第4章 空间数据的处理
- 格式:ppt
- 大小:1.34 MB
- 文档页数:40
第4章 空间数据的转换与处理空间数据是GIS 的一个重要组成部分。
整个GIS 都是围绕空间数据的采集、加工、存储、分析和表现展开的。
原始数据往往由于在数据结构、数据组织、数据表达等方面与用户自己的信息系统不一致而需要对原始数据进行转换与处理,如投影变换,不同数据格式之间的相互转换,以及数据的裁切、拼接等处理。
以上所述的各种数据转换与处理均可以利用ArcToolbox 中的工具实现。
在ArcGIS9中,ArcToolbox 嵌入到了ArcMap 中。
本章就投影变换、数据格式转换、数据裁切、拼接等内容分别简单介绍。
4.1 投影变换由于数据源的多样性,当数据与我们研究、分析问题的空间参考系统(坐标系统、投影方式)不一致时,就需要对数据进行投影变换。
同样,在对本身有投影信息的数据采集完成时,为了保证数据的完整性和易交换性,要对数据定义投影。
以下就地图投影及投影变换的概念做简单介绍,之后分别讲述在ArcGIS 中如何实现地图投影定义及变换。
空间数据与地球上的某个位置相对应。
对空间数据进行定位,必须将其嵌入到一个空间参照系中。
因为GIS 描述的是位于地球表面的信息,所以根据地球椭球体建立的地理坐标(经纬网)可以作为空间数据的参照系统。
而地球是一个不规则的球体,为了能够将其表面的内容显示在平面的显示器或纸面上,就必须将球面的地理坐标系统变换成平面的投图4.1椭球体表面投影到平面的微分梯形Y影坐标系统(图4.1)。
因此,运用地图投影的方法,建立地球表面和平面上点的函数关系,使地球表面上由地理坐标确定的点,在平面上有一个与它相对应的点。
地图投影的使用保证了空间信息在地域上的联系和完整性。
当系统使用的数据取自不同地图投影的图幅时,需要将一种投影的数字化数据转换为所需要投影的坐标数据。
投影转换的方法可以采用:1. 正解变换: 通过建立一种投影变换为另一种投影的严密或近似的解析关系式,直接由一种投影的数字化坐标x 、y 变换到另一种投影的直角坐标X 、Y 。
第 1 章 空间数据处理1.1 数据预处理现实中采集的原始数据很多可能都是杂乱的、不完整的、有噪声的,常常还有多种不同类型,而且往往是高维度的,也就意味着有极多的可测量特征。
在数据分析步骤之前,必须对数据进行预处理,这样可以提高需要分析的数据质量,从而提高数据分析的效率和效果。
数据预处理一般包括两个部分,分别是数据准备和数据归约。
要把杂乱、有噪音的原始数据集变成具有标准形式、优化后的分析数据集,要经过清洗、转换(数据准备),以上工作对于中小型数据集就可以了,如果是大型数据集还需要进行缩减(数据归约)。
见错误!未找到引用源。
数据预处理过程。
原始数据缺失值补齐异常点分析标准化平整化差值和比例特征归约(特征选择、特征提取)值归约案例归约清洗转换归约中小型数据集大型数据集杂乱有噪声数据准备数据归约分析数据标准形式优化的数据预处理过程1.1.1 数据准备数据准备包括两个部分,分别是数据清洗和数据转换。
前者解决数据的完整和准确问题,后者解决数据分析的效果和效率问题。
数据清洗(Datqina Cleaning)过程将数据集中的噪声数据识别、删除,同时纠正不一致的数据。
错误的数据容易干扰数据分析过程的正常进行,甚至导致结果的准确性降低。
包括两个部分,缺失值补齐和异常点分析。
初始数据集应包含丢失值、失真、误记录和不当样本等,对于缺失值,要么补全,要么选择健壮模型来降低敏感性。
对于异常值需要非常小心,不能轻易丢弃,也有可能是研究母体的不寻常样本。
一些数据分析方法可以接受丢失值,其他方法则需要所有的值。
若样本足够大可以去除包含丢失值的所有样本,否则需要补齐缺失值。
一般可以采用三种方法。
首先,对于数量较小的数据,可以手动检查缺失值样本,根据经验加入可能的合理的值,但这样做可能会引入一个噪点值。
其次,可以应用一些常量自动替换缺失值,如使用一个全局常量、特征平均值、给定类型的特征平均值去替换缺失值。
这样可能会形成一个未经客观证明的正因素。
GIS课件第4章空间数据结构第4章空间数据结构空间数据结构是指对空间数据逻辑模型描述的数据组织关系和编排⽅式,对地理信息系统中数据存储、查询检索和应⽤分析等操作处理的效率有着⾄关重要的影响。
同⼀空间数据逻辑模型往往采⽤多种空间数据结构,例如游程长度编码结构、四叉树结构都是栅格数据模型的具体实现。
空间数据结构是地理信息系统沟通信息的桥梁,只有充分理解地理信息系统所采⽤的特定数据结构,才能正确有效地使⽤系统。
在地理信息系统中,较常⽤的有栅格数据结构和⽮量数据结构,除此之外还有混合数据结构、镶嵌数据结构和超图数据结构等。
空间数据结构的选择取决于数据的类型、性质和使⽤的⽅式,应根据不同的任务⽬标,选择最有效和最合适的数据结构。
4.1⽮量数据结构⽮量数据结构对⽮量数据模型进⾏数据的组织。
它通过记录实体坐标及其关系,尽可能精确地表⽰点、线、多边形等地理实体,坐标空间设为连续,允许任意位置、长度和⾯积的精确定义。
⽮量数据结构直接以⼏何空间坐标为基础,记录取样点坐标。
按照这种数据组织⽅式,可以得到精美的地图。
另外,该结构还可以对复杂数据以最⼩的数据冗余进⾏存贮,它还具有数据精度⾼,存储空间⼩等特点,是⼀种⾼效的图形数据结构。
⽮量数据结构中,传统的⽅法是⼏何图形及其关系⽤⽂件⽅式组织,⽽属性数据通常采⽤关系型表⽂件记录,两者通过实体标识符连接。
由于这⼀特点使得在某些⽅⾯有便利和独到之处,例如在计算长度、⾯积、形状和图形编辑、⼏何变换操作中,有很⾼的效率和精度。
⽮量数据结构按其是否明确表⽰地理实体间的空间关系分为实体数据结构和拓扑数据结构两⼤类。
4.1.1实体数据结构实体数据结构也称spaghetti数据结构,是指构成多边形边界的各个线段,以多边形为单元进⾏组织。
按照这种数据结构,边界坐标数据和多边形单元实体⼀⼀对应,各个多边形边界点都单独编码并记录坐标。
例如对图4-1所⽰的多边形A、B、C、D,可以采⽤两种结构分别组织。
第4章空间数据结构在当今数字化的时代,空间数据结构是地理信息系统、计算机图形学、空间数据库等众多领域中至关重要的一个概念。
简单来说,空间数据结构就是用于组织和管理空间数据的方式,它决定了我们如何有效地存储、检索和处理与空间位置相关的信息。
空间数据具有独特的性质,比如它可能包含点、线、面等几何对象,并且这些对象之间可能存在复杂的拓扑关系。
为了能够高效地处理这些数据,我们需要合适的数据结构来对其进行组织和管理。
首先,我们来谈谈栅格数据结构。
想象一下,我们把一个地理区域划分成一个个均匀的小方格,就像棋盘一样。
每个小方格都有一个特定的值,比如表示海拔高度、土地利用类型或者温度等。
这种将空间区域离散化为规则格网的方式就是栅格数据结构。
它的优点是简单直观,易于实现和操作。
在进行一些基于区域的分析,如计算面积、平均值等时非常方便。
但它也有缺点,比如数据冗余较大,因为对于边界和不规则形状的区域,可能会有很多空白的格子被存储;而且它的精度受到格网大小的限制,如果格网划分太粗,可能会丢失一些细节信息。
与栅格数据结构相对的是矢量数据结构。
矢量数据结构是通过点、线、面等几何对象的坐标来表示空间实体。
比如,一条河流可以用一系列的点坐标来表示其轮廓,一个城市可以用一个多边形来表示其边界。
矢量数据结构的优点是精度高、数据量相对较小,能够精确地表示地理实体的形状和位置。
在进行一些几何计算和空间分析时,如距离测量、缓冲区分析等,矢量数据结构具有明显的优势。
然而,它的实现和操作相对复杂,对于一些复杂的空间关系处理起来可能会比较困难。
除了栅格和矢量这两种常见的数据结构外,还有一些其他的空间数据结构。
比如,四叉树结构就是一种用于处理栅格数据的高效数据结构。
它将空间区域不断地划分为四个子区域,直到每个子区域的属性值相同或者达到一定的精度要求。
这样可以有效地减少数据存储量,提高检索和处理的效率。
另一种常见的结构是 R 树,它主要用于处理空间索引问题。
《地理信息系统原理及应用》复习题第一章地理信息系统软件应用概述1.概念ARCGIS ——美国环境系统研究所公司的产品地理信息:与空间地理分布有关的事物的信息,它描述了事物的位置、数量、质量、分布特征、相互联系和变化规律。
地理信息系统:是在计算机软硬件的支持下,对整个或部分地球表层空间中的有关地理分布数据进行采集、存储、管理、运算、分析、显示和描述的技术系统。
矢量(图形)数据:通过记录地理空间实体坐标(坐标对、坐标串和封闭的坐标串)的方式精确的表示点、线、面、体等实体空间位置和形状。
栅格数据:以规则的像元阵列来表示空间地物或现象分布的数据结构。
其阵列中的每个数据表示地物或现象的属性特征。
2.简答题(1)地理信息的特征①空间定位特征,通过统一的空间定位基础实现②多维属性特征,按专题来表达多维的属性信息。
③时序动态特征,按照时间的尺度来区分地理信息。
(2)地理信息系统的构成①计算机硬件系统。
可以是电子的、电的、机械的或装置,是GIS的物理外壳。
②计算机软件系统。
包括计算机系统软件、地理信息系统软化和其他支持软件、应用分析程序。
③地理空间数据和系统管理操作人员。
④地理空间数据(核心)。
(3)地理信息系统的功能①数据采集与输入②数据编辑与更新③数据存储与管理④空间数据分析⑤数据显示与输出(4)ArcGIS 10 Desktop的各组成软件及其功能Desktop GIS主要由ArcMap、ArcCatalog 和Geoprocessing 组成。
①ArcMap是ArcGIS桌面系统的核心程序,用于显示、査询、编辑和分析地图数据及地图制图②ArcCatalog是一个空间数据资源管理器,用于创建、定位、浏览、搜索、组织和管理空间数据③Geoprocessing地理处理框架是具有强大的空间数据处理和分析工具,主要包括两个部分:ArcToolbox(地理处理工具的集合)和ModelBuilder(模型构建器),这2者主要内嵌于ArcMap之中。