运筹学及其应用4.3 对偶单纯形法
- 格式:pdf
- 大小:22.36 KB
- 文档页数:6
运筹学单纯形法
运筹学单纯形法,又称单纯性法,是一种用于求解线性规划问题的数学方法,它在运筹学中发挥着重要作用。
它主要应用于决策及资源分配问题,可以帮助决策者更好地把握资源的优化配置,并寻求最优解。
单纯性法是以线性规划问题作为理论基础,它是将该问题转化为一系列形如Ax=b的线性方程组的运筹学方法。
在这个方程组通过调整方程中的系数和右面常数而变换为形如Cx≤d的不等式形式,而这种不等式系统称为单纯性约束条件。
单纯性法从不等式中寻找一系列基向量,并通过改变基向量来实现改变不等式的求解方程之间的关系,从而求出最优解的问题。
传统的单纯性法分为有界单纯性和无界单纯性两种情形。
无界单纯性以简单费用曲线方法、扩展的简单费用曲线方法和增广次数法三大类。
有界单纯性主要是对对角单纯性和非对角单纯性这两类单纯性系统分别使用不同的方法进行求解。
单纯性求解方法在线性规划问题求解中具有重要应用,它能通过求解线性规划问题中的一系列互不相关的子问题来求出最优解。
使用该方法,可以以最少的成本达到最优的收益,它包括费用最低优化、网络流优化、全格研究和数学优化模型等。
应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。
引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。
现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。
但假如现在我们不⽣产产品,⽽是要把原料都卖掉。
设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。
对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。
运筹学---单纯形法单纯形法是一种解线性规划问题的有效算法。
在这个问题中,我们寻找一组决策变量,以便最大化或最小化一个线性目标函数,同时满足一系列线性限制条件。
单纯形法通过暴力搜索可行解并逐步优化目标函数来求解该问题。
单纯形法的主要思想是从一个初始可行解开始,并通过迭代来逐步移动到更优的解。
在每一步迭代中,算法将当前解移动到一个相邻的顶点,直到找到一个优于当前解的顶点。
具体操作包括选择一个非基变量,并将其作为入基变量,同时选择一个基变量并将其作为出基变量。
新的基变量将替换原来的非基变量,并且目标函数的值将被更新。
关键是如何选择入基变量和出基变量。
为此,单纯形法使用一个称为单纯形表的矩阵来跟踪线性规划问题的状态。
单纯形表包含目标函数系数,限制条件系数,决策变量的当前值以及对角线上的单位矩阵。
通过适当地操作这个表,可以确定要移动到哪个相邻顶点,并相应地更新解和目标函数的值。
一般来说,单纯形法需要在指数时间内解决线性规划问题,因为需要遍历所有可能的可行解。
但是,在实际应用中,单纯形法往往比其他算法更快和更有效。
此外,在使用单纯形法时,需要注意陷入无限循环或者找不到一个可行解的可能性。
单纯形法的主要优点是:它是一种简单而直观的求解线性规划问题的方法;它易于实现,并且在许多情况下可以很快地求解问题。
它还可以用于解决大规模问题,包括具有成千上万个变量和限制条件的问题。
在实际应用中,单纯形法经常与其他算法结合使用,例如内点法或分支定界法。
这些方法可以提供更好的性能和结果。
但是,在许多情况下,单纯形法仍然是解决线性规划问题的首选算法。
在总体上,单纯形法是一种强大而灵活的工具,可以帮助研究人员和决策者在面对复杂的决策问题时做出明智的选择,并实现最大的效益。
运筹学基础及应用 习题解答习题一 P46 1。
1 (a)该问题有无穷多最优解,即满足210664221≤≤=+x x x 且的所有()21,x x ,此时目标函数值3=z . (b )用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。
1.2(a) 约束方程组的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--=1000030204180036312A4最优解()T x 0,0,7,0,10,0=。
(b) 约束方程组的系数矩阵⎪⎪⎭⎫ ⎝⎛=21224321A最优解Tx ⎪⎭⎫⎝⎛=0,511,0,52。
1。
3(a )(1) 图解法最优解即为⎩⎨⎧=+=+8259432121x x x x 的解⎪⎭⎫⎝⎛=23,1x ,最大值235=z(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式⎩⎨⎧=++=+++++=825943 ..00510 max 4213214321x x x x x x t s x x x x z则43,P P 组成一个基。
令021==x x得基可行解()8,9,0,0=x ,由此列出初始单纯形表 21σσ>。
5839,58min =⎪⎭⎫ ⎝⎛=θ02>σ,2328,1421min =⎪⎭⎫⎝⎛=θ0,21<σσ,表明已找到问题最优解0 , 0 , 23 1,4321====x x x x 。
最大值 235*=z(b)(1) 图解法最优解即为⎩⎨⎧=+=+524262121x x x x 的解⎪⎭⎫⎝⎛=23,27x ,最大值217=z(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式1234523124125max 2000515.. 62245z x x x x x x x s t x x x x x x =+++++=⎧⎪++=⎨⎪++=⎩21=+x x 2621+x x则3P ,4P ,5P 组成一个基。
令021==x x得基可行解()0,0,15,24,5x =,由此列出初始单纯形表21σσ>。
运筹学单纯形法讲解一、单纯形法基本概念在运筹学中,单纯形法是一种在给定点搜索可行解集合的一种技术。
设有m个点x、 y、 z分布在两点P、 Q,它们是相互独立的,这样的点组成了单纯形。
单纯形是可以用于求解最优化问题的一种简单的对象,因而又称为对象或对象群。
由单纯形求出的最优解就叫做单纯形的最优解。
在实际应用中,一般用来求最优解的都是单纯形。
二、单纯形法适用条件和范围在运筹学中,单纯形法常用于求解线性规划、非线性规划和整数规划等,还可以求解网络的流量、质量等。
但当运输问题用单纯形法求解时,解不存在,无最优解,也无单纯形。
非线性规划只能得到对象最优解。
三、单纯形法具体步骤和算法介绍1、明确问题的目标。
2、计算出所有解,按确定的先后顺序排列。
3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。
四、单纯形法的误差和精度1、明确问题的目标。
一般在最优化问题中,用最小值对准目标是最理想的,但是在实际工程应用中,人们往往要求越多越好,甚至有时只要求几个较小的值。
但要注意所得结果的可靠性和正确性,也要尽可能减少计算过程中的误差。
2、计算出所有解,按确定的先后顺序排列。
首先,找出最优解,再在这个最优解附近寻找另外的比最优解更好的最优解,直到所有点都达到满意的精度。
这种方法称为“穷举法”。
穷举法通常用于没有更好的方法时,常用于工程实际中。
3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。
4、单纯形法的误差:由于人们认识上的错误或操作不当造成的,如排除法的计算次数与数据采集次数之比,以及采样值的平均数与真值之比,与取值的个数有关,与取值的精度也有关,必须合理确定取值范围。
5、单纯形法的精度:根据问题的规模,计算数据量和计算次数,反复调整取值点,改进计算方法,从而得到尽可能高的精度。
单纯形法的精度可达0.01或0.05。