因式分解讲义
- 格式:doc
- 大小:64.50 KB
- 文档页数:3
第一章分解因式【知识要点】1 .分解因式(1)概念:把一个化成几个的形式,这种变形叫做把这个多项式分解因式。
(2 )注意:①分解因式的实质是一种恒等变形,但并非所有的整式都能因式分解。
②分解因式的结果中,每个因式必须是整式。
③分解因式要分解到不能再分解为止。
2•分解因式与整式乘法的关系整式乘法是_____________________________________________________ ___分解因式是_____________________________________________________ ___所以,分解因式和整式乘法为________ 系。
3•提公因式法分解因式(1 )公因式:几个多项式____________ 因式。
(2 )步骤:①先确定____________,②后____________________ 。
(3)注意:①当多项式的某项和公因式相同时,提公因式后该项变为1。
②当多项式的第一项的系数是负数时,通常先提出“”号。
4•运用公式法分解因式(1 )平方差公式:_____________________________(2 )完全平方公式:____________________________注:分解因式还有诸如十字相乘法、分组分解法等基本方法,做为补充讲解内容。
【考点分析】考点一:利用提公因式法分解因式及其应用【例1】分解因式:【随堂练习】1 .分解因式:,、小34“23小22(1) 2x y 10x y 2x y32(1) 4m 16m 26 m(2) 2x(y z) 3(y z)2(3)x(x y)(x y) x(x y)(4)(3a 4b)(7a 8b) (11a 12b)(7a 8b)号,再提公因式 2m ;( 2)题的公因式为 y z ;(3) 题的公因式为 x(x y) ;答案:(1) 2m(2m 28 »m13);(3)2xy(x y);【例:2】(1 )已知x y 5, xy 6 ,(2 ?)已知ba 6,ab7,解析:(1) 题:2x2y 2 x y 22xy(x(2)题:a|2bab2a b(a答案:(1) 60(2)42(4)题的公因式为7a 8b 。
因式分解1.因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。
即:多项式→几个整式的积例:111()333ax bx x a b +=+ 2.因式分解的方法:(1)提公因式法:①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。
公因式:多项式的各项都含有的相同的因式。
公因式可以是一个数字或字母,也可以是一个单项式或多项式。
⎧⎪⎨⎪⎩系数——取各项系数的最大公约数字母——取各项都含有的字母指数——取相同字母的最低次幂例:333234221286a b c a b c a b c -+的公因式是 .②提公因式的步骤第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。
注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。
多项式中第一项有负号的,要先提取符号。
例1:把2233121824a b ab a b --分解因式.例2:把多项式3(4)(4)x x x -+-分解因式.(2)运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
2222233223322.()().2().()().()()a ab a b a b b ab b a bc a b a b a ab bd a b a b a ab b -=+-±+=±+=+-+-=-++逆用平方差公式:逆用完全平方公式:a 逆用立方和公式:(拓展)逆用立方差公式:(拓展) 注意:①公式中的字母可代表一个数、一个单项式或一个多项式。
②选择使用公式的方法:主要从项数上看,若多项式是二项式可考虑平方差公式;若多项式是三项式,可考虑完全平方公式。
例1:因式分解21449a a -+例2:因式分解222()()a a b c b c ++++(3)分组分解法(拓展)①将多项式分组后能提公因式进行因式分解;例:把多项式1ab a b -+-分解因式解:1ab a b -+-=()(1)ab a b -+-=(1)(1)(1)(1)a b b a b -+-=+-②将多项式分组后能运用公式进行因式分解.例:将多项式2221a ab b --+因式分解解:2221a ab b --+=222(2)1()1(1)(1)a ab b a b a b a b -+-=--=-+--(4)十字相乘法(形如2()()()x p q x pq x p x q +++=++形式的多项式,可以考虑运用此种方法)方法:常数项拆成两个因数p q 和,这两数的和p q +为一次项系数2()x p q x pq +++2()()()x p q x pq x p x q +++=++例:分解因式230x x -- 分解因式252100x x ++(5)拆、添项法将多项式中的某一项拆成两项或多项,或者在多项式中添上两个符号相反的项,使得便于用分组分解法进行分解因式。
因式分解讲义【例1】33228273654.x y x y xy +++【例2】222499181212.a b c bc ca ab ++--+【例3】66.a b -【例4】()()2222ab c d a b cd---【例5】()()()333333.a b b c c a a b c ++++++++【例6】4242422424242222.a b b c c a a b b c c a a b c ++++++【例7】444222222222.a b c a b b c c a ---+++【例8】已知a 、b 、c 为三角形的三条边,且222433720.a ac c ab bc b ++--+=求证:2b a c=+【例9】()()()()245610123x x x x x ++++-【例10】()()211a b ab +-+【例11】()44444a a ++-【例12】将198551-分解为三个大于1005的因数相乘.【知1】余数定理:x c -除()f x 时,所得的余数为().f c (其中()f x 为整系数多项式)【知2】多项式的有理根:有理根p c =的分子p 是常数项0a 的因数,而q 是首项系数n a 的因数.【例1】323648.x x x +++【例2】()()()()3232232.l m x l m n x l m n x m n +++-+---+【例3】4325121797.x x x x +++-【例4】42 1.x px px p +++-【知3】待定系数法分解四次式:设为()()22x ax b x cx d ++++,解系数对应的方程组.【例1】43 2.x x --【例2】43222 1.x x x -++【例3】证明42631;1x x x x +-+-均在整系数多项式范围内不可约.【知4】对称式:一个关于多个(字母)变量的多项式,交换其中两个任意变量,多项式不发生改变。
因式分解知识网络详解:因式分解的基本方法:1、提公因式法——如果多项式的各项有公因式,首先把它提出来。
2、运用公式法——把乘法公式反过来用,常用的公式有下列五个:平方差公式()()22a b a b a b -=+-; 完全平方公式()2222a ab b a b ±+=±; 3、分组分解法——适当分组使能提取公因式或运用公式。
要灵活运用“补、凑、拆、分”等技巧。
4、十字相乘法——))(()(2b x a x ab x b a x ++=+++ 【课前回顾】1.下列从左到右的变形,其中是因式分解的是( )(A )()b a b a 222-=-(B )()()1112-+=-m m m(C )()12122+-=+-x x x x (D )()()()()112+-=+-b ab a b b a a2.把多项式-8a 2b 3+16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是(),(A )-8a 2bc (B )2a 2b 2c 3(C )-4abc (D )24a 3b 3c 33.下列因式分解中,正确的是()(A )()63632-=-m m m m (B )()b ab a a ab b a +=++2(C )()2222y x y xy x --=-+-(D )()222y x y x +=+4.下列多项式中,可以用平方差公式分解因式的是()(A )42+a (B )22-a (C )42+-a (D )42--a5.下列各式中,能用完全平方公式分解因式的是().(A )4x 2-1(B )4x 2+4x -1(C )x 2-xy +y 2D .x 2-x +6.若942+-mx x 是完全平方式,则m 的值是()(A )3(B )4(C )12(D )±12 经典例题讲解:提公因式法:提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律例:22x y xy -()()p x y q y x ---()()x a b y a b +-+变式练习:1.多项式6a 3b 2-3a 2b 2-21a 2b 3分解因式时,应提取的公因式是()A.3a 2bB.3ab 2C.3a 3b 2D.3a 2b 22.如果()222332x y mx x n -+=--,那么()A .m=6,n=yB .m=-6,n=yC .m=6,n=-yD .m=-6,n=-y3.()()222m a m a -+-,分解因式等于()A .()()22a m m --B .()()21m a m --C .()()21m a m -+D .以上答案都不能4.下面各式中,分解因式正确的是()A.12xyz -9x 2.y 2=3xyz(4-3xy)B.3a 2y -3ay+6y=3y(a 2-a+2)C.-x 2+xy -xz=-x(x 2+y -z)D.a 2b+5ab -b=b(a 2+5a)5.若a+b=7,ab=10,则22ab b a +的值应是()A .7B .10C .70D .176.因式分解1.6x 3-8x 2-4x2.x 2y(x -y)+2xy(y -x)3.()()x m ab m x a +-+4.()()()x x x --+-212运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: 平方差:)b a )(b a (b a 22-+=-完全平方:222)b a (b 2ab a ±=+±立方和:)b ab a )(b a (b a 2233+-+=+立方差:)b ab a )(b a (b a 2233++-=- 例1.把下列各式分解因式:(1)x 2-4y 2(2)22331b a +- (3)22)2()2(y x y x +--(4)442-+-x x例2.(1)已知2=+b a ,利用分解因式,求代数式222121b ab a ++的值 (2)已知0136422=+--+b a b a ,求b a +。
因式分解(一)-一般方法多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例2 分解因式:a3+b3+c3-3abc.例3 分解因式:x15+x14+x13+…+x2+x+1.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.例9分解因式:6x4+7x3-36x2-7x+6.例10 分解因式:(x2+xy+y2)-4xy(x2+y2).1.(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.4、(1)x2-3xy-10y2+x+9y-2= ;(2)x2-y2+5x+3y+4= ;(3)xy+y2+x-y-2= ;(4)6x2-7xy-3y2-xz+7yz-2z2= ;(5)2x2-7xy-22y2-5x+35y-3= .因式分解(二)--求根法分解因式我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例1 分解因式:x3-4x2+6x-4.例2 分解因式:9x4-3x3+7x2-3x-2.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9.。
教育教学讲义 学员姓名: 年 级: 学科教师: 上课时间:辅导科目:数学 课时数:2 课 a因式分解 教学目标 讲解因式分解的三种方法1提取公因式法2用乘法公式因式分解3特殊的因式分解教学内容课前检测知识梳理6.1 Q 式今解谁能以最快速度求:当a=101 , b=99时,聲・*的值?概念•像这样,把一个多巩式化成几个整式的积的形式叫因式分解.有时■也把这一过程叫分解因式•下列代数式变形中,哪些足因武分解?哪些不是?为什么?①左边是多项式f 右边是整式;②右边是整式的乘积的形式・a( <a+l ) =a?+a;1 }; (a+b ) ( d —b )=^—62;決一bT ( a+5 ) ( a —b ) • 2十2a 十 1=( a+L )3运算运算 1・填空(整式乘法,因式分解) 2・这两种运算是什么关系?(互逆)图示表示:2譏3)3).例2;把下列各式分解因武:(1 ) am+im :(2) a 2-底因式分解・ 3・解决问题•(1 > Ja( O+2 ) (3 > x J -4= (x*2 ) < x-2 );(5 ) &一 (7) zzA 2—( b —2 > ; (9) (2 ) 3a 2+6a=3a( a+2 ):(4 ) x 2—4+3x= ( x4-2、( x —2 ) +3客; (6)x 2-4+3x=( x-h4)(x-1 );(8 ) | J 2=X 2^-2^4(10 )元-4= ( +2)( y/~x~-2 )• 尤耳2+⑴公因式的系数应取各项系数的最大公约数(当系数是整数时)⑵字母取各项的相同字母,且各字母的指数取最低次幕(3)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。
一、直接用公式:当所给的多项式是平方差或完全平方式时,可以宜接利用公式法分解因式。
例1、分解因式:(1) x2-9;(2) 9x2-6x+l.二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。
高一数学因式分解专项知识梳理讲义【要点回顾】因式分解是代数式的一种恒等变形,它与整式乘法是相反方向的变形.在分式运算,解方程及各种恒等变形中起着重要的作用,是一种重要的基本技能.因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和,立方差公式),十字相乘法和分组分解法等等.1. 公式法常用的乘法公式:[1] 平方差公式:___________________________________;[2] 完全平方和公式:_______________________________;[3] 完全平方差公式:_______________________________;[4] ()=++2c b a ___________________________________; [5] =+33b a _______________________________________(立方和公式);[6] =-33b a _______________________________________(立方差公式).由于因式分解与整式乘法正好是互为逆变形,所以把整式乘法公式反过来写,运用上述公式可以进行因式分解.2. 分组分解法从前面可以看出,能够直接运用公式法分解的多项式,主要是二项式和三项式.而对于四项以上的多项式,如nb na mb ma +++既没有公式可用,也没有公因式可以提取.因此,可以先将多项式分组处理.这种利用分组来因式分解的方法叫做分组分解法.分组分解法的关键在于如何分组.常见题型:(1)分组后能提取公因式(2)分组后能直接运用公式3. 十字相乘法(1)pq x q p x +++)(2型的因式分解。
这类式子在许多问题中经常出现,其特点是:①二次项系数是1;②常数项是两个数之积;③一次项系数是常数项的两个因数之和.))(()(),)(()()()(222q x p x pq x q p x q x p x p x q p x x pqqx px x pq x q p x ++=+++∴++=+++=+++=+++运用这个公式,可以把某些二次项系数为1的二次三项式分解因式.(2)一般二次三项式c bx ax ++2型的因式分解由))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++我们发现,二次项系数a 分解成21a a ,常数项c 分解成21c c ,把2121,,,c c a a 写成2121c c a a ⨯,这里按斜线交叉相乘,再相加,就得到1221c a c a +,如果它正好等于c bx ax ++2的一次项系数b ,那么c bx ax ++2就可以分解成))((2211c x a c x a ++,其中1,1c a 位于上一行,2,2c a 位于下一行.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法.必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解.4. 其它因式分解的方法其它常用的因式分解的方法:(1)配方法(2)拆、添项法【例题选讲】例1 (公式法)分解因式:(1)22882y xy x +-(2) 4416b a -(3)43813b b a -例2(分组分解法)分解因式:(1)2228242z y xy x -++(2)cd b a d c ab )()(2222---例3(十字相乘法)分解因式:(1)2452-+x x(2)12)(8)(222++-+x x x x(3)25122--x x例4(添、拆项法)分解因式(1)322--x x(2)644+x(3)4323+-x x例5 已知0=++c b a ,求证:03223=+-++b abc c b c a a .【巩固练习】1. 把下列各式分解因式:(1)23ab a - (2)1522--x x(3)226y xy x -+ (4)22865y xy x -+(5)22484n mn mx x -+- (6)21311123-+-x x x(7)3223824y y x xy x +--2.已知,2,32==+ab b a 求代数式22222ab b a b a ++的值.3.现给出三个多项式,,21,1321,121222x x x x x x -++-+请你选择其中两个进行加法运算,并把结果因式分解.。
因式分解得四种方法(讲义)➢课前预习1.平方差公式:___________________________;完全平方公式:_________________________;_________________________.2.对下列各数分解因数:210=_________; 315=__________;91=__________; 102=__________.3.探索新知:(1)能被100整除吗?小明就是这样做得:所以能被100整除.(2)能被90整除吗?您就是怎样想得?(3)能被哪些整式整除?➢知识点睛1.__________________________________________叫做把这个多项式因式分解.2.因式分解得四种方法(1)提公因式法需要注意三点:①___________________________;②___________________________;③___________________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.运用公式法得时候需要注意两点:①___________________________;②___________________________.(3)分组分解法多项式项数比较多常考虑分组分解法,首先找____________,然后再考虑____________或者_____________.(4)十字相乘法十字相乘法常用于二次三项式得结构,其原理就是:3.因式分解就是有顺序得,记住口诀:“___________________”;因式分解就是有范围得,目前我们就是在______范围内因式分解.➢精讲精练1.下列由左到右得变形,就是因式分解得就是________________.①; ②;③; ④;⑤; ⑥;⑦.2.因式分解(提公因式法):(1); (2);解:原式= 解:原式=(3);解:原式=(4); (5).解:原式= 解:原式=3.因式分解(公式法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5);解:原式=(6);解:原式=(7); (8);解:原式= 解:原式=(9); (10).解:原式= 解:原式=4.因式分解(分组分解法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5); (6).解:原式= 解:原式=5.因式分解(十字相乘法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5); (6);解:原式= 解:原式=(7); (8).解:原式= 解:原式=6.用适当得方法因式分解:(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5);解:原式=(6).解:原式=【参考答案】➢课前预习1.2.210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23.(2)∴能被90整除∴能被1,m,m+1,m-1,m(m+1),m(m-1),(m+1)(m-1),m (m+1)(m-1)整除➢知识点睛1.把一个多项式化成几个整式得积得形式2.(1)①公因式要提尽②首项就是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式得先提公因式②找准公式里得a与b(3)公因式,完全平方公式,平方差公式3.一提二套三分四查,有理数➢精讲精练1.④⑥⑦2.(1)(2)(3)(4)(5)3.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10) 4.(1)(2)(3)(4)(5)(6) 5.(1)(2)(3)(4)(5)(6)(7)(8) 6.(1)(2)(3)(4)(5)(6)。
因 式 分 解类型二、公式法1、利用平方差公式因式分解:()()b a b a b a -+=-22注意:①条件:两个二次幂的差的形式;②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么。
例如:分解因式:(1)291x -; (2)221694b a -; (3)22)(4)(n m n m --+2、利用完全平方公式因式分解:()2222b a b ab a ±=+± 注意:①是关于某个字母(或式子)的二次三项式;②其首尾两项是两个符号相同的平方形式;③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成 222)(2b a b ab a ±=+±公式原型,弄清a 、b 分别表示的量。
例如:分解因式:(1)2961x x +-; ⑵ 36)(12)(2+---n m n m 1682++x x典型例题:例1 用平方差公式分解因式:(1)22)(9y x x -+-; (2)22331n m - 说明 因式分解中,多项式的第一项的符号一般不能为负;分数系数一般化为整系数。
例2 分解因式:(1)ab b a -5;(2))()(44n m b n m a +-+. 说明 将公式法与提公因式法有机结合起来,先提公因式,再运用公式.例3 判断下列各式能否用完全平方公式分解因式,为什么?(1)962+-a a ; (2)982+-x x ; (3)91242--x x ; (4)223612y x xy ++-. 说明 可否用公式,就要看所给多项式是否具备公式的特点.例4 把下列各式分解因式:⑴ 442-+-x x ; ⑵ 22914942y x xy -- ⑶ mn n m 4422+-- 说明:在使用完全平方公式时,要保证平方项前的符号为正,当平方项前的符号是负号 时,先提出负号.例5 分解因式:⑴ 22363ay axy ax ++. ⑵ 22222)(624b a b a +-说明 ⑴分解因式时,首先考虑有无公因式可提,当有公因式时,先提再分解. ⑵分解因式必须进行彻底,直至每个因式都不能再分解为止.例6 分解因式:⑴ 22)(9))(2(6)2(n m n m m n n m +++---;⑵ 4224168b b a a +-;⑶ 1)2(2)2(222++++m m m m .⑷ 63244914b b a a +- ⑸ 1)2(6)2(92+---b a b a说明 在运用完全平方公式的过程中,再次体现换元思想的应用,可见换元思想是重 要而且常用思想方法,要真正理解,学会运用.例7 若25)4(22+++x a x 是完全平方式,求a 的值. 说明 根据完全平方公式特点求待定系数a ,熟练公式中的“a 、b ”便可自如求解.例8 已知2=+b a ,求222121b ab a ++的值. 说明 将所求的代数式变形,使之成为b a +的表达式,然后整体代入求值.例9 已知1=-y x ,2=xy ,求32232xy y x y x +-的值. 说明 这类问题一般不适合通过解出x 、y 的值来代入计算,巧妙的方法是先对所求的代数式进行因式分解,使之转化为关于xy 与y x -的式子,再整体代入求值.例10 证明:四个连续自然数的积加1,一定是一个完全平方数.说明 可用字母表示出四个连续自然数,通过因式分解说明结果是完全平方数.例11 已知x 和y 满足方程组⎩⎨⎧=-=+346423y x y x ,求代数式2249y x -的值。
分解因式知识归纳:一.知识点1 分解因式的概念:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式注意:①.结果应是积的形式.②每个因式都是整式.③要分解到不能分解为止.2.因式分解的方法:知识点2 提公因式法.ma+mb+mc=m(a+b+c)(公因式:我们把多项式各项都含有的相同因式,叫做这个多项式的公因式)知识点3 公式法(1)平方差公式:a2-b2=(a+b)(a-b).即两个数的平方差,等于这两个数的和与这个数的差的积.(2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.知识点4 分组分解法形如:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)把多项式进行适当的分组,分组后能够有公因式或运用公式,这样的因式分解方法叫做分组分解法.知识点5 十字相乘法:形如:x2+(p+q)x+pq=(x+p)(x+q).利用这个公式,可以把二次三项式因式分解,当p=q时,这个式子化成x2+2px+p2或x2+2qx+q2,是完全平方式,可以运用公式分解因式.二.典型例题例1 10b(x-y)2-5a(y-x)2例2.a2-b2+a+b;例3 (ab+b)2-(a+1)2例4 (x+y)2-9y2例5 a2-2ab+b2-c2 例6 x2+2xy+y2-4例7 a2-ab+ac-bc 例8 (a+b)-4(a2-b2)+4(a-b)2 例9 x2+3x+2 例10 x2-2x-3例11 (x2-1)2-6(x2-1)+9 例12 7x2+13x-2三.课堂训练⑴3222245954a b c a bc a b c +- (2)433()()()a b a a b b b a -+-+-(3)2244x y xy --+ (4)543351881a b a b a b ++(5)22616x xy y -- (6)2()2()80x y y x ----(7)322222--++-y x y xy x (8)224426x xy y x y -+-+-四.巩固提高1、多项式))(())((x b x a ab b x x a a --+---的公因式是( )A 、-a 、B 、))((b x x a a ---C 、)(x a a -D 、)(a x a --2、若22)32(9-=++x kx mx ,则m ,k 的值分别是( )A 、m=—2,k=6,B 、m=2,k=12,C 、m=—4,k=—12、D m=4,k=12、3、下列名式:4422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公式分解因式的有( )A 、1个,B 、2个,C 、3个,D 、4个4、若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。