按贝塞尔函数展开成级数
- 格式:ppt
- 大小:1.01 MB
- 文档页数:15
常见幂级数展开式求和公式幂级数展开式是一种重要的数学工具,可以将各种函数表示为无穷级数的形式。
常见的幂级数展开式求和公式有泰勒级数、麦克劳林级数和幂级数的逐项积分求和公式。
下面将逐一介绍这些公式。
1.泰勒级数求和公式:泰勒级数是将一个函数在其中一点展开成无穷级数的形式,用于近似表示函数在该点的值。
对于具有充分多次可导性的函数f(x),其在x=a 处的泰勒级数展开式为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...其中,f^n(a)表示f(x)在x=a点的n阶导数,n!表示n的阶乘。
当n 足够大时,泰勒级数可以提供较准确的函数近似。
2.麦克劳林级数求和公式:麦克劳林级数是泰勒级数在x=0处展开的特殊形式。
对于具有充分多次可导性的函数f(x),其在x=0处的麦克劳林级数展开式为:f(x)=f(0)+f'(0)x+f''(0)x^2/2!+f'''(0)x^3/3!+...麦克劳林级数将函数近似表示为多项式的形式,方便计算。
3.幂级数逐项积分求和公式:对于幂级数∑a_n(x-a)^n,可以对其逐项积分得到:∫[∑a_n(x-a)^n]dx = ∑[a_n/(n+1)(x-a)^(n+1)] + C其中,C为积分常数。
这个公式可以用于计算幂级数的积分。
除了上述三种常见幂级数展开式求和公式,还有一些其他的展开式求和公式,如:4.欧拉恒等式:欧拉恒等式表示以自然对数e为底的指数函数和三角函数的关系:e^ix = cos(x) + i·sin(x)其中,i表示虚数单位。
这个等式广泛应用于复数分析、信号处理等领域。
5.贝塞尔函数展开式:贝塞尔函数是一类特殊的函数,可以用无穷级数表示。
对于整数阶的贝塞尔函数J_n(x),其展开式为:J_n(x)=(∑[(-1)^k/(k!(n+k)!)(x/2)^(2k+n)])/(x/2)^n贝塞尔函数在物理学、工程学等领域中有广泛的应用。
傅里叶贝塞尔级数傅里叶贝塞尔级数是一种数学工具,用于分析周期性函数。
它是由法国数学家傅里叶和贝塞尔独立提出的,被广泛应用于物理学、工程学和计算机科学等领域。
傅里叶贝塞尔级数的基本思想是将一个周期性函数表示为一系列正弦函数的线性组合。
具体来说,给定一个周期为T的函数f(x),傅里叶贝塞尔级数可以将其表示为以下形式的级数:f(x) = a0/2 + Σ(an*cos(nωx) + bn*sin(nωx))其中,a0、an和bn是系数,ω=2π/T是角频率,n取正整数。
傅里叶贝塞尔级数的优点之一是它可以将周期性函数转化为一组简单的正弦函数。
这使得我们能够更好地理解和分析周期性现象。
例如,在物理学中,我们可以将周期性运动表示为傅里叶贝塞尔级数,从而研究它的频谱特性和谐波分析。
另一个重要的应用领域是信号处理。
傅里叶贝塞尔级数可以用来分析和合成信号。
通过计算信号的傅里叶系数,我们可以获得信号的频谱信息,了解信号中包含的各个频率成分的强度和相位。
在工程学中,傅里叶贝塞尔级数在电路分析和控制系统设计中也起着重要作用。
通过将电路中的周期性信号表示为傅里叶贝塞尔级数,我们可以分析电路的频率响应和稳定性。
除了周期性函数,傅里叶贝塞尔级数还可以用于处理非周期性函数。
通过在非周期性函数上引入周期性边界条件,我们可以将其转化为周期性函数,然后应用傅里叶贝塞尔级数进行分析。
傅里叶贝塞尔级数的收敛性是一个重要的问题。
根据傅里叶的定理,如果函数f(x)在一个周期内连续或可积,那么它的傅里叶贝塞尔级数收敛到原函数。
然而,在实际应用中,我们通常只需要考虑级数的有限项,而不必追求无限精度。
傅里叶贝塞尔级数是一种重要的数学工具,可以用来分析周期性函数和信号。
它在物理学、工程学和计算机科学等领域都有广泛的应用。
通过理解和应用傅里叶贝塞尔级数,我们能更好地理解和解释周期性现象,从而推动科学和技术的发展。
第七章贝塞尔函数7.1 Bessel 方程及其幂级数解定义:称Bessel 方程为:222'''()0x y xy x n y ++-=其中,n 为任意实数。
当n>0时,取级数解c k k k y a x ∞+==∑有120'()''()(1)c k c k k k k k y a c k xy a c k c k x ∞∞+-+-===+=++-∑∑代入原式,222222012{[()(1)()]}()[(1)]0k kk k a c k c k c k aa x a c a a c n x ∞-=++-++-++-++-=∑有222201222()0[(1)]0[()]0k k a c n a c n a c k n a --=+-=+-+=得1,0c n a =±=,取c=n, 有222()k k a a n k n -=+-定理:212200,1,...(1)!2!()!m m mma m n a m n m +==-=+ 取022!na n =得22(1)2!()!mmn m a m n m +-=+有一个特解220(1)()2!()!mn m n n m m y J x x m n m ∞++=-==+∑取c=-n, 得另一个特解2220(1)()2!()!m n mn n m m x y J x m n m -+∞--+=-==-+∑称J n (x)为第一类Bessel 函数。
当n 不为整数x-->0时,有J n (x)-->0, J -n (x)-->∞, 则J n (x)-与J -n (x)不相关。
由齐次线性常微分方程通解的结构定理知道,当n 不为整数,Bessel 方程的通解为()()n n y aJ x bJ x -=+由级数收敛差别法,有22211limlim 04()m m m m a a m n m R→∞→∞-===+ 式中R 为收敛半径,可知R=∞,则J n (x)与J -n (x)的收敛范围为0<|x|<∞ 定义:当n 为整数时,J n (x)-称为整数阶Bessel 函数 例计算J 0(1)的前三项和。
贝塞尔公式详细推导过程《贝塞尔公式的详细推导过程》引言:贝塞尔公式是数学中一种重要且广泛应用的公式,它的推导过程相对较复杂、细致,但却十分精彩。
在本文中,我们将详细介绍贝塞尔公式的推导过程,让读者对这一公式有更深入的理解。
一、贝塞尔公式的定义:贝塞尔公式是一种用连分数表示的数学公式,其一般形式为:J_n(x) = \frac{1}{\pi}\int_{0}^{\pi} \cos(n\theta - x\sin\theta)d\theta其中,J_n(x) 表示第n阶贝塞尔函数,x 是实数,\theta 表示角度,\pi 表示圆周率。
二、推导过程:1. 首先,我们从欧拉公式 e^ix = \cos(x) + i\sin(x) 出发,将其展开得到:e^{ix} = \cos(x) + i\sin(x)2. 接下来,我们将展开中的i\sin(x) 转化为两个实数的乘积。
我们知道,正弦函数的定义式为:\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}代入之前的展开式,得到:i\sin(x) = \frac{e^{ix} - e^{-ix}}{2}3. 现在,我们用这个展开式来推导贝塞尔公式。
我们首先将贝塞尔函数展开成幂级数形式:J_n(x) = \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k}4. 接下来,我们将展开式中的 e^{ix} 替换为 \cos(x) + i\sin(x):J_n(x) = \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k} \left(\cos(x) + i\sin(x)\right)5. 然后,我们将正弦函数用欧拉公式展开为两个指数函数的乘积:J_n(x) = \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k} \left(\cos(x) + i\frac{e^{ix} - e^{-ix}}{2}\right)6. 继续推导,我们可以将指数函数的乘积展开为两项之差:J_n(x) = \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k} \left(\cos(x) + \frac{i e^{ix}}{2} - \frac{i e^{-ix}}{2}\right)7. 现在,我们可以将展开式中的 i 消去:J_n(x) = \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k} \left(\cos(x) + \frac{e^{ix} - e^{-ix}}{2}\right)8. 之后,我们可以将展开式进行拆分,分别对两项进行求和,并利用复数的性质对其中的复数部分进行化简:J_n(x) = \left(\frac{x}{2}\right)^n \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k}\cos(x) + \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k}\frac{e^{ix} - e^{-ix}}{2}\right)9. 最后,我们可以将两个求和式进行整理,将其中的复数部分转化为积分形式:J_n(x) = \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k}\cos(x) + \left(\frac{x}{2}\right)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(n+k)!}\left(\frac{x}{2}\right)^{2k}\frac{1}{\pi}\int_{0}^{\pi} \cos(n\theta -x\sin\theta)d\theta10. 将整理后的展开式中的求和式转化为连分数形式,即可得到贝塞尔公式:J_n(x) = \frac{1}{\pi}\int_{0}^{\pi} \cos(n\theta - x\sin\theta)d\theta结论:通过上述推导过程,我们可以将贝塞尔公式从指数函数的展开式推导得到,将其转化为连分数形式。
图1 贝塞尔函数的一个实例:一个紧绷的鼓面在中心受到敲击后的二阶振动振型,其振幅沿半径方向上的分布就是一个贝塞尔函数(考虑正负号)。
实际生活中受敲击的鼓面的振动是各阶类似振动形态的叠加。
贝塞尔函数维基百科,自由的百科全书贝塞尔函数(Bessel functions),是数学上的一类特殊函数的总称。
通常单说的贝塞尔函数指第一类贝塞尔函数(Bessel function of the first kind)。
一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数:这类方程的解是无法用初等函数系统地表示。
由于贝塞尔微分方程是二阶常微分方程,需要由两个独立的函数来表示其标准解函数。
典型的是使用第一类贝塞尔函数和第二类贝塞尔函数来表示标准解函数:注意,由于 在 x=0 时候是发散的(无穷),当取 x=0 时,相关系数 必须为0时,才能获得有物理意义的结果。
贝塞尔函数的具体形式随上述方程中任意实数或复数α变化而变化(相应地,α被称为其对应贝塞尔函数的阶数)。
实际应用中最常见的情形为α是整数n,对应解称为n 阶贝塞尔函数。
尽管在上述微分方程中,α本身的正负号不改变方程的形式,但实际应用中仍习惯针对α和−α定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在α=0 点的不光滑性)。
贝塞尔函数也被称为柱谐函数、圆柱函数或圆柱谐波,因为他们是于拉普拉斯方程在圆柱坐标上的求解过程中被发现的。
目录1 历史2 现实背景和应用范围3 定义3.1 第一类贝塞尔函数3.1.1 贝塞尔积分3.1.2 和超几何级数的关系3.2 第二类贝塞尔函数(诺依曼函数)3.3 第三类贝塞尔函数(汉克尔函数)3.4 修正贝塞尔函数3.5 球贝塞尔函数3.6 黎卡提-贝塞尔函数4 渐近形式5 性质6 参考文献7 外部连接历史贝塞尔函数的几个正整数阶特例早在18世纪中叶就由瑞士数学家丹尼尔·伯努利在研究悬链振动时提出了,当时引起了数学界的兴趣。
第一部分 Bessel 函数(阶数或自变量趋于0或无穷时,各种Bessel 函数的极限值,可以利用Mathematica 试算推得。
)一、Bessel 方程及其通解0)(22222=-++y n x dx dy x dxy d x (1) 上式称为以x 为宗量的n 阶Bessel 方程。
●当n 为整数时,(1)式的通解为)()(x BY x AJ y n n += (2)其中,A 、B 为任意实数;)(x J n 为n 阶第一类Bessel 函数;)(x Y n 为n 阶第二类Bessel 函数(或称为“诺依曼(Neumann)函数”)。
●当n 不为整数时,例如,v n =,(1)式的通解可表示为如下两种形式)()(x BJ x AJ y v v -+= (3) )()(x BY x AJ y v v += (4)其中,A 、B 为任意实数;)(x J v 和)(x J v -分别称为v 阶和v -阶第一类Bessel 函数; )(x Y v 称为v 阶第二类Bessel 函数。
另外,Bessel 方程的通解还可以表示为)()()2()1(x BH x AH y v v +=其中,)()()()1(x iY x J x H v v v +=,)()()()2(x iY x J x H v v v -=分别称为称为第一类和第二类汉克尔(Hankel )函数,或统称为第三类Bessel 函数。
●值得注意的是, ∞=-→)(lim 0x J v x ,∞=→)(lim 0x Y v x ,∞=→)(lim 0x Y n x ,当所研究的问题的区域包含0=x 时,由于要求Bessel 方程的解在0=x 处取有限值,所以,此时对(2)、(3)、(4)式而言,必有0=B 。
此条件称为“Bessel 方程的自然边界条件”。
例1:022=+'+''y x y x y x λ (10<≤x )此式为以x λ为宗量的0阶Bessel 方程,其通解为)()(00x BY x AJ y λλ+=另外,由于所求解问题的区域10<≤x 包含0=x ,根据Bessel 方程的自然边界条件,必然有0=B ,通解最后简化为)(0x AJ y λ=例2:0)413(22=-+'+''y x y x y x 为以x 3为宗量的21阶Bessel 方程,其通解为)3()3(2121x BJ x AJ y -+= 或 )3()3(2121x BY x AJ y +=例3:0)(1222=-+'+''y xm k y x y上式两边同乘以2x ,可将其化为如下的以kx 为宗量的m 阶Bessel 方程0)(2222=-+'+''y m k x y x y x (0≠x ) 例4:012=+'+''y k y xy 上式两边同乘以2x ,可将其化为如下的以kx 为宗量的0阶Bessel 方程0222=+'+''y k x y x y x (0≠x )即:0)0(2222=-+'+''y k x y x y x (0≠x )例5:0)]1([222222=+-++R l l r k rd Rd r r d R d r 令r k x =,xx y r R 2)()(π=,则可以将上式化为如下的21+l 阶Bessel 方程0])21([22222=+-++y l x xd yd x x d y d x 二、虚宗量Bessel 方程及其通解0)(22222=+-+y n x dx dy x dxy d x (5) 上式称为“n 阶虚宗量的Bessel 方程”或“n 阶修正的Bessel 方程”,其通解为)()(x BK x AI y n n += (6)其中,A 、B 为任意实数;)(x I n 为“n 阶第一类修正的Bessel 函数”,或称为“n 阶第一类虚宗量Bessel 函数”; )(x K n 为“n 阶第二类修正的Bessel 函数”,或称为“n 阶第二类虚宗量Bessel 函数”。
第一类贝塞尔函数图2 0阶、1阶和2阶第一类贝塞尔函数(贝塞尔J函数)曲线(在下文中,第一类贝塞尔函数有时会简称为“J函数”,敬请读者留意。
)第一类α阶贝塞尔函数Jα(x)是贝塞尔方程当α为整数或α非负时的解,须满足在x= 0 时有限。
这样选取和处理Jα的原因见本主题下面的性质介绍;另一种定义方法是通过它在x= 0 点的泰勒级数展开(或者更一般地通过幂级数展开,这适用于α为非整数):上式中Γ(z)为Γ函数(它可视为阶乘函数向非整型自变量的推广)。
第一类贝塞尔函数的形状大致与按速率衰减的正弦或余弦函数类似(参见本页下面对它们渐进形式的介绍),但它们的零点并不是周期性的,另外随着x的增加,零点的间隔会越来越接近周期性。
图2所示为0阶、1阶和2阶第一类贝塞尔函数Jα(x)的曲线(α = 0,1,2)。
如果α不为整数,则Jα(x)和J−α(x)线性无关,可以构成微分方程的一个解系。
反之若α是整数,那么上面两个函数之间满足如下关系:于是两函数之间已不满足线性无关条件。
为寻找在此情况下微分方程与Jα(x)线性无关的另一解,需要定义第二类贝塞尔函数,定义过程将在后面的小节中给出。
贝塞尔积分α为整数时贝塞尔函数的另一种定义方法由下面的积分给出:(α为任意实数时的表达式见参考文献[2]第360页)这个积分式就是贝塞尔当年提出的定义,而且他还从该定义中推出了函数的一些性质。
另一种积分表达式为:和超几何级数的关系贝塞尔函数可以用超几何级数表示成下面的形式:第二类贝塞尔函数(诺依曼函数)图3 0阶、1阶和2阶第二类贝塞尔函数(贝塞尔Y函数)曲线图(在下文中,第二类贝塞尔函数有时会简称为“Y函数”,敬请读者留意。
)第二类贝塞尔函数也许比第一类更为常用。
这种函数通常用Yα(x)表示,它们是贝塞尔方程的另一类解。
x = 0 点是第二类贝塞尔函数的(无穷)奇点。
Yα(x)又被称为诺依曼函数(Neumann function),有时也记作Nα(x)。
贝塞尔函数1.贝塞尔方程及解:令()()()(),,=R ,u ϕτϕτΦZ 为分离变量的解,则()R ,满足本征值问题的方程,2222210R dy dR m R dx d ω⎛⎫∂++-= ⎪∂⎝⎭(17.1.1)其中2ω是分量的本征值问题的本征值。
若作变换()R()R()y(x);m xx x ωλνω=====或; 则上面方程可以变换:2//2/2(x )y 0x y x y ν++-= (17.1.1a )当ν≠整数时,贝塞尔方程的通解为:(x)AJ (x)BJ (x)y νν-=+当ν=整数时,由于J m -=(1)(x)m m J -,因此通解为 (x)AJ (x)BY (x)m m y =+式中A 与B 为任意常数,J (x)m 与Y (x)m 分别定义为 m 阶第一类与m 阶第二类贝塞尔函数。
2.贝塞尔方程的的级数解二阶线性齐次常微分方程2'''22(x )y 0,0x y xy x b υ++-=≤≤ 为贝塞尔方程现在x=0的领域求解贝塞尔方程的解 2.1级数解的形式由p(x)=1x,q(x)=1-22x ν可见,x=0是p=(x )的一阶极点,是q(x)的二阶极点。
因此,x=0是方程的正则奇点,方程的第一解具有形式;nkk p k k k k y x C x C x ∞∞+===∑=∑ 2.1.12.2指标方程将2.1.1代入贝塞尔方程可得:22300(k )0k p k k k k k C x C x ρρν∞∞+++==⎡⎤∑+-+∑=⎣⎦ 2.1.2 由x 的最低次幂x ρ的系数为0,即得:220()C 0x ρρν-=因0C 0≠,即得指标方程220ρν-=。
由此得指标1,ρν= 2ρν=-2.3.系数递推公式为确定起见,令ν>0,并将ρ=1ρ=ν代入2.1.2中得到22200(k )0k k k k k k C x C x νννν∞∞+++==⎡⎤∑+-+∑=⎣⎦ 改变第二项的求和指标,可得202k(k 2)0k k k k k k C xC xννν∞∞++-==∑++∑=由x的同次幂数之和为0,1(12)0C ν+=2k(k 2)0k k k C C ν-++=由此得10C =2(1)k(k 2)k k C C ν--=+2.4.推公式求系数得特解 ………将系数代入1.1中的贝塞尔方程的一个特解为20120(1)(1)C (x)2!(n 1)n n n n y x n ννν∞+=-Γ-+=∑Γ++2.5.另一个特解同理,令2ρρν==-可得另一个特解为20220(1)(1)C (x)2!(n 1)n n n n y xn ννν∞-=-Γ-+=∑Γ-++3.第一类贝塞尔函数第一类贝塞尔函数(x)J ν的级数形式为21(x)(1)()!(1)2kkk dy x J k νννκ+∞==-Γ++∑经过证明可得:,(x)(1)(x)mm m J J -=-同理可得:,(x)(x)m m J J -=因此:,(x)(1)(x)mmm J J -=-4.第二类贝塞尔函数:第二类贝塞尔函数是Weber 和Schlafli ,通常把它定义为 cos (x)(x)Y (x)sin J J νννπνπ--Y (x)m 的级数形式为Y (x)m ={}1220021(m k 1)!1(1)ln (x)()(k)(m )()2!2!(m k)2k m m k m m k k k x x x J k k κγϕϕκπππ-∞-++==---⎡⎤+--++⎢⎥+⎣⎦∑∑式中γ=0.577216,而 (k)ϕ=11n nκ=∑当x 很小时,可得 0Y ≈2lnx π(0ν=)当x 很大时,(x)(x )42xY νπν≈-- (17.1.12)5.第三类贝塞尔函数 通常定义为(1)H (x)iY (x)J ννν=+ (2)H (x)iY (x)J ννν=-则方程(17.1.1 a)的通解可以写成为(1)(2)y(x)AH H (x)B νν=+ 当x →∞时其渐进展开式为3(x )(1)22H (x )x i o νν--=+ (17.1.14a )3(x )(2)242H (x )x i o νπν----=+ (17.1.14b ) 当x 0→时其渐进展开式为 (1)!2(x)()H ix ννπ-≈- (ν>0) (2)2H (x)iln x νπ≈-总结上述,ν阶贝塞尔方程2/22(x )y 0x y xy ν++-= 的通解有三种形式: (1)y(x)AJ(x)(x)BJ =+ (ν0≠)(2)y(x)AJ(x)(x)BY ν=+ (ν可取任意整数) (3)(1)(2)y(x)AH (x)(x)BH νν=+ (ν可取任意整数) 其中A,B 为常数。
第五章-贝塞尔函数n阶第一类贝塞尔函数()J xn第二类贝塞尔函数,或称Neumann函数()Y xn第三类贝塞尔函数汉克尔(Hankel)函数,(1)()H xn第一类变形的贝塞尔函数()I xn开尔文函数(或称汤姆孙函数)n阶第一类开尔文(Kelvin)第五章贝塞尔函数在第二章中,用分离变量法求解了一些定解问题。
从§2.3可以看出,当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。
在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。
如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。
本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。
下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。
贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。
§5.1 贝塞尔方程的引出下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。
设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。
这个问题可以归结为求解下述定解问题:222222222222220(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ϕ=+=∂∂∂=++<>∂∂∂=+≤= (5.3)⎧⎪⎪⎪⎨⎪⎪⎪⎩用分离变量法解这个问题,先令(,,)(,)()u x y t V x y T t =代入方程(5.1)得22222()V VVT a T x y∂∂'=+∂∂或22222 (0)V V T x y a T Vλλ∂∂+'∂∂==-> 由此得到下面关于函数()T t 和(,)V x y 的方程20T a T λ'+=(5.4)22220V VV x y λ∂∂++=∂∂ (5.5)从(5.4)得2()a t T t Ae λ-=方程(5.5)称为亥姆霍兹(Helmholtz )方程。
贝塞尔函数的应用1ω1二、按贝塞尔函数展开求定解问题的解下面将举例说明如何用贝塞尔函数求定解问题的解。
例2:有一质量均匀的金属圆柱体,半径为,0r 柱高为l ,圆柱侧面绝热,而上下两底面的温度分别保持为和,)(2r f )(1r f 试求圆柱体内部稳定时的温度分布。
解:由于温度分布趋于稳定,圆柱体内部温度函数),,(z r u 满足定解问题由于边界条件与无关,所以定解问题的解也与无关,只能取常数,这对应于m=0的情况。
ϕϕ)(ϕΦ事实上把),,(z r u ϕ代入边界条件可得12()()(0)(),()()()().R r Z f r R r Z l f r ϕϕΦ=Φ=根据上两个等式可知()ϕΦ只能取常数。
2''()()0(4.3)()(2),'()'(2)m ϕϕϕϕϕϕππ⎧Φ+Φ=⎨Φ=Φ+Φ=Φ+⎩固有值问题求解可得固有值为22,0,1,2,...n n m ==求解可得固有函数为()cos sin n n n n n A B ϕϕϕ=+Φ方程(4.5)的解为),3,2,1(,)(:0,)(:00000 =+=≠+==-n eD eC z ZD z C z Z zn zn n n n n ωωωω根据线性叠加原理,原定解问题(4.2)的一般解为''()()0,(4.5)Z z Z z λ-=2000,0,n nn λλωω=≥==0001(,,)()(),(4.6)n n zzn n n n u r z C z D C eD eJ r ωωϕω∞-==+++∑其中系数将由上下两底面的边界条件确定。
n n D C ,注:例3:设有半径为1的均匀薄圆盘,边界温度为零,ϕ1⎧11441 1比较等式两边系数,得22 21R tω。
篇一:贝塞尔函数的有关公式c.贝塞尔函数的有关公式贝塞尔方程的持解bp(z)为(柱)贝塞尔函数。
有第一类柱贝塞尔函数jp(z)p为整数n时,j?n=(?1) njn;p不为整数时,jp 与j?p线性无关。
第二类柱贝塞尔函数n p(z)(柱诺依曼函数)n为整数时n?n=(?1) nnn。
第三类柱贝塞尔函数hp(z) (柱汉开尔函数):第一类柱汉开尔函数 hp(1)(z)= jp(z)+j n p(z)第二类柱汉开尔函数 hp(2)(z)= jp(z)?j n p(z)大宗量z??小宗量z?,为欧拉常数见微波与光电子学中的电磁理论p668jn(z)的母函数和有关公式函数ez(t/2-1/2t)称为第一类贝塞尔函数的母函数,或称生成函数,若将此函数在t=0附近展开成罗朗级数,可得到在上式中作代换,令t=ej?,t=?jej?等,可得又可得如z=x为实数贝塞尔函数的加法公式jn(z)的零点?nij’n(z)的零点?ni半整数阶贝塞尔函数jn+1/2(z)的零点?npjn+1/2(z)的零点?npd.朗斯基行列式及其它关系式e.修正贝塞尔函数有关公式贝塞尔方程中用(jz)代换z,得到修正的贝塞尔方程方程的两个线性无关的解为ip(z)=j?pjp(jz).称为第一类修正的柱贝塞尔函数。
kp(z)=(?/2)jp+1hp(1)(jz).称为第二类修正的柱贝塞尔函数。
篇二:贝塞尔函数第五章贝塞尔函数在第二章中,用分离变量法求解了一些定解问题。
从2.3可以看出,当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。
在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。
如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。
本章将通过在柱坐标系中对定解问题进行分离变量,引出在2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。
下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。
贝塞尔函数及其应用摘要贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程时得到的,因此它在波动问题以及各种涉及有势场的问题的研究中中占有非常重要的地位。
贝塞尔函数是贝塞尔方程的解。
它在物理和工程中,有着十分广泛的应用。
本文首先通过一个物理问题引入贝塞尔方程,求并出贝塞尔方程的解,即贝塞尔函数。
其次列出了贝塞尔函数的几个重要的结论,如递推公式,零点性质等,并对他们进行了深入的分析。
第二部分主要介绍了傅里叶-贝塞尔级数,通过matlab 编程对函数按傅里叶-贝塞尔级数展开之后的图像进行分析,得到了它们的逼近情况。
最后一部分介绍了贝塞尔函数的几个重要应用,一个是在物理光学中的应用,着重分析了贝塞尔函数近似公式的误差;一个是在信号处理中调频制的应用,得到了特殊情况下的公式算法。
关键词:贝塞尔函数,傅里叶-贝塞尔级数,渐近公式第1章 引言1.1 贝塞尔函数的提出随着科学技术的发展,数学的应用更为广泛。
在许多科技领域中,微积分及常微分方程已经不能够满足我们的需要,数学物理方程理论已经成为必须掌握的数学工具。
它们反映了未知函数关于时间的导数和关于空间变量的导数之间的制约关系,同时刻画了物理现象和过程的基本规律。
它的重要性,早在18世纪初就被人们认识。
在1715年,泰勒将弦线的横向振动问题归结为著名的弦振动方程2tt xx u a u =。
以后,伯努利从弦发出声音的事实,得出该方程的三角级数解。
在此基础上,傅里叶在理论上完成了解此方程的方法。
同时欧拉和拉格朗日在研究流体力学、拉普拉斯在研究势函数、傅里叶在研究热传导等物理问题中,导出了一系列重要的数学物理方程及其求解方法,取得了重要的成就。
而这其中,18世纪中叶由瑞士数学家丹尼尔·伯努利在研究悬链振动时提出的贝塞尔函数的几个正数阶特例引起了数学界得兴趣。
丹尼尔的叔叔雅各布·伯努利,欧拉、拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。