博弈论第2章
- 格式:ppt
- 大小:248.50 KB
- 文档页数:47
《博弈论:原理、模型与教程》第02章N a s h均衡第02节重复剔除劣战略行为-CAL-FENGHAI.-(YICAI)-Company One1《博弈论:原理、模型与教程》第一部分完全信息静态博弈第2章 Nash 均衡重复剔除劣战略行为(已精细订正!)在“囚徒困境”中,“坦白”是小偷的占优战略,也就是说,相对于战略“抵赖”,“坦白”在任何情况下都是小偷的最优选择。
因此,小偷只会选择战略“坦白”。
反过来也可以这么理解:相对于战略“坦白”,小偷选择“抵赖”所得到的支付都要小于选择“坦白”所的得到的。
既然选择“抵赖”的所得总是小于选择“坦白”的所得,小偷当然就不会选择“抵赖”,这也就相当于小偷将战略“抵赖”从自己的选择中剔除掉了。
考察更一般的n 人博弈情形。
在n 人博弈中,如果存在参与人i 的占优战略*i s ,那么他在博弈中的战略选择问题就很简单:选择占优战略*i s 。
但在大多数博弈问题中,参与人的占优战略并不存在。
虽然不存在占优战略,但在某些博弈问题中,参与人i 在对自己的战略进行比较时,可能会发现这样的情形:存在两个战略i s '和i s ''(i s ',i s ''∈i S ),i s ''虽然不是占优战略,但与i s '相比,自己在任何情况下选择i s ''的所得都要大于选择i s '的所得。
在这种情况下,理性参与人i 的选择又有什么样的特点呢虽然不能确定参与人i 最终会选择什么样的战略,但可以肯定的是,理性参与人i 绝对不会选择战略i s '。
因为参与人i 选择战略i s ',还不如直接选择战略i s ''(因为参与人i 在任何情况下选择i s ''的所得都要大于选择i s '的所得)。
定义2-3 在n 人博弈中,如对于参与人i ,存在战略i s ',i s ''∈i S ,对j nij j i S s ≠=-∏∈∀1,有),(),(i i i i i i s s u s s u --'>''则称战略i s '为参与人i 的劣战略,或者说战略i s ''相对于战略i s '占优。
问题1:博弈方2就如何分10000元钱进行讨价还价。
假设确定了以下原则:双方提出自己要求的数额1s 和2s ,10000021≤≤s s ,。
如果设博弈方1和,1000021≤+s s ,则两博弈方的要求都得到满足,即分得1s 和2s ;但如果1000021>+s s ,则该笔钱就被没收。
问该博弈的纯策略纳什均衡是什么?如果你是其中一个博弈方,你会选择什么数额,为什么?解:112111210000()010000s s s u s s s ≤-⎧=⎨>-⎩,那么,1210000s s =-221222110000()010000s ss u s s s ≤-⎧=⎨>-⎩那么,2110000s s =-它们是同一条直线,1210000s s +=上的任意点12(,)s s ,都是本博弈的纯策略的Nash 均衡。
假如我是其中一个博弈方,我将选择15000s =元,因为(5000,5000)是比较公平和容易接受的。
它又是一个聚点均衡。
问题2:设古诺模型中有n 家厂商。
i q 为厂商i 的产量,n q q q Q +++= 21为市场总产量。
P 为市场出清价格,且已知Q a Q P P -==)((当a Q <时,否则0=P )。
假设厂商i 生产产量i q 的总成本为ii i i cq q C C ==)(,也就是说没有固定成本且各厂的边际成本都相同,为常数)(a c c <。
假设各厂同时选择产量,该模型的纳什均衡是什么?当趋向于无穷大时博弈分析是否仍然有效?解:1()ni i i j i j pq cq a c q q π==-=--∑,1,2,,i n =令20ii j j ii a c q q q π≠∂=---=∂∑,1,2,,i n =解得:***121na c q q q n -====+,2***121na c n πππ-⎛⎫==== ⎪+⎝⎭当n 趋向于无穷大时,这是一个完全竞争市场,上述博弈分析方法其实已经失效。