因式分解专题复习讲义
- 格式:doc
- 大小:185.98 KB
- 文档页数:4
第一章分解因式【知识要点】1 .分解因式(1)概念:把一个化成几个的形式,这种变形叫做把这个多项式分解因式。
(2 )注意:①分解因式的实质是一种恒等变形,但并非所有的整式都能因式分解。
②分解因式的结果中,每个因式必须是整式。
③分解因式要分解到不能再分解为止。
2•分解因式与整式乘法的关系整式乘法是_____________________________________________________ ___分解因式是_____________________________________________________ ___所以,分解因式和整式乘法为________ 系。
3•提公因式法分解因式(1 )公因式:几个多项式____________ 因式。
(2 )步骤:①先确定____________,②后____________________ 。
(3)注意:①当多项式的某项和公因式相同时,提公因式后该项变为1。
②当多项式的第一项的系数是负数时,通常先提出“”号。
4•运用公式法分解因式(1 )平方差公式:_____________________________(2 )完全平方公式:____________________________注:分解因式还有诸如十字相乘法、分组分解法等基本方法,做为补充讲解内容。
【考点分析】考点一:利用提公因式法分解因式及其应用【例1】分解因式:【随堂练习】1 .分解因式:,、小34“23小22(1) 2x y 10x y 2x y32(1) 4m 16m 26 m(2) 2x(y z) 3(y z)2(3)x(x y)(x y) x(x y)(4)(3a 4b)(7a 8b) (11a 12b)(7a 8b)号,再提公因式 2m ;( 2)题的公因式为 y z ;(3) 题的公因式为 x(x y) ;答案:(1) 2m(2m 28 »m13);(3)2xy(x y);【例:2】(1 )已知x y 5, xy 6 ,(2 ?)已知ba 6,ab7,解析:(1) 题:2x2y 2 x y 22xy(x(2)题:a|2bab2a b(a答案:(1) 60(2)42(4)题的公因式为7a 8b 。
因式分解知识网络详解:因式分解的基本方法:1、提公因式法——如果多项式的各项有公因式,首先把它提出来。
2、运用公式法——把乘法公式反过来用,常用的公式有下列五个:平方差公式()()22a b a b a b -=+-; 完全平方公式()2222a ab b a b ±+=±; 3、分组分解法——适当分组使能提取公因式或运用公式。
要灵活运用“补、凑、拆、分”等技巧。
4、十字相乘法——))(()(2b x a x ab x b a x ++=+++ 【课前回顾】1.下列从左到右的变形,其中是因式分解的是( )(A )()b a b a 222-=-(B )()()1112-+=-m m m(C )()12122+-=+-x x x x (D )()()()()112+-=+-b ab a b b a a2.把多项式-8a 2b 3+16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是(),(A )-8a 2bc (B )2a 2b 2c 3(C )-4abc (D )24a 3b 3c 33.下列因式分解中,正确的是()(A )()63632-=-m m m m (B )()b ab a a ab b a +=++2(C )()2222y x y xy x --=-+-(D )()222y x y x +=+4.下列多项式中,可以用平方差公式分解因式的是()(A )42+a (B )22-a (C )42+-a (D )42--a5.下列各式中,能用完全平方公式分解因式的是().(A )4x 2-1(B )4x 2+4x -1(C )x 2-xy +y 2D .x 2-x +6.若942+-mx x 是完全平方式,则m 的值是()(A )3(B )4(C )12(D )±12 经典例题讲解:提公因式法:提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律例:22x y xy -()()p x y q y x ---()()x a b y a b +-+变式练习:1.多项式6a 3b 2-3a 2b 2-21a 2b 3分解因式时,应提取的公因式是()A.3a 2bB.3ab 2C.3a 3b 2D.3a 2b 22.如果()222332x y mx x n -+=--,那么()A .m=6,n=yB .m=-6,n=yC .m=6,n=-yD .m=-6,n=-y3.()()222m a m a -+-,分解因式等于()A .()()22a m m --B .()()21m a m --C .()()21m a m -+D .以上答案都不能4.下面各式中,分解因式正确的是()A.12xyz -9x 2.y 2=3xyz(4-3xy)B.3a 2y -3ay+6y=3y(a 2-a+2)C.-x 2+xy -xz=-x(x 2+y -z)D.a 2b+5ab -b=b(a 2+5a)5.若a+b=7,ab=10,则22ab b a +的值应是()A .7B .10C .70D .176.因式分解1.6x 3-8x 2-4x2.x 2y(x -y)+2xy(y -x)3.()()x m ab m x a +-+4.()()()x x x --+-212运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: 平方差:)b a )(b a (b a 22-+=-完全平方:222)b a (b 2ab a ±=+±立方和:)b ab a )(b a (b a 2233+-+=+立方差:)b ab a )(b a (b a 2233++-=- 例1.把下列各式分解因式:(1)x 2-4y 2(2)22331b a +- (3)22)2()2(y x y x +--(4)442-+-x x例2.(1)已知2=+b a ,利用分解因式,求代数式222121b ab a ++的值 (2)已知0136422=+--+b a b a ,求b a +。
因式分解专题辅导讲义一个多项式进行因式分解,从方法上说,一般要比作乘法运算更有灵活性和多样性。
提公因式法和公式法是因式分解的两种最基本的方法。
现行初中数学教科书主要涉及这两种因式分解的方法。
提公因式法和公式法本身不难掌握,但要灵活机动地运用它们,还需要认真思考。
请看下面几道例题。
例题精选1:把4224b a b a -因式分解。
解法1:)b a )(b a (b a )b a (b a b a b a 2222224224-+=-=-解法2:)b a )(b a (b a )b a (ab )b a (ab )ab b a )(ab b a (b a b a 2222224224-+=-+=-+=- 评注:解法1先用提公因式法,再用公式法;解法2先用公式法,再用提公因式法。
虽然两种解法得到同样的结果,但是解法1更简单。
通常情况下,先考虑提公因式可以使解法简化。
有些多项式不能直接使用提公因式法或公式法,这时就需要先把多项式适当整理变形,然后再使用提公因式法或公式法。
例题精选2: 把c b b ab 2a c a 2222-+++因式分解。
解:222222222)b a ()b a )(b a (c )b ab 2a ()c b c a (c b b ab 2a c a ++-+=+++-=-+++ )b a bc ac )(b a ()]b a ()b a (c )[b a (++-+=++-+=评注:这样先将多项式的各项进行分组,然后再分解因式的方法叫做分组分解法。
例题精选3: 把44b 4a +因式分解。
解:222222422444)ab 2()b 2a (b a 4)b 4b a 4a (b 4a -+=-++=+)b 2ab 2a )(b 2ab 2a (2222+-++=。
评注:多项式44b 4a +中只有两项,既不能提公因式,也不能直接用公式。
但由于这两项再加上22b a 4就是222)b 2a (+,所以先对44b 4a +加、减22b a 4,再适当分组,然后使用公式法,最终就能因式分解。
因式分解讲义一、知识点总结1. 因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。
关键:左边必须是多项式,右边是几个整式的积例:1、 已知关于x的二次三项式分解因式的结果为(x-1)(x+2),求a,b的值2.因式分解的方法:(1)提公因式法:①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。
公因式:多项式的各项都含有的相同的因式。
公因式可以是一个数字或字母,也可以是一个单项式或多项式。
(相同字母)例:的公因式是 .1.分解因式:(1) ,为正整数 (2)(3)先因式分解,再求值:m(m+n)(m-n)-m(m+n),其中m+n=1,mn=-.2、利用因式分解计算:(-2)+(-2)-23、 对于任意正整数n,说明代数式2-2必能被30整除。
(2)运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
注意:①公式中的字母可代表一个数、一个单项式或一个多项式。
②选择使用公式的方法:主要从项数上看,若多项式是二项式可考虑平方差公式;若多项式是三项式,可考虑完全平方公式。
例1:因式分解 例2:因式分解1、分解因式:2、 利用平方差公式计算:3、证明:若n为正整数,则(2n+1)-(2n-1)一定能被8整除。
(3)分组分解法(拓展)①将多项式分组后能提公因式进行因式分解; ②将多项式分组后能运用公式进行因式分解.例:把多项式分解因式 例:将多项式因式分解1、a-1-2ab+b2、已知a-b=,ab=,求-2ab+ab+ab的值(4)十字相乘法(形如形式的多项式,可以考虑运用此种方法)方法:常数项拆成两个因数,这两数的和为一次项系数例:分解因式 分解因式5-6分解因式3.因式分解的一般步骤:“一提”、“二套”、“三分组”、“四拆”。
2、习题演练(一)、填空:1、若是完全平方式,则的值等于_____。
八升九数学精品(第4讲 讲义)因式分解专题一 因式分解的意义把一个多项式化成几个整式的积的形式,这种变形叫做因式分解. (1)因式分解专指多项式的恒等变形,即等式的左边必须是多项式.(2)因式分解的要求:分解的结果要以积的形式表示;每个因式必须是整式;因式分解必须分解到每个因式都不能再分解为止.(3)因式分解与整式乘法是互逆变形.如果把整式乘法看做是一个变形过程,那么多项式的因式分解就是它的逆过程;如果把多项式的因式分解看做是一个变形过程,那么整式乘法就是它的逆过程.下面式子从左边到右边的变形是因式分解的是 ( ) A.x 2-x-2=x(x-1)-2 B.(a+b)(a-b)=a 2-b 2C.x 2-4=(x+2)(x-2)D.x 2-)1)(1(12yx y x y -+=【针对训练1】 ①若mx+A 能分解为m(x-y+2),则A= . ②下列式子是因式分解的是 ( )A.x(x-1)=x 2-1B.x 2-x=x(x+1)C.x 2+x=x(x+1)D.x 2-x=(x+1)(x-1) 专题二 提公因式法我们把多项式中各项都含有的相同因式,叫做这个多项式的公因式.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.把下列各式因式分解: (1)3x+x 3; (2)7x 3-21x 2; (3)8a 3b 2-12ab 3c+ab; (4)-24x 3+12x 2-28x.【针对训练2】 把2a(x-y)+6b(y-x)因式分解.【基础巩固】1.把多项式4a 2b+10ab 2分解因式时,应提取的公因式是 .2.因式分解:x 2-3x= .3.分解因式:12x 3y-18x 2y 2+24xy 3= · . 【能力提升】4.把下列各式因式分解.(1)3x 2y-6xy (2)5x 2y 3-25x 3y 2(3)-4m 3+16m 2-26m (4)15x 3y 2+5x 2y-20x 2y 3.专题三 公式法运用平方差公式因式分解: 64(a-b)2-4(a+b)2.【针对训练3】 ①分解因式: 81(a+b)2-4(a-b)2.②尝试将它们的结果分别写成两个因式的乘积:(1)x 2-25= ; (2)9x 2-y 2= ; (3)9m 2-4n 2= .运用完全平方公式因式分解:(a+b)2+10(a+b)+25.【针对训练4】①因式分解:x3y3-2x2y2+xy.②把下列完全平方式因式分解:(1)x2+14x+49;(2)(m+n)2-6(m+n)+9.③分解因式:(a-b)2-4b2= .④分解因式:a3b-4ab= .专题四因式分解的应用39992+3999能被4000整除吗?【针对训练5】计算:1998+19982-19992.将一条400 cm长的金色彩带剪成两段,恰好可用来镶嵌两张大小不同的正方形壁画的边(不计算接头处),已知两张壁画的面积相差4000 cm2.这条金色彩带应剪成多长的两段?【针对训练6】王师傅铸造了如右图所示的一种零件,在边长为10 cm的正方形内部有四个大小不同的圆,它们的直径分别为 1 cm,2 cm,3 cm,4 cm,他想知道阴影部分的面积,请你帮他算一算(π取3.14).专题五易错点对分解因式的方法掌握得不够彻底例7.分解因式:36x2-36x+9.例8.分解因式:9a2-4b2.例9.分解因式:-3m2n+6mn-3n.例10.分解因式:21a2-ab+21b2.。
辅导讲义本节课的授课目标:复习因式分解的相关知识,能熟练的进行因式分解本节课的主要授课重难点:本节课的主要授课内容:一、自主整理1. 因式分解的方法:提公因式法运用公式法分组分解法十字相乘法2.几种方法的使用次序:①先提公因式②再运用公式(平方差公式,完全平方公式)③再用十字相乘法(三项式) ④最后考虑分组分解法(四项或四项以上的多项式 )3.因式分解四个注意(1)、首项有负常提负,如因式分解a2-b2+2ab+4(2)、各项有公先提公如因式分解 8a4-2a2(3)、某项提出莫漏 1 如因式分解 a3-2a2+a这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉 1。
防止学生出现诸如a3-2a2+a=a(a 2-2a) 的错误。
(4)、括号里面分到“底”如因式分解x4-3x2-4这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止。
即分解到底,不能半途而废的意思。
其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。
如上例中许多同学易犯分解到x4+3x2-4=(x2+4)(x2-1)而不进一步分解的错误。
4.分组分解法(1).按字母特征分组①a +b +ab +1 ②a2-ab+ac-bc(2).按系数特征分组①7x 2 + 3y +xy + 21x ②2ac -6ad +b c -3bd(3).按指数特点分组①a2 - 9b2 + 2a - 6b② x2 +x - 4 y2 - 2 y(4).按公式特点分组①a2-2ab +b2-c2 ②a 2 - 4b2 +12bc - 9c2小结:a.合理分组(2+2型);b.组内分解(提公因式、平方差公式)c.组间再分解(整体提因式)d.如果一个多项式中有三项是一个完全平方式或通过提取负号是一个完全平方式,一般就选用“三一分组”的方法进行分组分解。
因此在分组分解过程中要特别注意符号的变化.5.十字相乘法x2 +px +q =x2 +(a +b)x +ab = (x +a)(x +b)(1)x2- 5x + 6 (2)x2+ 5x + 6 (3)a2b2 - 7ab - 8 (4)m2 -3mn - 4n2(5)x4 - 6x2 - 27 (6)(a+b)2 +5(a+b) -36 (7)2x2 +5x+2;二、实战演练(一)、选择题1、下列各式从左到右的变形,是因式分解的是:()A、x 2 - 9 + 6x = (x + 3)( x - 3) + 6xB、(x + 5)(x - 2)=x 2 + 3x -10C、x 2 - 8x +16 =(x - 4)2D、(x - 2)(x + 3)=(x + 3)(x - 2)2、下列多项式,不能运用平方差公式分解的是()A、-m2 + 4B、-x 2 -y 2C、x 2 y 2 -1D、(m -a)2 -(m +a)23、下列各式可以用完全平方公式分解因式的是()A、a2 - 2ab + 4b24m2 -m +1B、 4C、9 - 6 y +y 2D、x 2 - 2xy -y 24、把多项式p 2 (a -1)+p(1 -a)分解因式的结果是()A、(a -1)(p 2 +p)B、(a -1)(p2 -p)C、p(a -1)(p -1)D、p(a -1)(p +1)5、若9x 2 -kxy + 4 y 2 是一个完全平方式,则k 的值为()A、6B、±6C、12D、±126、-(2x -y)(2x +y)是下列哪个多项式分解的结果()A、4x 2 -y 2B、4x 2 +y 2C、- 4x 2 -y 2D、- 4x 2 +y 27、若a +b =-3, ab = 1,则a 2 +b2 =()A、-11B、11C、-7D、78、2x3 -x2 - 5x +k 中,有一个因式为(x - 2),则k 值为()A、2 B-2 C、6 D、-69、已知x 2 +y2 + 2 x - 6 y +10 = 0,则x +y =()A、2B、-2C、4D、-410、若三角形的三边长分别为a 、b 、c ,满足a2b -a2 c +b2 c -b3 = 0 ,则这个三角形是()A、等腰三角形B、直角三角形C、等边三角形D、三角形的形状不确定(二)、填空题1、若x2 +ax +b = (x + 3)( x- 4), 则a =,b =。
因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a 2-b 2=(a+b)(a -b);(2) a 2±2ab+b 2=(a ±b)2;(3) a 3+b 3=(a+b)(a 2-ab+b 2);(4) a 3-b 3=(a -b)(a 2+ab+b 2).(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6) a 3±3a 2b+3ab 2±b 3=(a±b)3.例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
因式分解的常用方法第一部分:方法介绍 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);&(4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.;(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
第25讲 因式分解(添拆项与最值)知识点回顾:1、因式分解:因式分解就是把一个多项式变为几个整式的积的形式。
2、因式分解的方法:(1)提公因式法,即ma+mb+mc=m(a+b+c); (2)运用公式法,平方差公式:()()b a b a b a-+=-22;完全平方公式:222b ab a ++=()2b a +和)(b a b ab a -=+-2222(3)十字相乘法:对于二次三项式2x Px q ++,若能找到两个数a 、b ,使,,a b p a b q +=⎧⎨⋅=⎩则就有22()()()x Px q x a b x ab x a x b ++=+++=++. 注:若q 为正,则a ,b 同号;若q 为负,则a ,b 异号; 立方和差公式: 典型例题:例1(1)计算 29982+2998×4+4= 。
(2)若442-+x x 的值为0,则51232-+x x 的值是________。
例2:分解因式:22288a axy a y x -+ 4a 2(x -y )+9b 2(y -x )例3:已知a –b = 1 ,2522=+b a 求ab 和a+b 的值。
例4 代数式2x 2+4x+5有最 值,是 ;﹣x 2+3x 有最 值,是例5 题目:分解因式:x 2﹣120x +3456.分析:由于常数项数值较大,则常采用将x 2﹣120x 变形为差的平方的形式进行分解,这样简便易行.(1)x 2﹣140x +4875 (2)4x 2﹣4x ﹣575.三、强化训练:1、已知x +y =6,xy =4,则x 2y +xy 2的值为 .2、分解因式:(2a -b )2-(a +b )2 -3ma 3+6ma 2-3ma a 2(m -n )+b 2(n -m )4416n m - (8)4224817216b b a a +-4、已知:a=2999,b=2995,求655222-+-+-b a b ab a 的值。
两课时(90分钟)一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
制胜必备1、理解因式分解的概念2、掌握因式分解的基本方法:提取公因式法、公式法等3、能对简单多项式进行因式分解,并结合实际来应用希尔伯特说:“当我听别人讲解某些数学问题时, 常觉得很难理解,甚至不可能理解。
这时便想,是否可以将问题化简些呢往往,在终于弄清楚之后,实际上,它只是一个更简单的问题。
”秘诀:天才是一份灵感加上九十九份的汗水所成就的!(2) 运用公式法1 因式分解的定义及与整式乘法的关系(1) 因式分解:把一个多项式化为几个整式的积的形式 (2) 因式分解与整式乘法是互逆运算. 2 因式分解的常用方法 (1) 提公因式法如果一个多项式的各项都含有一个相同的因式,那么这个相同的因式,就叫做公因式. 提公因式法用公式可表示为ma+mb+mc=m ( a+b+c ),其分解步骤为:①确定多项式的公因式:公因式为各项系数的最大公约数与相同字母的最低次幕的乘积. ②将多项式除以它的公因式从而得到多项式的另一个因式.将乘法公式反过来对某些多项式进行因式分解,这种方法叫做公式法,即a2—b2= (a+b) (a-b), a2士2ab + b2= (a+b)2.3 •因式分解解题的思考顺序(1) 一提:如果多项式的各项有公因式,那么先提公因式;(2) 二用:如果各项没有公因式,那么可以尝试运用公式法来分解;(3) 三查:分解因式,必须进行到每一个多项式都不能再分解为止;分解因式的结果应为整式积的形式。
1 •下列因式分解中,正确的是( )1 1(A) 1- 4 x2= 4 (X + 2) (x- 2) (B)4x — x2 -2 = - 2(x- 1)2(C) ( x- y )3-y- X) = (X -y) (x -y + 1) ( x - -1)(D) x2—2 _x + y = ( x + y) (x -y -1)2 .下列各等式(1) a2—b2 = (a + b) (a-),(2) x2 43x +2 = x(x—+ 211,(4 )x2 + 十) 1(3 ) x2―2 —( x + y) (x -y )从左到右是因式分解的个数为(-2 —( x -x )(A) 1 个(B) 2 个(C) 3 个(D) 4 个3 .若x2+ mx + 25是一个完全平方式,则m的值是( )(A) 20 (B)10 (C)士20 (D)士104. 若x2+ mx + n 能分解成(x+2 ) (x -5),则m= _________ ,n= ;5. 若二次三项式2x2+x+5m在实数范围内能因式分解,则m= _____6 .若x2+kx—6有一个因式是(x—2),则k的值是_______________ ;【兵法案例】分解因式:a3—2a2+a= _______【作战策略】因式分解常用的方法有提公因式法、公式法、分组分解法和十字相乘法。
因式分解得四种方法(讲义)➢课前预习1.平方差公式:___________________________;完全平方公式:_________________________;_________________________.2.对下列各数分解因数:210=_________; 315=__________;91=__________; 102=__________.3.探索新知:(1)能被100整除吗?小明就是这样做得:所以能被100整除.(2)能被90整除吗?您就是怎样想得?(3)能被哪些整式整除?➢知识点睛1.__________________________________________叫做把这个多项式因式分解.2.因式分解得四种方法(1)提公因式法需要注意三点:①___________________________;②___________________________;③___________________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.运用公式法得时候需要注意两点:①___________________________;②___________________________.(3)分组分解法多项式项数比较多常考虑分组分解法,首先找____________,然后再考虑____________或者_____________.(4)十字相乘法十字相乘法常用于二次三项式得结构,其原理就是:3.因式分解就是有顺序得,记住口诀:“___________________”;因式分解就是有范围得,目前我们就是在______范围内因式分解.➢精讲精练1.下列由左到右得变形,就是因式分解得就是________________.①; ②;③; ④;⑤; ⑥;⑦.2.因式分解(提公因式法):(1); (2);解:原式= 解:原式=(3);解:原式=(4); (5).解:原式= 解:原式=3.因式分解(公式法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5);解:原式=(6);解:原式=(7); (8);解:原式= 解:原式=(9); (10).解:原式= 解:原式=4.因式分解(分组分解法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5); (6).解:原式= 解:原式=5.因式分解(十字相乘法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5); (6);解:原式= 解:原式=(7); (8).解:原式= 解:原式=6.用适当得方法因式分解:(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5);解:原式=(6).解:原式=【参考答案】➢课前预习1.2.210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23.(2)∴能被90整除∴能被1,m,m+1,m-1,m(m+1),m(m-1),(m+1)(m-1),m (m+1)(m-1)整除➢知识点睛1.把一个多项式化成几个整式得积得形式2.(1)①公因式要提尽②首项就是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式得先提公因式②找准公式里得a与b(3)公因式,完全平方公式,平方差公式3.一提二套三分四查,有理数➢精讲精练1.④⑥⑦2.(1)(2)(3)(4)(5)3.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10) 4.(1)(2)(3)(4)(5)(6) 5.(1)(2)(3)(4)(5)(6)(7)(8) 6.(1)(2)(3)(4)(5)(6)。
因 式 分 解类型二、公式法1、利用平方差公式因式分解:()()b a b a b a -+=-22注意:①条件:两个二次幂的差的形式;②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么。
例如:分解因式:(1)291x -; (2)221694b a -; (3)22)(4)(n m n m --+2、利用完全平方公式因式分解:()2222b a b ab a ±=+± 注意:①是关于某个字母(或式子)的二次三项式;②其首尾两项是两个符号相同的平方形式;③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成 222)(2b a b ab a ±=+±公式原型,弄清a 、b 分别表示的量。
例如:分解因式:(1)2961x x +-; ⑵ 36)(12)(2+---n m n m 1682++x x典型例题:例1 用平方差公式分解因式:(1)22)(9y x x -+-; (2)22331n m - 说明 因式分解中,多项式的第一项的符号一般不能为负;分数系数一般化为整系数。
例2 分解因式:(1)ab b a -5;(2))()(44n m b n m a +-+. 说明 将公式法与提公因式法有机结合起来,先提公因式,再运用公式.例3 判断下列各式能否用完全平方公式分解因式,为什么?(1)962+-a a ; (2)982+-x x ; (3)91242--x x ; (4)223612y x xy ++-. 说明 可否用公式,就要看所给多项式是否具备公式的特点.例4 把下列各式分解因式:⑴ 442-+-x x ; ⑵ 22914942y x xy -- ⑶ mn n m 4422+-- 说明:在使用完全平方公式时,要保证平方项前的符号为正,当平方项前的符号是负号 时,先提出负号.例5 分解因式:⑴ 22363ay axy ax ++. ⑵ 22222)(624b a b a +-说明 ⑴分解因式时,首先考虑有无公因式可提,当有公因式时,先提再分解. ⑵分解因式必须进行彻底,直至每个因式都不能再分解为止.例6 分解因式:⑴ 22)(9))(2(6)2(n m n m m n n m +++---;⑵ 4224168b b a a +-;⑶ 1)2(2)2(222++++m m m m .⑷ 63244914b b a a +- ⑸ 1)2(6)2(92+---b a b a说明 在运用完全平方公式的过程中,再次体现换元思想的应用,可见换元思想是重 要而且常用思想方法,要真正理解,学会运用.例7 若25)4(22+++x a x 是完全平方式,求a 的值. 说明 根据完全平方公式特点求待定系数a ,熟练公式中的“a 、b ”便可自如求解.例8 已知2=+b a ,求222121b ab a ++的值. 说明 将所求的代数式变形,使之成为b a +的表达式,然后整体代入求值.例9 已知1=-y x ,2=xy ,求32232xy y x y x +-的值. 说明 这类问题一般不适合通过解出x 、y 的值来代入计算,巧妙的方法是先对所求的代数式进行因式分解,使之转化为关于xy 与y x -的式子,再整体代入求值.例10 证明:四个连续自然数的积加1,一定是一个完全平方数.说明 可用字母表示出四个连续自然数,通过因式分解说明结果是完全平方数.例11 已知x 和y 满足方程组⎩⎨⎧=-=+346423y x y x ,求代数式2249y x -的值。
《因式分解》全章复习与巩固(基础)【学习目标】1. 理解因式分解的意义,了解分解因式与整式乘法的关系; 2.掌握提公因式法分解因式,理解添括号法则; 3. 会用公式法分解因式;4. 综合运用因式分解知识解决一些简单的数学问题. 【知识网络】【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算. 要点二、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是,即,而正好是除以m 所得的商,提公因式法分解因式实际上是逆用乘法分配律. 要点三、添括号的法则括号前面是“﹢”号,括到括号里的各项都不变号;括号前面是“﹣”号,括到括号里的各项都变号. 要点四、公式法 1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-.形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.要点五、十字相乘法和分组分解法 十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq cp q b=⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点六、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解. (4)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、提公因式法分解因式1、已知21x x +-=0,求3223x x ++的值.【思路点拨】观察题意可知21x x +=,将原式化简可得出答案. 【答案与解析】解:依题意得:21x x +=, ∴3223x x ++, =3223x x x +++, =22()3x x x x +++, =23x x ++,=4;【总结升华】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.类型二、公式法分解因式2、已知2x -3=0,求代数式()()2259x x x x x -+--的值. 【思路点拨】对所求的代数式先进行整理,再利用整体代入法代入求解. 【答案与解析】解:()()2259x x x x x -+--,=322359x x x x -+--, =249x -.当2x -3=0时,原式=()()2492323x x x -=+-=0.【总结升华】本题考查了提公因式法分解因式,观察题目,先进行整理再利用整体代入法求解,不要盲目的求出求知数的值再利用代入法求解. 举一反三:【变式】()()33a y a y -+是下列哪一个多项式因式分解的结果( )A .229a y+B .229a y-+C .229a y-D .229a y--【答案】C ;3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如()()()4422x y x y x y x y -=-++,当x =9,y =9时,x y -=0,x y +=18,22x y +=162,则密码018162.对于多项式324x xy -,取x =10,y =10,用上述方法产生密码是什么?【思路点拨】首先将多项式324x xy -进行因式分解,得到()()32422x xy x x y x y -=+-,然后把x =10,y =10代入,分别计算出()2x y +及()2x y -的值,从而得出密码. 【答案与解析】解:()()()32224422x xy x x yx x y x y -=-=+-,当x =10,y =10时,x =10,2x +y =30,2x -y =10, 故密码为103010或101030或301010.【总结升华】本题是中考中的新题型.考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键. 举一反三:【变式】利用因式分解计算 (1)16.9×18+15.1×18(2) 22683317- 【答案】 解:(1)16.9×18+15.1×18=()116.915.18⨯+=13248⨯= (2)22683317-=()()683317683317+⨯- =1000×366 =366000. 4、因式分解:(1)()()269a b a b ++++; (2)222xy x y ---(3)()()22224222x xyy x xy y -+-+.【思路点拨】都是完全平方式,所以都可以运用完全平方公式分解.完全平方公式法:()2222a b a ab b ±=±+.【答案与解析】解:(1)()()()22693a b a b a b ++++=++(2)()()2222222xy x y xy x y x y ---=-++=-+(3)()()22224222x xyy x xy y -+-+=()()24222x xy yx y -+=-【总结升华】本题考查了完全平方公式法因式分解,(3)要两次分解,注意要分解完全. 举一反三:【变式】下列各式能用完全平方公式进行分解因式的是( )A .21x + B .221x x +- C .21x x ++ D .244x x ++【答案】D ;5、先阅读,再分解因式:()24422224444(2)2x x x x x x +=++-=+-()()222222x x x x =-+++,按照这种方法把多项式464x +分解因式.【思路点拨】根据材料,找出规律,再解答. 【答案与解析】解:442264166416x x x x +=++-=()222816x x +-=()()228484x xxx +++-.【总结升华】此题要综合运用配方法,完全平方公式,平方差公式,熟练掌握公式并读懂题目信息是解题的关键.类型三、十字相乘法或分组分解法分解因式6、将下图一个正方形和三个长方形拼成一个大长方形,请观察这四个图形的面积与拼成的大长方形的面积之间的关系.(1)根据你发现的规律填空:2x px qx pq +++=()2x p q x pq +++=______;(2)利用(1)的结论将下列多项式分解因式:①2710x x ++;②2712y y -+.【思路点拨】(1)根据一个正方形和三个长方形的面积和等于由它们拼成的这个大长方形的面积作答; (2)根据(1)的结论直接作答. 【答案与解析】解:(1)()()x p x q +⨯+(2)①()()271025x x x x ++=++②()()271234y y x x -+=--【总结升华】本题实际上考查了利用十字相乘法分解因式.运用这种方法的关键是把二次项系数a 分解成两个因数12,a a 的积12a a ,把常数项c 分解成两个因数12c c 的积12,c c ,并使1221a c a c +正好是一次项b ,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号. 举一反三:【变式】已知A =2a +,B =25a a -+,C =2519a a +-,其中a >2. (1)求证:B -A >0,并指出A 与B 的大小关系; (2)指出A 与C 哪个大?说明理由. 解:(1)B -A =()21a -+2>0,所以B >A ;(2)C -A =25192a a a +---,=2421a a +-, =()()73a a +-.因为a >2,所以a +7>0,从而当2<a <3时,A >C ;当a =3时,A =C ;当a >3时,A <C .【巩固练习】 一.选择题1.下列各式从左到右的变化中属于因式分解的是( ). A .()()22422m n m n m n -=+- B .()()2111m m m +-=-C .()23434m m m m --=-- D .()224529m m m --=--2. 把24a a -多项式分解因式,结果正确的是( )A .()4a a -B .()()22a a +-C .()()22a a a +-D .()224a -- 3. 下列多项式能分解因式的是( ) A .22x y +B .22x y--C .222x xy y-+-D .22x xy y-+4. 将2m()2a -+()2m a -分解因式,正确的是()A .()2a -()2m m - B .()()21m a m -+ C .()()21m a m -- D .()()21m a m --5. 下列四个选项中,哪一个为多项式28102x x -+的因式?( )A .2x -2B .2x +2C .4x +1D .4x +2 6. 若)5)(3(+-x x 是q px x ++2的因式,则p 为( )A.-15B.-2C.8D.2 7. 2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是()A .2)5(b a - B .2)5(b a + C .)23)(23(b a b a +- D .2)25(b a - 8. 下列多项式中能用平方差公式分解的有( )①22a b --; ②2224x y -; ③224x y -; ④()()22m n ---; ⑤22144121a b -+;⑥22122m n -+. A .1个 B .2个 C .3个 D .4个 二.填空题9.分解因式:()241x x -- =________.10.把23x x c ++分解因式得:23x x c ++=()()12x x ++,则c 的值为________.11.若221x y -=,化简()()20122012x y x y +-=________.12. 若2330x x +-=,32266x x x +-=__________. 13.把()()2011201222-+-分解因式后是___________.14.把多项式22ax ax a --分解因式,下列结果正确的是_________.15. 当10x =,9y =时,代数式22x y -的值是________.16.把2221x y y ---分解因式结果正确的是_____________. 三.解答题 17.分解因式:(1)234()12()x x y x y ---; (2)2292416a ab b -+; (3)21840ma ma m --.18. 已知10a b +=,6ab =,求:(1)22a b +的值;(2)32232a b a b ab -+的值. 19.已知关于x 的二次三项式2x mx n ++有一个因式()5x +,且17m n +=,试求m 、n 的值.20. 两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成()()219x x --,另一位同学因看错了常数项而分解成()()224x x --,请将原多项式分解因式.【答案与解析】 一.选择题1. 【答案】A ;【解析】因式分解是把多项式化成整式乘积的形式. 2. 【答案】A ;【解析】()244a a a a -=-. 3. 【答案】C ;【解析】A .不能分解;B .2222()x y x y --=-+,不能分解;C .()2222x xy y x y -+-=--,故能够分解;D .不能分解.4. 【答案】C ; 【解析】2m()2a -+()2m a -=2m ()2a -()2m a --=()()21m a m --.5. 【答案】A ;【解析】将28102x x -+进行分解因式得出()()281024122x x x x -+=--,进而得出答案即可.6. 【答案】D ;【解析】2(3)(5)28x x x x -+=+-. 7. 【答案】A【解析】2222)(4)(12)(9b a b a b a ++-+-=()()()22325a b a b a b -++=-⎡⎤⎣⎦.8. 【答案】D ;【解析】③④⑤⑥能用平方差公式分解. 二.填空题9. 【答案】()22x -;【解析】()()22241442x x x x x --=-+=-.10.【答案】2;【解析】()()21232x x x x ++=++.11.【答案】1; 【解析】()()()()()201220122012201222201211x y x y x y x y x y+-=+-=-==⎡⎤⎣⎦.12.【答案】0;【解析】()3222662362360x x x x x x x x x +-=+-=⨯-=. 13.【答案】20112; 【解析】()()()()()201120122011201120112221222-+-=--=--=.14.【答案】()()21a x x -+;【解析】22ax ax a --=()()2(2)21a x x a x x --=-+.15.【答案】19;【解析】()()()()2210910919x y x y x y -=+-=+-=.16.【答案】()()11x y x y ++--;【解析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.三.解答题 17.【解析】解:(1)234()12()x x y x y ---=224()[3()]4()(32)x y x x y x y y x ---=--; (2)22292416(34)a ab b a b -+=-;(3)()()()2218401840202ma ma m m a a m a a --=--=-+. 18.【解析】解:∵10a b +=,6ab =,则(1)()2222a b a b ab +=+-=100-12=88;(2)()()2322322224a b a b ab ab a ab b ab a b ab ⎡⎤-+=-+=+-⎣⎦=6×(100-24)=456. 19.【解析】解:设另一个因式是x a +,则有()()5x x a ++=()255x a x a +++=2x mx n ++∴5a m +=,5a n =,这样就得到一个方程组5517a ma nm n +=⎧⎪=⎨⎪+=⎩,解得2107a n m =⎧⎪=⎨⎪=⎩.∴m 、n 的值分别是7、10. 20.【解析】解:设原多项式为2ax bx c ++(其中a 、b 、c 均为常数,且abc ≠0).∵()()()22219210922018x x x x x x --=-+=-+, ∴a =2,c =18;又∵()()()2222426821216x x x x x x --=-+=-+, ∴b =-12.∴原多项式为221218x x -+,将它分解因式,得()()2222121826923x x x x x -+=-+=-.。
因式分解重点学习1.因式分解的定义2.提公因式法及公式法分解因式3.因式分解法综合运用(因式分解判断三角形、换元法常规、换元法平均数法)知识精讲1.因式分解的概念定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。
注意三原则1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:-32x +x=-x(3x-1))2.提取公因式法公因式的定义:我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式。
公因式的确定:(1)符号: 若第一项是负号则先把负号提出来(提出负号后括号里每一项都要变号)(2)系数:取系数的最大公约数;(3)字母:取字母(或多项式)的指数最低的;(4)所有这些因式的乘积即为公因式;提公因式法分解因式:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成几个因式的乘积,这种分解因式的方法叫做提公因式法。
3.公式法平方差公式:完全平方公式: 一个多项式化成几个整式的积的形式8x 2y 3=2x 2·4y 3一个多项式化成几个整式积的形式x-1=x(1―1x )一个多项式化成整式积的形式X 2-x-2=x(x-1)-2 (x+1)(x-1)=x 2-1考点1:因式分解的概念例题1:下列各式从左到右的变式中,属于因式分解的是() A. a (x +y )=ax +ay B. x 2−2x +1=x (x −2)+1C . 6ab=2a ·3b D. x 2−1=(x +1)(x −1) 定义易错点提取经典例题考点2:提公因式法例题2:因式分解(1)a2x2―ax (2)-6abc-14a2b3+12a3b(3)8ab(x-y)2―4a(y-x)4(4)m(m-n)3+n(n-m)5考点3 整体思想例题3:(x-y)2-(y-x)因式分解的结果是()A.(y-x)(x-y)B.(x-y)(x-y-1)C.(y-x)(y-x-1)D.(x-y)(y-x-1)超长材料阅读题阅读下列因式分解的过程,再回答所提出的问题1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(1+x)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是(),共应用了()次。
因式分解专题复习
【知识回顾】
1、下列从左到右的变形,其中是因式分解的是( )
(A )()b a b a 222-=- (B )()()1112-+=-m m m
(C )()12122+-=+-x x x x (D )()()()
()112+-=+-b ab a b b a a 2、下列各式从左到右的变形中,是因式分解的是( )
A.()2
1a a a a +=+ B. ()23131a a a a +=++- C.()2242( 2)x y x y x y =+-- D. ()33()a b b a -=--
一、提公因式法
(1)提公因式法: ()ab ac a b c +=+
①提取的公因式应是各项系数的最大公因数(系数都是整数时)与各项都含有的相同字母的最低次幂的积。
②当某一项全部提出时,括号内加1;
③当第一项系数为负数时,一般提取此负号。
【例题辨析】
1、把多项式-8a 2b 3c +16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是( )
A.-8a 2bc
B. 2a 2b 2c 3
C.-4abc
D. 24a 3b 3c 3
2、20032002)2()2(-+-因式分解后是( ).
A.22002
B.–2
C.–22002
D.–1
3、多项式))(())((x b x a ab b x x a a --+---的公因式是( )
A 、-a 、
B 、))((b x x a a ---
C 、)(x a a -
D 、)(a x a --
二、公式法
1、平方差公式:
2、完全平方公式:
【例题辨析】
1、下列多项式中,可以用平方差公式分解因式的是( )
(A )42+a (B )22
-a (C )42+-a (D )42--a
2、下列各式中,能用完全平方公式分解因式的是( ).
(A )4x 2-1 (B )4x 2+4x+1 (C )x 2-xy +y 2 D .x 2-x +12
[ 3、把多项式2288x x -+分解因式,结果正确的是( )
A . ()224x -
B .()224x -
C .()222x -
D .()222x + 4、若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。
5、22)(n x m x x -=++,则m =____ ; n =____。
6、若)15)(1(152-+=--x x ax x 则a = 。
7、如果的值是那么可分解为k b x a x ab kx x ),)((2+++-(
). A.b a + B.b a -- C.b a +- D.b a -
8、分解因式:
(1)2296m mn n -+ (2)()22
241x x -+
三、分组分解法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++
(1).3223y xy y x x --+ (2)1y -x -xy +
(3)22y 41-xy 4-x + (4)a 4-b 9b 12ab 6-a 22++
【归纳总结】
归纳1、因式分解注意:
1. 因式分解的对象是多项式;
2. 因式分解的结果一定是整式乘积的形式;
3. 分解因式,必须进行到每一个因式都不能再分解为止;
4. 公式中的字母可以表示单项式,也可以表示多项式;
5. 结果如有相同因式,应写成幂的形式;
6. 题目中没有指定数的范围,一般指在有理数范围内分解;
归纳2、因式分解的一般步骤是:
通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;
四、十字相乘法
(一)二次项系数为1:()()()b x a x ab x b a x 2++=+++
【例题辨析】
1、分解因式
(1)2
56x x -- = (2) 672+-x x = (3) 24102--x x = (4)36152+-a a =
(5)5-x 4x 2+= (6)15-y 2-y 2=
(7) 2256x xy y +- =
五、分解因式(展开变换):
(1)a(a+2)+b(b+2)+2ab (2) x(x-1)-y(y-1)
五、代数式求值
1、 已知3
12=
-y x ,2=xy ,求 43342y x y x -的值。
2、若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值
3、已知2=+b a ,求)(8)(2
2222b a b a +--的值。