计量数据修约的方法
- 格式:pdf
- 大小:74.03 KB
- 文档页数:2
计量数据修约的方法1.四舍五入法:四舍五入法是最常见的修约方法之一、通过将小数点向右移动一定位数,然后根据小数点后的数值进行取舍,如果小数点后的数值小于5,则向下舍去,否则向上进位。
2.尾数截位法:尾数截位法是将测量结果截断为所需位数的小数位数。
这种方法不考虑最后一位的取舍规则,直接将后面的数字截断。
3.最近估数法:最近估数法是指根据测量数据的特征,选择最接近且易于理解的数作为修约结果。
例如,对于测量一段距离为3.57米,可以修约为3.6米,因为3.6更接近3.57且易于理解。
4.有效数位法:有效数位法是根据测量数据的精确性和测量仪器的分辨率,选择有效数位来修约数据。
有效数位是指测量结果中从最高有效位开始向右的所有位数。
5.分段修约法:分段修约法是根据数字的位置和大小,对测量结果进行取舍。
例如,对于位于0至4之间的数字,向下取整;对于位于5至9之间的数字,向上取整。
6.固定标度修约法:固定标度修约法适用于一些固定的度量范围,例如温度测量中的摄氏度和华氏度。
这种方法将测量结果修约为最接近的固定标度。
7.不确定度修约法:不确定度修约法结合了测量结果的不确定度和测量仪器的分辨率,选择合适的取舍规则。
不确定度是指测量结果的范围或误差。
8.基数修约法:基数修约法基于数字的基数进行修约。
例如,对于10的倍数,可以保留个位数,对于100的倍数,可以保留十位数。
总结起来,计量数据修约的方法有四舍五入法、尾数截位法、最近估数法、有效数位法、分段修约法、固定标度修约法、不确定度修约法和基数修约法等。
在实际应用中,应根据测量数据的具体情况选择合适的修约方法,以提高数据的准确性和可信度。
同时,需要注意修约过程中可能引入的误差,并根据实际情况进行适当的调整。
数值修约规则与判定GBT8170GBT8170是中国国家标准化管理委员会发布的《数值修约规则与判定》标准。
该标准适用于各类测量、计量和计算过程中对数值修约的要求,规定了数值修约的原则与方法,旨在提高测量与计算结果的准确性和可靠性。
一、数值修约的原则:1.单位进位原则:按照量纲和精度要求,向最接近的单位进位修约。
2.显著数字原则:按照有效数字的要求,以保留最少的有效数字修约,并保持测量结果与实际物理量的近似程度。
3.四舍六入五留双原则:修约位的数值等于5时,舍入位置的数值为偶数则舍去,为奇数则进位。
二、数值修约的方法:1.四舍五入法:修约位的数值大于等于5时进位,小于5时舍去。
2.进位舍去法:修约位的数值大于等于5时进位,小于5时舍去修约位。
3.进位取整法:修约位的数值大于0时进位,等于0时截断修约位。
4.直接舍去法:直接舍去修约位。
5.向零舍入法:修约位的数值大于等于0时进位,小于0时截断修约位。
三、数值修约的判定:1.当修约位之后有其他位的数值时,需根据修约规则进行舍入操作。
2.当修约位之后没有其他位的数值时,不再进行舍入操作。
四、数值修约的应用:1.在测量实验中,将测量仪器的刻度值修约到合适的位数,以获得尽可能准确的测量结果。
2.在科学计算中,进行大数运算或复杂计算时,需要按照数值修约规则对计算结果进行舍入,以避免产生过多的计算误差。
3.在统计分析中,对测量数据进行数值修约,以准确表示各项指标的数值,并保持数据之间的相对大小关系。
总的来说,GBT8170《数值修约规则与判定》标准规定了数值修约的原则、方法和判定,对于各类测量、计量和计算过程中的数值修约要求提供了明确的指导,确保测量与计算结果的准确性和可靠性。
这对于各行各业的工程技术人员和科研人员来说都是非常重要的。
通过遵循该标准,可以更好地进行测量和计算,并在结果处理中减少误差和不确定性的产生,提高数据的可靠性和可比性。
中华人民共和国国家标准数值修约规则在进行具体的数字运算前,按照一定的规则确定一致的位数,然后舍去某些数字后面多余的尾数的过程被称为数字修约,指导数字修约的具体规则被称为数字修约规则。
科技工作中测定和计算得到的各种数值,除另有规定者外,修约时应按照国家标准文件《数值修约规则》进行。
数字修约时应首先确定“修约间隔”、“有效位数”,即保留位数。
一经确定,修约值必须是“修约间隔”的整数倍,保留至“有效位数”。
然后指定表达方式,即选择根据“修约间隔”保留到指定位数,或将数值修约成n位“有效位数”。
使用以下“进舍规则”进行修约:1. 拟舍弃数字的最左一位数字小于5时则舍去,即保留的各位数字不变。
2.拟舍弃数字的最左一位数字大于5;或等于5,而其后跟有并非全部为0的数字时则进一即保留的末位数字加1。
(指定“修约间隔”或“有效位数”明确时,以指定位数为准。
)3.拟舍弃数字的最左一位数字等于5,而右面无数字或皆为0时,若所保留的末位数字为奇数则进一,为偶数(包含0)则舍弃。
4.负数修约时,取绝对值按照上述1~3规定进行修约,再加上负号。
不允许连续修约数值修约简明口诀:「4舍6入5看右,5后有数进上去,尾数为0向左看,左数奇进偶舍弃」。
现在被广泛使用的数字修约规则主要有四舍五入规则和四舍六入五留双规则。
四舍五入规则四舍五入规则是人们习惯采用的一种数字修约规则。
四舍五入规则的具体使用方法是:在需要保留有效数字的位次后一位,逢五就进,逢四就舍。
例如:将数字2.1875精确保留到千分位(小数点后第三位),因小数点后第四位数字为5,按照此规则应向前一位进一,所以结果为2.188。
同理,将下列数字全部修约为四位有效数字,结果为:18.06501——18.07 0.58346——0.583516.4050——16.4027.1850——27.18按照四舍五入规则进行数字修约时,应一次修约到指定的位数,不可以进行数次修约,否则将有可能得到错误的结果。
中华人民共和国国家标准数值修约规则在进行具体的数字运算前,按照一定的规则确定一致的位数,然后舍去某些数字后面多余的尾数的过程被称为数字修约,指导数字修约的具体规则被称为数字修约规则。
科技工作中测定和计算得到的各种数值,除另有规定者外,修约时应按照国家标准文件《数值修约规则》进行。
数字修约时应首先确定“修约间隔”、“有效位数”,即保留位数。
一经确定,修约值必须是“修约间隔”的整数倍,保留至“有效位数”。
然后指定表达方式,即选择根据“修约间隔”保留到指定位数,或将数值修约成n位“有效位数”。
使用以下“进舍规则”进行修约:1. 拟舍弃数字的最左一位数字小于5时则舍去,即保留的各位数字不变。
2.拟舍弃数字的最左一位数字大于5;或等于5,而其后跟有并非全部为0的数字时则进一即保留的末位数字加1。
(指定“修约间隔”或“有效位数”明确时,以指定位数为准。
)3.拟舍弃数字的最左一位数字等于5,而右面无数字或皆为0时,若所保留的末位数字为奇数则进一,为偶数(包含0)则舍弃。
4.负数修约时,取绝对值按照上述1~3规定进行修约,再加上负号。
不允许连续修约数值修约简明口诀:「4舍6入5看右,5后有数进上去,尾数为0向左看,左数奇进偶舍弃」。
现在被广泛使用的数字修约规则主要有四舍五入规则和四舍六入五留双规则。
四舍五入规则四舍五入规则是人们习惯采用的一种数字修约规则。
四舍五入规则的具体使用方法是:在需要保留有效数字的位次后一位,逢五就进,逢四就舍。
例如:将数字2.1875精确保留到千分位(小数点后第三位),因小数点后第四位数字为5,按照此规则应向前一位进一,所以结果为2.188。
同理,将下列数字全部修约为四位有效数字,结果为:18.06501——18.07 0.58346——0.583516.4050——16.4027.1850——27.18按照四舍五入规则进行数字修约时,应一次修约到指定的位数,不可以进行数次修约,否则将有可能得到错误的结果。
数据修约⼀、修约⽅法及数值运算规则1、数值修约规则(GB8170—87)本标准适⽤于科学技术与⽣产活动中试验测定和计算得出的各种数值.需要修约时,除另有规定者外,应按本标准给出的规则进⾏。
1 术语1.1修约间隔系确定修约保留位数的⼀种⽅式.修约间隔的数值⼀经确定,修约值即应为该数值的整数倍。
例1:如指定修约间隔为0.1,修约值即应在0.1的整数倍中选取,相当于将数值修约到⼀位⼩数。
例2:如指定修约间隔为100,修约值即应在100的整数倍中选取,相当于将数值修约到 “ 百 ”数位。
1.2 有效位数对没有⼩数位且以若⼲个零结尾的数值,从⾮零数字最左⼀位向右数得到的位数减去⽆效零(即仅为定位⽤的零)的个数;对其他⼗进位数,从⾮零数字最左⼀位向右数⽽得到的位数,就是有效位数。
例1:35000,若有两个⽆效零,则为三位有效位数,应写为350×10 2 ;若有三个⽆效零,则为两位有效位数,应写为35×10 3 。
例2:3.2,0.32,0.032,0.0032均为两位有效位数;0.0320为三位有效位数。
例3:12.490为五位有效位数;10.00为四位有效位数。
1.3 0.5单位修约(半个单位修约)指修约间隔为指定数位的0.5单位,即修约到指定数位的0.5单位。
例如,将60.28修约到个数位的0.5单位,得60.5(修约⽅法见本规则5.1)1.4 0.2单位修约指修约间隔为指定数位的0.2单位,即修约到指定数位的0.2单位。
例如,将832修约到 “ 百 ” 数位的0.2单位,得840(修约⽅法见本规则5.2)2 确定修约位数的表达⽅式2.1 指定数位a. 指定修约间隔为10 n (n为正整数),或指明将数值修约到n位⼩数;b. 指定修约间隔为1,或指明将数值修约到个数位;c. 指定修约间隔为10 n ,或指明将数值修约到10 n 数位(n为正整数),或指明将数值修约到“ ⼗ ” ,“ 百 ” ,“ 千 ” ……数位。
计量数据修约的方法
要得到准确可靠的数据,除了准确认真的测量外,对测量结果进行正确的化整和修约也是非常重要的。
1. 数值的修约基本方法是遵循四舍六入偶数法则,其修约为:
1) 要舍去的最左边一位数值小于5时,则舍去;
2) 要舍去的最左边一位数值大于或等于5时,而右边跟有并非全部为零的数值时,则进一;
3) 要舍去的最左边一位数值等于5时,而以右边无数值或跟有全部为零的数值时,若保留的末尾数值为奇数则进一,为偶数则舍去;
2. 在数据处理时,遵守上述法则的同时还应该注意一个修约的原则:
1) 应将被修约的数向最近(即差值最小)的一个允许修约值舍入;
2) 当被修约的数值与上下两个修约值的间隔相等,则按以下原则处理:
a、 当按1的倍数修约(常规修约)时,末尾数保持或进为偶数(奇进偶不进);
b、 当按2的倍数修约(0.2单位修约)时,修约的末位数应使末两位数能被4整除;
c、 当按5的倍数修约时,2.5应舍去,7.5应进为10;
3. 在进行常规修约时,只需要进行四舍六入偶数法则即可方便处
理。
但是按2、5的整数倍修约时,就要特别注意啦,一不小心就会弄错,所以介绍一种常用的方法——除数修约法。
具体步骤如下:
a、 将要修约的检定结果数据除以修约间隔的有效数值2或5;
b、 将所得的商按数值1进舍规则进行修约;
c、 将修约后的数据乘以2或5,则所得的积即为结果数据。
如对1.45按5的倍数修约至小数点后一位,不注意就会修约成1.4,但正确答案是1.5。
此时用上述方法则能很快得出:
1.45÷5=0.29,按常规修约后为0.3,0.3×5=1.5;
再如1.30按2的倍数修约至小数点后一位,不注意就会修约成1.4,但正确答案是1.2,
1.3÷2=0.65,按常规修约(奇进偶不进)后为0.6,0.6×2=1.2。
在实际工作中,大多数计量器具的允许误差(准确度等级)一般都是按1、2、5的整数倍进行修约,如果出现1、2、5倍以外的情况,《计量检定规程》有规定的按《规程》执行,无要求的,计量规定向等级高的看齐,如3.0级的按2.0级靠近,按2的整数倍修约。
如1.6级的压力表就是向1.5级靠近,即按5的倍数修约。