐腐蚀、抗氧化等特点,被广泛应用于航空发动机、化工设备、核工程等领域。
钽材是指钽金属,具有高熔点、良好的耐腐蚀性和机械性能,被广泛应用于电子器件、化工设备等领域。
锆材是指锆合金,具有优良的耐腐蚀性和放射性惰性,被广泛应用于核工程、化工设备等领域。
哈氏合金是由镍、铝、钴、铁等金属组成的高温合金,具有优异的高温强度和抗氧化性能,被广泛应用于航空航天、能源领域。
接下来,我们将从深度和广度的角度来探讨这些材料的特性、应用和未来发展趋势。
钛材具有强度高、重量轻、耐腐蚀等特点,随着航空航天、生物医药、汽车制造等领域的发展,其应用前景广阔。
ta2作为常见的钛合金牌号,其加工性和耐蚀性对于工程应用至关重要,未来可望在航空器结构件、人工骨骼等领域有所突破。
镍材的耐高温、耐腐蚀等特性,使其在航空发动机、化工设备、核工程等领域有着重要应用,未来的发展方向主要集中在高温合金、多相合金等方面。
钽材作为一种稀有金属,其在电子器件、化工设备等领域有着独特的应用,未来的发展主要将围绕着资源有效利用、新材料开发等方面展开。
锆材因其良好的耐腐蚀性和放射性惰性,在核工程、化工设备等领域有着广阔的应用前景,未来的发展主要将聚焦于高纯度锆材、新型锆合金等方面。
哈氏合金作为高温合金中的一种,其在航空航天、能源领域有着重要的应用,未来的发展将主要围绕着高温合金的合金设计、制备工艺等方面展开。
钛的基本性质原子结构钛位于元素周期表中ⅣB族,原子序数为22,原子核由22个质子和20-32个中子组成,核外电子结构排列为1S22S22P63S23D24S2。
原子核半径5x10-13厘米。
物理性质钛的密度为4.506-4.516克/立方厘米(20℃),熔点1668±4℃,熔化潜热3.7-5.0千卡/克原子,沸点3260±20℃,汽化潜热102.5-112.5千卡/克原子,临界温度4350℃,临界压力1130大气压。
钛的导热性和导电性能较差,近似或略低于不锈钢,钛具有超导性,纯钛的超导临界温度为0.38-0.4K。
在25℃时,钛的热容为0.126卡/克原子·度,热焓1149卡/克原子,熵为7.33卡/克原子·度,金属钛是顺磁性物质,导磁率为1.00004。
钛具有可塑性,高纯钛的延伸率可达50-60%,断面收缩率可达70-80%,但强度低,不宜作结构材料。
钛中杂质的存在,对其机械性能影响极大,特别是间隙杂质(氧、氮、碳)可大大提高钛的强度,显著降低其塑性。
钛作为结构材料所具有的良好机械性能,就是通过严格控制其中适当的杂质含量和添加合金元素而达到的。
化学性质钛在较高的温度下,可与许多元素和化合物发生反应。
各种元素,按其与钛发生不同反应可分为四类:第一类:卤素和氧族元素与钛生成共价键与离子键化合物;第二类:过渡元素、氢、铍、硼族、碳族和氮族元素与钛生成金属间化物和有限固溶体;第三类:锆、铪、钒族、铬族、钪元素与钛生成无限固溶体;第四类:惰性气体、碱金属、碱土金属、稀土元素(除钪外),锕、钍等不与钛发生反应或基本上不发生反应。
与化合物的反应:◇HF和氟化物氟化氢气体在加热时与钛发生反应生成TiF4,反应式为(1);不含水的氟化氢液体可在钛表面上生成一层致密的四氟化钛膜,可防止HF浸入钛的内部。
氢氟酸是钛的最强熔剂。
即使是浓度为1%的氢氟酸,也能与钛发生激烈反应,见式(2);无水的氟化物及其水溶液在低温下不与钛发生反应,仅在高温下熔融的氟化物与钛发生显著反应。
Ti+4HF=TiF4+2H2+135.0千卡(1)2Ti+6HF=2TiF4+3H2 (2)◇HCl和氯化物氯化氢气体能腐蚀金属钛,干燥的氯化氢在>300℃时与钛反应生成TiCl4,见式(3);浓度<5%的盐酸在室温下不与钛反应,20%的盐酸在常温下与钛发生瓜在生成紫色的TiCl3,见式(4);当温度长高时,即使稀盐酸也会腐蚀钛。
各种无水的氯化物,如镁、锰、铁、镍、铜、锌、汞、锡、钙、钠、钡和NH4离子及其水溶液,都不与钛发生反应,钛在这些氯化物中具有很好的稳定性。
Ti+4HCl=TiCl4+2H2+94.75千卡(3)2Ti+6HCl=TiCl3+3H2 (4)◇硫酸和硫化氢钛与<5%的稀硫酸反应后在钛表面上生成保护性氧化膜,可保护钛不被稀酸继续腐蚀。
但>5%的硫酸与钛有明显的反应,在常温下,约40%的硫酸对钛的腐蚀速度最快,当浓度大于40%,达到60%时腐蚀速度反而变慢,80%又达到最快。
加热的稀酸或50%的浓硫酸可与钛反应生成硫酸钛,见式(5),(6),加热的浓硫酸可被钛还原,生成SO2,见式(7)。
常温下钛与硫化氢反应,在其表面生成一层保护膜,可阻止硫化氢与钛的进一步反应。
但在高温下,硫化氢与钛反应析出氢,见式(8),粉末钛在600℃开始与硫化氢反应生成钛的硫化物,在900℃时反应产物主要为TiS,1200℃时为Ti2S3。
Ti+H2SO4=TiSO4+H2 (5) 2Ti+3H2SO4=Ti2(SO4)3+H2 (6)2Ti+6H2SO4=Ti2(SO4)3+3SO2+6H2O+202千卡(7)Ti+H2S=TiS+H2+70千卡(8)◇硝酸和王水致密的表面光滑的钛对硝酸具有很好的稳定性,这是由于硝酸能快速在钛表面生成一层牢固的氧化膜,但是表面粗糙,特别是海绵钛或粉末钛,可与次、热稀硝酸发生反应,见式(9)、(10),高于70℃的浓硝酸也可与钛发生反应,见式(11);常温下,钛不与王水反应。
温度高时,钛可与王水反应生成TiCl2。
3Ti+4HNO3+4H2O=3H4TiO4+4NO (9)3Ti+4HNO3+H2O=3H2TiO3+4NO (10)Ti+8HNO3=Ti(NO3)4+4NO2+4H2O (11)综上所述,钛的性质与温度及其存在形态、纯度有着极其密切的关系。
致密的金属钛在自然界中是相当稳定的,但是,粉末钛在空气中可引起自燃。
钛中杂质的存在,显著的影响钛的物理、化学性能、机械性能和耐腐蚀性能。
特别是一些间隙杂质,它们可以使钛晶格发生畸变,而影响钛的的各种性能。
常温下钛的化学活性很小,能与氢氟酸等少数几种物质发生反应,但温度增加时钛的活性迅速增加,特别是在高温下钛可与许多物质发生剧烈反应。
钛的冶炼过程一般都在800℃以上的高温下进行,因此必须在真空中或在惰性气氛保护下操作。
金属铁、镁、铝、铅、锌、铜等广泛应用,为人们熟悉。
然而近年来,随着科学技术的飞速发展,上述金属已不能满足现代科学技术的需要。
钛却闪烁着时代的光辉,成为金属中的新秀。
钛及钛的化合物、合金究竟有哪些特性和用途呢?是人们应该了解的问题。
一、钛的发现早在1791年,英国门那新(Meneccin)山谷中静静地躺着一种黑色的矿砂,无人问津。
牧师格利高尔(w.Gregor)是位矿物学的爱好者,当他在自己的教区内游览时,发现并带回了这种黑色的东西,经过分析,他宣称找到了一种未知的新金属。
为了纪念黑色矿砂的发现地,格利高尔把这种金属称为Menaccin,把矿砂称为门那新矿(Menaccite),也就是现在所说的钛铁矿(FeTiO3)1795年,德国科学家克拉普罗兹(铀的发现者)从匈牙利带回的矿物中成功地分离出一种新元素的氧化物,并很快确定他和格利高尔发现的是同一种元素。
这种矿物就是钛的氧化物—金红石(TiO2)。
克拉普罗兹把此元素命名为titanium(钛)取自神话中的“泰坦”(Titans),意指大地之神的儿子。
二、钛的存在钛在地壳中的丰度为0.63% ,居元素分布序列中的第十位,仅次于氧、硅、铝、铁、钙、钠、钾、镁、氢,比常见的锌、铅、镍、铜的总和还要多16倍,但大部分处于分散状态。
主要的矿物有金红石(TiO2)和钛铁矿(FeTiO3)组成复杂的钒钛铁矿。
我国钛蕴藏量居全球之首,仅四川攀枝花地区的矾钛铁矿,储量约15亿吨,占全国已探明储量的97% 。
三、钛的冶炼钛在1791年被发现,而第一次制得纯净的钛却是在1910年,中间经历了一百余年。
原因在于:钛在高温下性质十分活泼,很易和氧、氮、碳等元素化合,要提炼出纯钛需要十分苛刻的条件。
工业上常用硫酸分解钛铁矿的方法制取二氧化钛,再由二氧化钛制取金属钛。
浓硫酸处理磨碎的钛铁矿(精矿),发生下面的化学反应:FeTiO3+3H2SO4 == Ti(SO4)2+FeSO4+3H2OFeTiO3+2H2SO4 == TiOSO4+FeSO4+2H2OFeO+H2SO4 == FeSO4+H2OFe2O3+3H2SO4 == Fe2(SO4)3+3H2O为了除去杂质Fe2(SO4)3,加入铁屑,Fe3+ 还原为Fe2+,然后将溶液冷却至273K以下,使得FeSO4·7H2O(绿矾)作为副产品结晶析出。
Ti(SO4)2和TiOSO4水解析出白色的偏钛酸沉淀,反应是:Ti(SO4)2+H2O == TiOSO4+H2SO4TiOSO4+2H2O == H2TiO3+H2SO4锻烧偏钛酸即制得二氧化钛:H2TiO3 == TiO2+H2O工业上制金属钛采用金属热还原法还原四氯化钛。
将TiO2(或天然的金红石)和炭粉混合加热至1000~1100K,进行氯化处理,并使生成的TiCl4,蒸气冷凝。
TiO2+2C+2Cl2=TiCl4+2CO­在1070K 用熔融的镁在氩气中还原TiCl4可得多孔的海绵钛:TiCl4+2Mg=2MgC12+Ti这种海绵钛经过粉碎、放入真空电弧炉里熔炼,最后制成各种钛材。
四、钛及钛合金的特性、用途纯钛是银白色的金属,它具有许多优良性能。
钛的密度为4.54g/cm3,比钢轻43% ,比久负盛名的轻金属镁稍重一些。
机械强度却与钢相差不多,比铝大两倍,比镁大五倍。
钛耐高温,熔点1942K,比黄金高近1000K ,比钢高近500K。
钛属于化学性质比较活泼的金属。
加热时能与O2、N2、H2、S和卤素等非金属作用。
但在常温下,钛表面易生成一层极薄的致密的氧化物保护膜,可以抵抗强酸甚至王水的作用,表现出强的抗腐蚀性。
因此,一般金属在酸、碱、盐的溶液中变得千疮百孔而钛却安然无恙。
液态钛几乎能溶解所有的金属,因此可以和多种金属形成合金。
钛加入钢中制得的钛钢坚韧而富有弹性。
钛与金属Al、Sb、Be、Cr、Fe等生成填隙式化合物或金属间化合物。
钛合金制成飞机比其它金属制成同样重的飞机多载旅客100多人。
制成的潜艇,既能抗海水腐蚀,又能抗深层压力,其下潜深度比不锈钢潜艇增加80% 。
同时,钛无磁性,不会被水雷发现,具有很好的反监护作用。
钒具有“亲生物“’性。
在人体内,能抵抗分泌物的腐蚀且无毒,对任何杀菌方法都适应。
因此被广泛用于制医疗器械,制人造髋关节、膝关节、肩关节、胁关节、头盖骨,主动心瓣、骨骼固定夹。
当新的肌肉纤维环包在这些“钛骨”上时,这些钛骨就开始维系着人体的正常活动。
钛在人体中分布广泛,正常人体中的含量为每70kg体重不超过15mg,其作用尚不清楚。
但钛能刺激吞噬细胞,使免疫力增强这一作用已被证实。
五、钦的化合物及用途重要的钛化合物有:二氧化钛(TiO2)、四氯化钛(TiCl4)、偏钛酸钡(BaTiO3)。
纯净的二氧化钛是白色粉末,是优良的白色颜料,商品名称“钛白”。
它兼有铅白(PbCO3)的遮盖性能和锌白(ZnO)的持久性能。
因此,人们常把钛白加在油漆中,制成高级白色油漆;在造纸工业中作为填充剂加在纸桨中;纺织工业中作为人造纤维的消光剂;在玻璃、陶瓷、搪瓷工业上作为添加剂,改善其性能;在许多化学反应中用作催化剂。
在化学工业日益发展的今天,二氧化钛及钛系化合物作为精细化工产品,有着很高的附加价值,前景十分诱人。
四氯化钛是一种无色液体;熔点250K、沸点409K,有制激性气味。
它在水中或潮湿的空气中都极易水解,冒出大量的白烟。
TiCl4+3H2O == H2TiO3+4HCl因此TiCl4在军事上作为人造烟雾剂,犹其是用在海洋战争中。
在农业上,人们用TiCl4形成的浓雾复盖地面,减少夜间地面热量的散失,保护蔬菜和农作物不受严寒、霜冻的危害。
将TiO2和BaCO3一起熔融制得偏钛酸钡:TiO2+BaCO3 == BaTiO3十CO2­人工制得的BaTiO3具有高的介电常数,由它制成的电容器有较大的容量,更重要的是BaTiO3具有显著的“压电性能”,其晶体受压会产生电流,一通电,又会改变形状。