最新结型场效应管介绍
- 格式:ppt
- 大小:1.91 MB
- 文档页数:35
结型场效应管原理
场效应管是一种半导体器件,常用于放大、开关电路等应用。
结型场效应管(JFET)是其中一种常见的结构。
JFET的主要原理是利用PN结形成的场效应。
它由三个区域组成:中间是一个P型或N型的半导体材料,两侧分别是控制电极(Gate)和输出电极(Drain与Source)。
控制电极之间形成的PN结—反向偏置结(Reverse biased junction),形成一个可控制的电场区域,这个电场区域控制了从Source到Drain的电流。
在工作时,当Gate和Source之间的电压增加时,PN结的电导性减小,电场区域增宽。
这会导致Source到Drain的电流减小,即输出电流被控制。
这种控制过程是通过改变电场区域宽度而实现的,因此称为场效应。
JFET有两种常见的结构:N型JFET和P型JFET。
N型JFET 是由P型材料夹在两个N型材料之间形成的,而P型JFET则是由N型材料夹在两个P型材料之间形成的。
两者的工作原理基本相同,只是电流流动方向相反。
在实际应用中,JFET具有很多优点,比如体积小,可以工作在较高的频率范围内,具有较低的噪声,以及可以工作在宽温度范围内等。
因此,JFET被广泛应用于放大器、开关和稳压器等电路中。
结型场效应管结型场效应管(JFET)是一种常用的场效应管。
它是由一对PN结构组成的,可以分为N型JFET和P型JFET两种类型。
JFET通常用作信号放大器或开关,具有高输入阻抗和低输出电阻等优点,在电子设备中得到广泛应用。
结构和工作原理JFET的结构包括了沟道和栅极,通常由半导体材料构成。
当增加栅极电压时,栅极和沟道之间的势垒宽度会发生变化,从而调节沟道中的载流子数量。
当栅极电压增加时,势垒减小,使得沟道中的载流子数量增加,从而增大导通电流;相反,当栅极电压减小时,势垒增加,导致导通电流减小。
因此,通过调节栅极电压,可以实现对JFET的控制。
N型JFETN型JFET的沟道是由N型半导体材料构成,栅极电压使沟道中的电荷密度发生变化。
当栅极与源极之间的电压为负值时,JFET处于截止状态,沟道截断,导通电流几乎为零;当栅极与源极之间的电压为正值时,JFET处于放大状态,沟道导通,导通电流增加。
P型JFETP型JFET的沟道是由P型半导体材料构成,与N型JFET相反,当栅极与源极之间的电压为负值时,P型JFET处于放大状态,沟道导通;当栅极与源极之间的电压为正值时,P型JFET处于截止状态,导通电流几乎为零。
应用领域JFET广泛应用于各种电子设备中,例如放大器、滤波器、振荡器和电压控制器等。
由于JFET具有高输入电阻和低输出电阻的特性,适合用作信号放大器。
此外,JFET还可以作为电子开关,用于控制电路的通断或信号的调节。
结型场效应管是一种重要的场效应管,在电子技术领域具有重要的应用价值。
通过对JFET的结构和工作原理进行深入了解,可以更好地应用它在电子设备中,实现各种功能的设计和控制。
4.8 结型场效应管4.8.1 JFET的结构和工作原理 4.8.2 JFET的特性曲线及参数 4.8.3 JFET放大电路的小信号模型分析法4.8.1 JFET的结构和工作原理1. 结构漏极栅极N沟道JFET P源极符号中的箭头方向表示什么? 箭头:P → NN符号比较N沟道JFETSiO2绝缘层SiO2绝缘层N沟道增强型MOSFETN沟道耗尽型MOSFET2. 工作原理 (以N沟道JFET为例)耗尽层① vGS对沟道的控制作用当vGS<0时( PN结加反压)导电沟道d+PN结反偏 耗尽层加厚 沟道变窄。
| vGS | ↑ ,沟道继续变窄。
gP++vDSP+耗尽层碰上,沟道夹断,--- VGG vGSN对应的栅源电压vGS称为夹断电压 VPVP ( 或VGS(off) )。
s对于N沟道的JFET,VP <0。
注:g、s间加反偏电压, iG=0,rgs= 107, ,② vDS对沟道的影响当vGS=0时, vDS iD s d 电位逐渐升高, G、D间PN结的反压增 加,靠近漏极处的耗尽 层加宽,沟道变窄,从 上至下呈楔形分布。
当vDS ,使vGD=VP 时,靠漏极处出现预夹 断。
此时vDS 夹断区延长 沟道电阻iD=IDSS基本不变iD/mAIDSSVPvGS=0 vDS/V③ vGS和vDS同时作用时iD条件:g、s间加反偏电压 | vGS | ↑(g、s越负)导电沟道变窄,vDS 不变 iD↓dvGDgvGS对iD有控制作用P++在预夹断处 VGD=VGS-VDS =VPVGG vGSN+vDSP+Vs综上分析可知139页• 沟道中只有一种类型的多数载流子参与导电, 所以场效应管也称为单极型三极管。
• JFET栅极与沟道间的PN结是反向偏置的,因此iG0,输入电阻很高。
• JFET是电压控制电流器件,iD受vGS控制。
• 预夹断前:iD与vDS呈近似线性关系; 预夹断后:iD 趋于饱和。
结型场效应管p沟道的工作原理结型场效应管(p沟道)是一种常见的电子器件,具有重要的工作原理和应用。
在本文中,我们将详细讨论结型场效应管(p沟道)的工作原理,并探索其在电子领域的广泛应用。
1. 介绍和背景知识结型场效应管(p沟道)是一种半导体器件,由掺杂有正电荷的p型材料和负电荷的n型材料组成。
它属于一类双极性器件,既可以用作放大器,也可以用作开关。
2. 结型场效应管(p沟道)的结构结型场效应管(p沟道)的结构包括栅极、漏极和源极。
栅极与漏极之间通过氧化层隔开,形成一个电容。
当施加在栅极和源极之间的电压改变时,场效应管的导电性也会发生变化。
3. 工作原理在结型场效应管(p沟道)正常工作时,当施加一个正电压到栅极上时,栅极与源极之间的电势差增大。
这将产生一个电场,使得p型材料中的电子被吸引到栅极接近的地方,从而形成一个导电通道。
这个导电通道使得电流能够流经源极和漏极之间。
4. 控制电流结型场效应管(p沟道)的工作原理是通过改变栅极与源极之间的电压来控制漏极和源极之间的电流。
当栅极和源极之间的电压较低时,导电通道的电阻较高,电流几乎不会流过。
然而,当栅极和源极之间的电压增加时,电阻减小,电流开始流过。
5. 优点和应用结型场效应管(p沟道)具有许多优点。
它具有高输入阻抗和低输出阻抗,能够在低功率条件下工作,从而减少能量消耗。
它还具有较小的尺寸和重量,适合集成电路的应用。
结型场效应管(p沟道)在电子领域有广泛的应用。
它可以用作放大器,将小信号放大到较大的信号,用于音频放大器和无线电传输。
它还可以用作数字开关,将输入信号转换为高电平和低电平,用于计算机和通信系统。
总结与回顾:结型场效应管(p沟道)是一种常见的电子器件,其工作原理基于通过改变栅极与源极之间的电压来控制电流。
它具有高输入阻抗、低输出阻抗和能耗低的特点,适用于放大器和开关应用。
这种器件在音频放大器、无线电传输、计算机和通信系统等领域得到广泛应用。
六种场效应管一、结型场效应管结型场效应管是一种单极场效应管,其工作原理是基于栅极电压改变二氧化硅(SiO2)层中电荷分布来实现对漏极电流的控制。
它的工作特点是在工作过程中不需要很大的功耗,并且具有良好的噪声特性。
在电子设备中,结型场效应管通常用于放大、振荡、开关等电路中。
二、绝缘栅型场效应管绝缘栅型场效应管是一种单极场效应管,其工作原理是通过在二氧化硅(SiO2)绝缘层上覆盖金属薄膜来实现对源极和漏极之间的控制。
由于没有栅极氧化层与半导体之间的电容,因此其输入电阻非常高,并且具有低噪声特性。
在电子设备中,绝缘栅型场效应管通常用于放大、振荡、开关等电路中。
三、MOS型场效应管MOS型场效应管是一种单极场效应管,其工作原理是通过在金属-氧化物-半导体(MOS)结构上施加电压来改变电荷分布实现对漏极电流的控制。
它的优点是输入电阻高、驱动电流小、功耗低、易于集成等。
在电子设备中,MOS型场效应管通常用于放大、振荡、开关等电路中。
四、高电子饱和迁移率型场效应管高电子饱和迁移率型场效应管是一种具有高电子饱和迁移率的单极场效应管。
它的工作原理是通过改变栅极电压来改变半导体内部的电子饱和迁移率实现对漏极电流的控制。
它的优点是具有高速响应和低功耗特性,适用于高速数字电路和模拟电路中。
五、高电子饱和迁移率型场效应管高电子饱和迁移率型场效应管是一种具有高电子饱和迁移率的双极场效应管。
它的工作原理是通过改变栅极电压来改变半导体内部的电子饱和迁移率实现对漏极电流的控制。
它的优点是具有高速响应和低功耗特性,适用于高速数字电路和模拟电路中。
六、结型双极型场效应管结型双极型场效应管是一种双极场效应管,其工作原理是基于栅极电压改变半导体内部的电子和空穴浓度实现对漏极电流的控制。
它的优点是具有高速响应和低功耗特性,适用于高速数字电路和模拟电路中。
同时,它还具有较好的噪声特性和稳定性,适用于各种复杂的电子设备中。
结型场效应管场效应管场效应管(FjeldEffect Transistor简称FET )是利用电场效应来控制半导体中电流的一种半导体器件,故因此而得名。
场效应管是一种电压控制器件,只依靠一种载流子参与导电,故又称为单极型晶体管。
与双极型晶体三极管相比,它具有输入阻抗高、噪声低、热稳定性好、抗辐射能力强、功耗小、制造工艺简单和便于集成化等优点。
场效应管有两大类,结型场效应管JFET和绝缘栅型场效应管IGFET,后者性能更为优越,发展迅速,应用广泛。
图Z0121 为场效应管的类型及图形、符号。
一、结构与分类图Z0122为N沟道结型场效应管结构示意图和它的图形、符号。
它是在同一块N型硅片的两侧分别制作掺杂浓度较高的P型区(用P+表示),形成两个对称的PN结,将两个P区的引出线连在一起作为一个电极,称为栅极(g),在N型硅片两端各引出一个电极,分别称为源极(s)和漏极(d)。
在形成PN结过程中,由于P+区是重掺杂区,所以N一区侧的空间电荷层宽度远大二、工作原理N沟道和P沟道结型场效应管的工作原理完全相同,只是偏置电压的极性和载流子的类型不同而已。
下面以N沟道结型场效应管为例来分析其工作原理。
电路如图Z0123所示。
由于栅源间加反向电压,所以两侧PN结均处于反向偏置,栅源电流几乎为零。
漏源之间加正向电压使N型半导体中的多数载流子-电子由源极出发,经过沟道到达漏极形成漏极电流I D。
1.栅源电压U GS对导电沟道的影响(设U DS=0)在图Z0123所示电路中,U GS<0,两个PN结处于反向偏置,耗尽层有一定宽度,I D=0。
若|U GS| 增大,耗尽层变宽,沟道被压缩,截面积减小,沟道电阻增大;若|U GS| 减小,耗尽层变窄,沟道变宽,电阻减小。
这表明U GS控制着漏源之间的导电沟道。
当U GS负值增加到某一数值V P时,两边耗尽层合拢,整个沟道被耗尽层完全夹断。
(V P称为夹断电压)此时,漏源之间的电阻趋于无穷大。
结型场效应管工作原理场效应管(FET)是一种三端器件,由栅极、漏极和源极组成。
它是一种电压控制型的晶体管,通过调节栅极和源极之间的电压来控制漏极和源极之间的电流。
结型场效应管(JFET)是一种常见的场效应管,它的工作原理与普通的场效应管有所不同。
本文将围绕结型场效应管的工作原理展开详细介绍。
结型场效应管是一种基于PN结的半导体器件。
它的主要结构包括N型半导体和P型半导体构成的结,通过改变栅极与源极之间的电压,可以调节PN结的电场分布,从而控制漏极与源极之间的电流。
当栅极与源极之间的电压为零时,PN结之间的电场分布均匀,漏极与源极之间的电流达到最大值,此时处于导通状态。
而当栅极与源极之间的电压增大时,PN结之间的电场分布逐渐改变,导致漏极与源极之间的电流逐渐减小,最终达到截止状态。
结型场效应管的工作原理可以用一个水龙头的比喻来解释。
当水龙头关闭时,水流畅通无阻,这时可以看作是结型场效应管处于导通状态。
而当水龙头打开时,水流受到阻碍,水流减小,这时可以看作是结型场效应管处于截止状态。
通过调节水龙头的开关,可以控制水流的大小,同样地,通过调节栅极与源极之间的电压,可以控制结型场效应管的导通状态和截止状态。
结型场效应管具有许多优点,例如输入电阻高、噪声小、体积小等,因此在各种电子设备中得到了广泛的应用。
在放大、开关、电压控制等方面都有着重要的作用。
但是在实际应用中,也需要注意一些问题,例如静态电流过大、温度稳定性差等,需要合理设计和使用。
总之,结型场效应管是一种重要的半导体器件,它通过调节栅极与源极之间的电压来控制漏极与源极之间的电流,具有许多优点和广泛的应用。
通过深入理解其工作原理,可以更好地应用于实际电路中,发挥其作用。
希望本文对结型场效应管的工作原理有所帮助。
中功率结型场效应管-概述说明以及解释1.引言概述:中功率结型场效应管是一种具有较高性能和功率特性的半导体器件,广泛应用于各种电子设备中。
它具有结型场效应管的特性,在中功率范围内具有良好的电流驱动能力和低开关损耗。
本文将介绍中功率结型场效应管的定义、工作原理以及应用领域,旨在深入探讨其在电子领域中的重要性和潜在应用。
.3 展望": {}}}}请编写文章1.1 概述部分的内容1.2 文章结构本文主要分为引言、正文和结论三部分。
引言部分将介绍中功率结型场效应管的背景和意义,包括概述中功率结型场效应管的基本概念,文章的研究背景以及研究目的。
正文部分将从三个方面介绍中功率结型场效应管,包括定义、工作原理和应用领域。
通过对中功率结型场效应管的深入分析,读者将更加全面地了解该器件的特点和优势。
结论部分将总结本文的研究内容,并重点强调中功率结型场效应管的优势和潜在应用前景。
通过对该器件的展望,读者将更好地认识到中功率结型场效应管在未来的发展方向和应用领域。
1.3 目的本文旨在深入探讨中功率结型场效应管的特性及其在电子领域中的重要性和应用。
通过对中功率结型场效应管的定义、工作原理和应用领域进行详细分析,旨在帮助读者更好地了解这一技术,并为相关领域的研究和应用提供参考。
同时,通过对中功率结型场效应管优势的总结和展望,也旨在引领读者对这一技术的未来发展趋势有更深入的了解和认识。
通过本文的阐述,希望可以为相关领域的科研工作者和工程技术人员提供一定的启发和帮助,推动中功率结型场效应管技术的进一步发展和应用。
2.正文2.1 中功率结型场效应管的定义中功率结型场效应管是一种半导体器件,通过控制门电压来控制电流流动,从而实现功率放大或开关控制的功能。
它主要由栅极、漏极和源极组成,其中栅极用于控制电流流动,漏极和源极用于承载电流。
结型场效应管的特点是其导电能力主要依靠正向导电层的形成和消除,因此在导通和截止状态之间的反应速度很快,适合高频率应用。
结型场效应管(JFET的结构和工作原理1. JFET的结构和符号D Os AN沟道JFET P沟道JFET2.工作原理(以N沟道JFET为例)N沟道JFET工作时,必须在栅极和源极之间加一个负电压——V GS< 0 ,在D-S间加一个正电压——V DS>0.栅极一沟道间的PN结反偏,栅极电流i G 0,栅极输入电阻很高(高达107以上)。
N沟道中的多子(电子)由S向D运动,形成漏极电流i D。
i D的大小取决于V DS的大小和沟道电阻。
改变V GS可改变沟道电阻,从而改变i D。
主要讨论V S对i D的控制作用以及V DS对i D的影响。
①栅源电压V GS对i D的控制作用当V GS V 0时,PN结反偏,耗尽层变宽,沟道变窄,沟道电阻变大,I D减小;V GS更负时,沟道更窄,I D更小;直至沟道被耗尽层全部覆盖,沟道被夹断,I D ~ 0。
这时所对应的栅源电压V GS称为夹断电压V P。
②漏源电压V DS对i D的影响在栅源间加电压V GS v 0 ,漏源间加正电压V DS > 0。
则因漏端耗尽层所受的反偏电压为V GD= V GS-V DS,比源端耗尽层所受的反偏电压V GS大,(如:V Gs=-2V, V DS =3V, V P=-9V,则漏端耗尽层受反偏电压为V GD=-5V,源端耗尽层受反偏电压为-2V),使靠近漏端的耗尽层比源端宽,沟道比源端窄,故V DS对沟道的影响是不均匀的,使沟道呈楔形。
当V DS增加到使V GD=V GS-V DS = V P时,耗尽层在漏端靠拢,称为预夹断。
当V DS继续增加时,预夹断点下移,夹断区向源极方向延伸。
由于夹断处电阻很大,使V DS主要降落在该区,产生强电场力把未夹断区的载流子都拉至漏极,形成漏极电流I D。
预夹断后I D基本不随V DS增大而变化。
①V GS对沟道的控制作用当V GS< 0时,PN结反偏耗尽层加厚沟道变窄。