高频电路原理与分析
- 格式:doc
- 大小:618.00 KB
- 文档页数:34
高频电路原理与分析期末复习资料陈皓编10级通信工程2012年12月1.单调谐放大电路中,以LC 并联谐振回路为负载,若谐振频率f 0=10.7MH Z,C Σ= 50pF ,BW 0.7=150kH Z ,求回路的电感L 和Q e 。
如将通频带展宽为300kH Z ,应在回路两端并接一个多大的电阻?解:(1)求L 和Q e(H )= 4.43μH(2)电阻并联前回路的总电导为47.1(μS)电阻并联后的总电导为94.2(μS)因故并接的电阻为2.图示为波段内调谐用的并联振荡回路,可变电容 C 的变化范围为 12~260pF ,Ct 为微调电容,要求此回路的调谐范围为 535~1605 kHz ,求回路电感L 和C t 的值,并要求C 的最大和最小值与波段的最低和最高频率对应。
题2图12min 12max ,22(1210)22(26010)33根据已知条件,可以得出:回路总电容为因此可以得到以下方程组16051053510t t t C C C LC L C LC L C ππππ∑--=+⎧⨯==⎪⨯+⎪⎨⎪⨯==⎪⨯+⎩3.在三级相同的单调谐放大器中,中心频率为465kH Z,每个回路的Q e=40,试问总的通频带等于多少?如果要使总的通频带为10kH Z ,则允许最大的Q e 为多少? 解:(1)总的通频带为4650.51 5.928()40e z e Q kH =≈⨯= (2)每个回路允许最大的Q e 为4650.5123.710e e Q =≈⨯=4.图示为一电容抽头的并联振荡回路。
谐振频率f 0=1MHz ,C 1=400 pf ,C 2=100pF121212121232260109121082601091210260108101981253510260190.3175-1261605535()()10103149423435ttt t C C C C pF L mH π-----⨯+==⨯+=⨯-⨯⨯-=⨯==⨯⨯+⨯=≈求回路电感L。
高频电路原理与分析第五版课后习题答案曾兴雯刘乃安陈健付卫红编[日期]NEUQ西安电子科技大学出版社第一章 绪论1-1 画出无线通信收发信机的原理框图,并说出各部分的功用。
答:上图是一个语音无线电广播通信系统的基本组成框图,它由发射部分、接收部分以及无线信道三大部分组成。
发射部分由话筒、音频放大器、调制器、变频器(不一定必须)、功率放大器和发射天线组成。
低频音频信号经放大后,首先进行调制后变成一个高频已调波,然后可通过变频,达到所需的发射频率,经高频功率放大后,由天线发射出去。
接收设备由接收天线、高频小信号放大器、混频器、中频放大器、解调器、音频放大器、扬声器等组成。
由天线接收来的信号,经放大后,再经过混频器,变成一中频已调波,然后检波,恢复出原来的信息,经低频功放放大后,驱动扬声器。
1-2 无线通信为什么要用高频信号?“高频”信号指的是什么? 答:高频信号指的是适合天线发射、传播和接收的射频信号。
采用高频信号的原因主要是: (1)频率越高,可利用的频带宽度就越宽,信道容量就越大,而且可以减小或避免频道间的干扰;(2)高频信号更适合电线辐射和接收,因为只有天线尺寸大小可以与信号波长相比拟时,才有较高的辐射效率和接收效率,这样,可以采用较小的信号功率,传播较远的距离,也可获得较高的接收灵敏度。
1-3 无线通信为什么要进行凋制?如何进行调制? 答:因为基带调制信号都是频率比较低的信号,为了达到较高的发射效率和接收效率,减小天线的尺寸,可以通过调制,把调制信号的频谱搬移到高频载波附近;另外,由于调制后的音频放大器调制器激励放大输出功率放大载波振荡器天线开关高频放大混频器中频放大与滤波解调器音频放大器话筒本地振荡器扬声器变频器信号是高频信号,所以也提高了信道利用率,实现了信道复用。
调制方式有模拟调调制和数字调制。
在模拟调制中,用调制信号去控制高频载波的某个参数。
在调幅方式中,AM 普通调幅、抑制载波的双边带调幅(DSB )、单边带调幅(SSB )、残留单边带调幅(VSSB );在调频方式中,有调频(FM )和调相(PM )。
高频电路原理与分析
高频电路原理与分析是研究电路在高频信号下的特性和行为的学科领域。
在高频电路中,频率通常在百万至数十亿赫兹之间,因此电路的特性与低频电路有所不同。
在高频电路中,传输线上的传输特性变得非常重要。
传输线起源于电源,传输信号通过线路中的传导和辐射效应来传输。
传输线的阻抗、电容和电感等参数会对信号的传输和反射产生影响,因此需要详细进行分析和计算。
另一个重要的高频电路元件是电容。
在高频下,电容的等效电阻通常比较小,电容分布及与其他元件的耦合效应需要被考虑。
电感元件在高频电路中也起到重要的作用,它们可以提供滤波和频率选择的功能。
在高频电路分析中,频率响应是一个重要的指标。
频率响应可以通过幅频特性和相频特性来表示,用于分析电路对不同频率的响应情况。
幅频特性描述了信号在不同频率下的衰减和放大情况,相频特性描述了信号在通过电路时相位变化的情况。
由于高频电路中信号的频率很高,信号的传输和响应速度也很快。
因此,电路中的传输延迟、功率损耗和噪声等问题需要进行仔细分析和设计。
总之,高频电路原理与分析是一门深入研究电路在高频信号下行为的学科,涉及到传输线、电容、电感等元件的特性分析,
频率响应的计算与分析等内容。
这些知识对于设计和优化高频电路都具有重要意义。
高频电路原理与分析
实验报告
专业电子信息科学与技术
班级20 级电子二班
学号
姓名
同组人
实验名称混频器实验、中频放大器实验
20xx年6 月8 日
目录
一、实验目的 (1)
二、原理说明 (1)
三、实验设备 (1)
四、实验内容 (2)
五、实验注意事项 (2)
六、实验心得及体会 (2)
一、实验目的
1.了解三极管混频器和集成混频器的基本工作原理,掌握用MC1496来实现混频的方法。
2.了解混频器的寄生干扰。
3.熟悉电子元器件和高频电子线路实验系统;
4.了解中频放大器的作用、要求及工作原理;
5.掌握中频放大器的测试方法。
二、实验设备
集成乘法器混频模块、集体三极管混频模块、LC振荡器与集体振荡器模块、试验箱、电源、中频放大器模块。
三、实验内容
1.中频频率观测
(1)晶体三极管混频器
当改变高频信号源频率时,输出中频5TP03波形变化为先增大后减小。
(2)集成乘法器混频器
当改变高频信号源的频率时,输出中频9TP04的波形变化为先增大后减小。
2中频放大器输入输出波形观察及放大倍数测量
调整7W02,使中放输出幅度最大且不失真,记下此时的幅度大小为4.52V,然后测量中放此时的输入幅度,即可计算出中放的电压放大倍数。
电压放大倍数计算得w=4.52/0.15=30.1。
实验图如下:。
高频电路原理与分析课后答案1. 高频电路原理与分析课后答案1.1 天线理论与设计1. 解析1:a.根据阻抗匹配的原理,为了使输入阻抗和输出阻抗匹配,应该选择与传输线特性阻抗相等的阻抗。
所以,传输线的特性阻抗应该为70 Ω。
b.由于50 Ω的传输线与70 Ω的传输线阻抗不匹配,会导致信号的反射。
为了减小信号反射,应该在两条传输线之间使用阻抗匹配网络。
2. 解析2:a.在阻抗为50 Ω的传输线上,可以利用阻抗变换器将阻抗变换为70 Ω。
阻抗变换器可以使用L型和T型阻抗变换电路进行设计。
b.在阻抗为70 Ω的传输线上,可以直接连接到负载。
1.2 放大器设计1. 解析1:a.增益-带宽积(Gain-Bandwidth Product,GBW)是放大器在特定增益下的工作带宽。
GBW的计算公式为:GBW = 增益 ×带宽。
b.带宽指的是放大器能够正常工作的频率范围。
带宽越大,放大器能够处理的频率范围也就越广。
2. 解析2:a.为了提高放大器的频率响应,可以采用多级放大器的结构。
多级放大器可以提高总体的增益,并且使得带宽更宽。
b.使用电容耦合来连接各级放大器可以实现不同级之间的匹配,同时还可以阻隔直流偏置。
1.3 混频器理论与设计1. 解析1:a.混频器是一种用来将两个不同频率信号进行混合的电路。
混频器的输入包括一个本地振荡器信号和一个射频信号,输出为信号频率的和与差。
b.混频器的原理是利用非线性元件的非线性特性,将两个信号进行数学运算,得到新的频率成分。
2. 解析2:a.混频器的输出频率可以通过计算射频信号频率与本地振荡器的频率之差获得。
b.混频器的选择应该根据应用的频率范围和要求来确定。
常用的混频器包括平衡混频器、非平衡混频器和集成混频器等。
1.4 射频滤波器设计1. 解析1:a.射频滤波器是一种用于滤除特定频率范围的电子设备。
不同的射频滤波器有不同的频率响应特性,如带通滤波器、带阻滤波器和陷波滤波器等。
高频电路原理与分析高频电路是指工作频率在几十千赫至数百兆赫之间的电路,它在现代通信、雷达、无线电、微波等领域有着广泛的应用。
高频电路的设计和分析需要深入理解其原理和特性,本文将从高频电路的基本原理入手,对其进行深入的分析和探讨。
首先,高频电路的特点是频率高、波长短,因此电路中的电感、电容等元件的特性会有所不同。
在高频电路中,电感的自感和互感会对电路的性能产生显著影响,因此需要对电感的特性进行深入的分析。
同时,高频电路中的电容也需要特别注意,因为电容在高频下会产生电感和电阻,这些特性会对电路的稳定性和性能产生影响。
其次,对于高频电路的分析,需要考虑传输线理论的应用。
传输线在高频电路中起着至关重要的作用,它可以有效地传输高频信号,并且能够减小信号的衰减和失真。
因此,对传输线的特性和参数进行准确的分析,对于设计高频电路至关重要。
另外,高频电路中的放大器设计也是一个重要的方面。
在高频电路中,放大器的设计需要考虑到频率响应、噪声系数、稳定性等因素,因此对于放大器的分析和设计是高频电路中的关键问题之一。
在高频电路中,滤波器的设计也是一个重要的方面。
滤波器可以对信号进行频率的选择性处理,因此在高频电路的设计中,滤波器的选择和设计需要特别注意。
最后,对于高频电路的分析和设计,需要充分考虑电路中的各种非线性效应。
在高频电路中,非线性效应会对电路的性能产生显著影响,因此需要对非线性效应进行深入的分析和研究。
综上所述,高频电路的原理与分析涉及到电感、电容、传输线、放大器、滤波器、非线性效应等多个方面,需要系统地进行深入研究和分析。
只有深入理解高频电路的原理和特性,才能够设计出稳定性能优异的高频电路。
希望本文对高频电路的原理与分析能够给读者带来一些帮助,谢谢!(字数,701)。
.高频电路原理与分析期末复习资料陈皓编10级通信工程2012年12月1.单调谐放大电路中,以LC 并联谐振回路为负载,若谐振频率f 0=10.7MH Z , C Σ= 50pF ,BW 0.7=150kH Z ,求回路的电感L 和Q e 。
如将通频带展宽为300kH Z ,应在回路两端并接一个多大的电阻?解:(1)求L 和Q e(H )= 4.43μH(2)电阻并联前回路的总电导为47.1(μS)电阻并联后的总电导为94.2(μS)因故并接的电阻为2.图示为波段内调谐用的并联振荡回路,可变电容 C 的变化范围为 12~260 pF ,Ct 为微调电容,要求此回路的调谐范围为 535~1605 kHz ,求回路电感L 和C t 的值,并要求C 的最大和最小值与波段的最低和最高频率对应。
12min ,22(1210)33根据已知条件,可以得出:回路总电容为因此可以得到以下方程组160510t t C C C LC L C ππ∑-=+⎧⨯==⎪⨯+⎪⎨题2图3.在三级相同的单调谐放大器中,中心频率为465kH Z ,每个回路的Q e =40,试问总的通频带等于多少?如果要使总的通频带为10kH Z ,则允许最大的Q e 为多少?解:(1)总的通频带为121212121232260109121082601091210260108101981253510260190.3175-1261605535()()10103149423435t t t t C C C C pF L mH π-----⨯+==⨯+=⨯-⨯⨯-=⨯==⨯⨯+⨯=≈103465210.51 5.928()40e z ef Q kH Q =-≈⨯= (2)每个回路允许最大的Q e 为103465210.5123.710e ef Q Q =-≈⨯=4.图示为一电容抽头的并联振荡回路。
谐振频率f 0=1MHz ,C 1=400 pf ,C 2=100 pF 求回路电感L 。
若 Q 0=100,R L =2k Ω,求回路有载 Q L 值。
题4图解答:12122062124000080,5001(2)10.317(210)8010C C C pF C C L f C mH ππ-===+==≈⨯⨯1L 12C 400R 0.8C C 500==+负载接入系数为p=2061202 3.1250.641001992 6.28108010L LR R k p Q k f C ΩΩπ-'=====≈⨯⨯⨯0折合到回路两端的负载电阻为回路固有谐振阻抗为R答:回路电感为0.317mH,有载品质因数为1.5465.外接负载阻抗对小信号谐振放大器有哪些主要影响?答:外接负载电阻使LC回路总电导增大,即总电阻减小,从而使Qe下降,带宽BW0.7展宽;外接负载电容使放大器的谐振频率f0降低。
因此,在实用电路中,三极管的输出端和负载阻抗都将采用部分接入的方式与LC回路相连,以减小它们的接入对回路Qe值和谐振频率的影响。
6.通频带为什么是小信号谐振放大器的一个重要指标?通频带不够会给信号带来什么影响?为什么?答:小信号谐振放大器的基本功能是选择和放大信号,而被放大的信号一般都是已调信号,包含一定的边频,小信号谐振放大器的通频带的宽窄直接关系到信号通过放大器后是否产生失真,或产生的频率失真是否严重,因此,通频带是小信号谐振放大器的一个重要指标。
通频带不够将使输入信号中处于通频带以外的分量衰减,使信号产生失真。
7.改正图示线路中的错误,不得改变馈电形式,重新画出正确的线路。
2C 2E 2L解答:8.晶体管组成的单回路中频放大器,如图所示。
已知f o =465kHz ,晶体管经中和后的参数为:g ie =0.4mS,C ie =142pF ,g oe =55μS ,C oe =18pF ,Y ie =36.8mS,Y re =0,回路等效电容C=200pF ,中频变压器的接入系数p 1=N 1/N=0.35,p 2=N 2/N=0.035,回路无载品质因数Q 0=80,设下级也为同一 晶体管,参数相同。
试计算: (1)回路有载品质因数 Q L 和 3 dB 带宽 B 0.7;(2)放大器的电压增益;(3) 中和电容值。
(设C b ’c =3 pF )题8图解:根据已知条件可知,能够忽略中和电容和y re 的影响。
得:答:品质因数Q L 为40.4,带宽为11.51kHz,谐振时的电压增益为30.88,中和电容值为1.615pF9.图示是一三回路振荡器的等效电路,设有下列四种情况:(1)L 1C 1>L 2C 2>L 3C 3;(2)L 1C 1<L 2C 2<L 3C 3;(3)L 1C 1=L 2C 2>L 3C 3;(4)L 1C 1<L 2C 2=L 3C 3。
2222122000.35180.035142202oe ie C p C p C pF∑=++=+⨯+⨯≈回路总电容为C 3-120002246510202107.37480固有谐振电导为C f g S Q ππμ∑⨯⨯⨯⨯==≈22120262360.3555100.0350.4107.3741014.6oe ie p g p g g Sμ∑---=++=⨯⨯+⨯⨯+⨯≈回路总电导为g 3-120600.731206111122465102021040.414.610465311.5140.4||0.350.03536.81030.8814.6100.353 1.61510.65L Lfe n b c b c f Q f dB B kHz Q p p y K N p C C C pF N N p ππ∑∑∑---''⨯⨯⨯⨯==≈⨯==≈⨯⨯⨯===⨯===⨯=--C 品质因数g 带宽谐振增益g 中和电容试分析上述四种情况是否都能振荡,振荡频率f与回路谐振频率有何关系?1根据给定条件,可知(1)f o1<f02<f03,因此,当满足f o1<f02<f<f03,就可能振荡,此时L1C1回路和L2C2回路呈容性,而L3C3回路呈感性,构成一个电容反馈振荡器。
(2)f o1>f02>f03,因此,当满足f o1>f02>f>f03,就可能振荡,此时L1C1回路和L2C2回路呈感性,而L3C3回路呈容性,构成一个电感反馈振荡器。
(3)f o1=f02<f03, 因此,当满足f o1=f02<f<f03,就可能振荡,此时L1C1回路和L2C2回路呈容性,而L3C3回路呈感性,构成一个电容反馈振荡器。
(4)f o1>f02=f03不能振荡,因为在任何频率下,L3C3回路和L2C2回路都呈相同性质,不可能满足相位条件。
10.画出下列已调波的波形和频谱图(设ωc=5Ω)。
(1)u(t)=(1+sinΩt)sinωc t(V);(2)u(t)=(1+0.5cosΩt)cosωc t(V);(3)u(t)=2 cosΩt cosωc t(V)解:(1)为m a=1的普通调幅波,其波形与频谱图如图2(a)、(b)所示;(2)为m a=0.5的普通调幅波,其波形与频谱图如图2(c)、(d)所示;(3)为双边带调幅波,其波形与频谱图如图2(e)、(f)所示。
图211.简要叙述减小混频干扰的措施。
解:减小混频干扰的措施有:(1)混频器的干扰程度与干扰信号的大小有关,因此提高混频器前端电路的选择性(如天线回路、高放级的选择性),可有效地减小干扰的有害影响。
(2)将中频选在接收频段以外,可以避免产生最强的干扰哨声,同时,也可以有效地发挥混频前各级电路的滤波作用,将最强的干扰信号滤除。
如采用高中频,可基本上抑制镜像频率干扰、中频干扰和某些副波道干扰。
(3)合理选择混频管的工作点,使其主要工作在器件特性的二次方区域,或者选择具有平方律特性的场效应管作为混频器件,可减少输出的组合频率数目,进而减小混频干扰。
但这种办法对于减小中频干扰和镜像频率干扰是无效的。
(4)采用模拟乘法器、平衡混频器、环形混频器,可大大减少组合频率分量,也就减小了混频干扰。
12.丙类放大器为什么一定要用谐振回路作为集电极的负载?谐振回路为什么一定要调谐在信号频率上?答:这是因为放大器工作在丙类状态时,其集电极电流将是失真严重的脉冲波形,如果采用非调谐负载,将会得到严重失真的输出电压,因此必须采用谐振回路作为集电极的负载。
调谐在信号频率上集电极谐振回路可以将失真的集电极电流脉冲中的谐波分量滤除,取出其基波分量,从而得到不失真的输出电压。
13.无线通信为什么要用高频信号?“高频”信号指的是什么?答:高频信号指的是适合天线发射、传播和接收的射频信号。
采用高频信号的原因主要是:(1)频率越高,可利用的频带宽度就越宽,信道容量就越大,而且可以减小或避免频道间的干扰;(2)高频信号更适合电线辐射和接收,因为只有天线尺寸大小可以与信号波长相比拟时,才有较高的辐射效率和接收效率,这样,可以采用较小的信号功率,传播较远的距离,也可获得较高的接收灵敏度。
14.无线通信为什么要进行凋制?如何进行调制?答:因为基带调制信号都是频率比较低的信号,为了达到较高的发射效率和接收效率,减小天线的尺寸,可以通过调制,把调制信号的频谱搬移到高频载波附近;另外,由于调制后的信号是高频信号,所以也提高了信道利用率,实现了信道复用。
调制方式有模拟调调制和数字调制。
在模拟调制中,用调制信号去控制高频载波的某个参数。
在调幅方式中,AM普通调幅、抑制载波的双边带调幅(DSB)、单边带调幅(SSB)、残留单边带调幅(VSSB);在调频方式中,有调频(FM)和调相(PM)。
在数字调制中,一般有频率键控(FSK)、幅度键控(ASK)、相位键控(PSK)等调制方法。
15.石英晶体有何特点?为什么用它制作的振荡器的频率稳定度较高?答:石英晶体有以下几个特点:(1)晶体的谐振频率只与晶片的材料、尺寸、切割方式、几何形状等有关,温度系数非常小,因此受外界温度影响很小;(2)具有很高的品质因数;(3)具有非常小的接入系数,因此手外部电路的影响很小;(4)在工作频率附近有很大的等效电感,阻抗变化率大,因此谐振阻抗很大;(5)构成震荡器非常方便,而且由于上述特点,会使频率非常稳定。
16.对高频小信号放大器的主要要求是什么?高频小信号放大器有哪些分类?答:对高频小信号器的主要要求是:(1)比较高的增益;(2)比较好的通频带和选择性;(3)噪音系数要小;(4)稳定性要高。
高频小信号放大器一般可分为用分立元件构成的放大器、集成放大器和选频电路组成的放大器。