2015年八年级数学(下)期末试卷带答案
- 格式:doc
- 大小:329.65 KB
- 文档页数:8
八年级(下)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠02.分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=43.若△ABC的周长是12cm,则△ABC三条中位线围成的三角形的周长为()A.24cm B.6cm C.4cm D.3cm4.矩形的长为x,宽为y,面积为16,则y与x之间的函数关系用图象表示大致为()A.B.C.D.5.如图,反比例函数的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1 B.0<y<l C.y>2 D.0<y<26.已知如图,A是反比例函数的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是()A.3 B.﹣3 C.6 D.﹣67.下面是四位同学解方程过程中去分母的一步,其中正确的是()A.2+x=x﹣1 B.2﹣x=1 C.2+x=1﹣x D.2﹣x=x﹣18.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个9.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣2,1),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.2 B.1 C.﹣1 D.﹣210.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,15.5 C.15,16 D.16,1511.如图,△ABC中,AB=AC=13,BC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.16.5 B.18 C.23 D.2612.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.6二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.若分式的值为0,则x=.14.今年年初,我国有的城市受雾霾天气的影响,PM2.5超标,对人体健康影响很大.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,富含大量的有毒、有害物质.将0.0000025用科学记数法表示为.15.若函数是反比例函数,且图象在第二、四象限内,则m的值是.16.一个平行四边形的一边长是3,两条对角线的长分别是4和,则此平行四边形的面积为.17.已知一个样本:﹣1,0,2,x,3,其平均数是2,则这个样本的方差s2=.(提示:方差公式为s2=.)18.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池储存一些水后,再打开出水管(进水管不关闭).若同时打开2个进水管,那么5小时后水池空;若同时打开3个出水管,则3小时后水池空.那么出水管比进水管晚开小时.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.19.计算:(﹣1)2013+﹣|﹣2|+(2013﹣π)0﹣﹣.20.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.先化简,再求值.其中x=2.22.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?23.春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?24.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=AE+CD.(提示:解答需作辅助线哟!)五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.25.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.26.如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).(1)求当t为多少时?四边形PQAB为平行四边形;(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;(3)直接写出在(2)的情况下,直线PQ的函数关系式.参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠0考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;2.分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=4考点:解分式方程.分析:首先分式两边同时乘以最简公分母2x(x﹣1)去分母,再移项合并同类项即可得到x的值,然后要检验.解答:解:,去分母得:3x﹣3=2x,移项得:3x﹣2x=3,合并同类项得:x=3,检验:把x=3代入最简公分母2x(x﹣1)=12≠0,故x=3是原方程的解,故原方程的解为:X=3,故选:C.点评:此题主要考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验,这是同学们最容易出错的地方.3.若△ABC的周长是12cm,则△ABC三条中位线围成的三角形的周长为()A.24cm B.6cm C.4cm D.3cm考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得△ABC的周长等于三条中位线围成的三角形的周长的2倍,然后代入数据计算即可得解.解答:解:∵△ABC的周长是12cm,∴△ABC三条中位线围成的三角形的周长=×12=6(cm).故选B.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.4.矩形的长为x,宽为y,面积为16,则y与x之间的函数关系用图象表示大致为()A.B.C.D.考点:反比例函数的应用;反比例函数的图象.分析:首先由矩形的面积公式,得出它的长y与宽x之间的函数关系式,然后根据函数的图象性质作答.注意本题中自变量x的取值范围.解答:解:由矩形的面积16=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选C.点评:本题考查了反比例函数的应用,注意反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.5.如图,反比例函数的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1 B.0<y<l C.y>2 D.0<y<2考点:反比例函数的图象;反比例函数图象上点的坐标特征.专题:压轴题;数形结合.分析:先根据反比例函数的图象过点A(﹣1,﹣2),利用数形结合求出x<﹣1时y的取值范围,再由反比例函数的图象关于原点对称的特点即可求出答案.解答:解:∵反比例函数的图象过点A(﹣1,﹣2),∴由函数图象可知,x<﹣1时,﹣2<y<0,∴当x>1时,0<y<2.故选:D.点评:本题考查的是反比例函数的性质及其图象,能利用数形结合求出x<﹣1时y的取值范围是解答此题的关键.6.已知如图,A是反比例函数的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是()A.3 B.﹣3 C.6 D.﹣6考点:反比例函数系数k的几何意义.分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.解答:解:根据题意可知:S△AOB=|k|=3,又反比例函数的图象位于第一象限,k>0,则k=6.故选:C.点评:本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.7.下面是四位同学解方程过程中去分母的一步,其中正确的是()A.2+x=x﹣1 B.2﹣x=1 C.2+x=1﹣x D.2﹣x=x﹣1考点:解分式方程.分析:去分母根据的是等式的性质2,方程的两边乘以最简公分母,即可将分式方程转化为整式方程.解答:解:方程的两边同乘(x﹣1),得2﹣x=x﹣1.故选D.点评:本题主要考查了等式的性质和解分式方程,注意:去分母时,不要漏乘不含分母的项.8.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个考点:平行四边形的判定.专题:几何图形问题.分析:根据平面的性质和平行四边形的判定求解.解答:解:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D点恰能构成一个平行四边形,符合这样条件的点D有3个.故选:C.点评:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系.注意图形结合的解题思想.9.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣2,1),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.2 B.1 C.﹣1 D.﹣2考点:反比例函数图象上点的坐标特征;菱形的性质.专题:计算题.分析:根据菱形的性质,点A与点C关于OB对称,而OB在y轴上,则可得到A(2,1),然后根据反比例函数图象上点的坐标特征求k的值.解答:解:∵菱形OABC的顶点B在y轴上,∴点A和点C关于y轴对称,∴A(2,1),∴k=2×1=2.故选A.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了菱形的性质.10.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,15.5 C.15,16 D.16,15考点:众数;中位数.专题:常规题型.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:根据图表数据,同一年龄人数最多的是15岁,共6人,所以众数是15,18名队员中,按照年龄从大到小排列,第9名队员的年龄是15岁,第10名队员的年龄是16岁,所以,中位数是=15.5.故选B.点评:本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.11.如图,△ABC中,AB=AC=13,BC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.16.5 B.18 C.23 D.26考点:直角三角形斜边上的中线;等腰三角形的性质.分析:根据等腰三角形三线合一的性质可得AD⊥BC,DC=,再根据直角三角形的性质可得DE=EC==6.5,然后可得答案.解答:解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,DC=,∵BC=10,∴DC=5,∵点E为AC的中点,∴DE=EC==6.5,∴△CDE的周长为:DC+EC+DE=13+5=18,故选:B.点评:此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.12.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.6考点:翻折变换(折叠问题);勾股定理.专题:压轴题;探究型.分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.解答:解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.点评:本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.若分式的值为0,则x=1.考点:分式的值为零的条件.专题:计算题.分析:分式的值是0的条件是:分子为0,分母不为0.解答:解:∵x﹣1=0,∴x=1,当x=1,时x+3≠0,∴当x=1时,分式的值是0.故答案为1.点评:分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.14.今年年初,我国有的城市受雾霾天气的影响,PM2.5超标,对人体健康影响很大.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,富含大量的有毒、有害物质.将0.0000025用科学记数法表示为 2.5×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.0000025=2.5×10﹣6;故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.若函数是反比例函数,且图象在第二、四象限内,则m的值是﹣2.考点:反比例函数的性质;反比例函数的定义.专题:计算题.分析:根据反比例函数的定义可知m2﹣5=﹣1,又图象在第二、四象限,所以m+1<0,两式联立方程组求解即可.解答:解:∵函数是反比例函数,且图象在第二、四象限内,∴,解得m=±2且m<﹣1,∴m=﹣2.故答案为:﹣2.点评:本题考查了反比例函数的定义及图象性质.反比例函数解析式的一般形式(k≠0),也可转化为y=kx﹣1(k≠0)的形式,注意自变量x的次数是﹣1;当k>0时,反比例函数图象在一、三象限,当k<0时,反比例函数图象在第二、四象限内.16.一个平行四边形的一边长是3,两条对角线的长分别是4和,则此平行四边形的面积为4.考点:菱形的判定与性质;勾股定理的逆定理.分析:根据勾股定理的逆定理可得对角线互相垂直,然后根据菱形性质可求出面积.解答:解:解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,∴S=4×2=4.故答案为:4.点评:本题考查了菱形的判定与性质,利用了对角线互相垂直的平行四边形是菱形,菱形的面积是对角线乘积的一半.17.已知一个样本:﹣1,0,2,x,3,其平均数是2,则这个样本的方差s2=6.(提示:方差公式为s2=.)考点:方差.分析:先由平均数公式求得x的值,再由方差公式求解.解答:解:∵平均数=(﹣1+2+3+x+0)÷5=2∴﹣1+2+3+x+0=10,x=6∴方差S2=[(﹣1﹣2)2+(0﹣2)2+(2﹣2)2+(6﹣2)2+(3﹣2)2]÷5=6.故答案为6.点评:本题考查方差的定义.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池储存一些水后,再打开出水管(进水管不关闭).若同时打开2个进水管,那么5小时后水池空;若同时打开3个出水管,则3小时后水池空.那么出水管比进水管晚开15小时.考点:分式方程的应用.分析:设出水管比进水管晚开x小时,进水管进水的速度为a 米3/时,出水管的出水速度为b米3/时,根据题意可得,一个进水管(x+5)小时进的水量=两个出水管5个小时的出水量,一个进水管(x+3)小时进的水量=三个出水管3个小时的出水量,据此列方程组求解.解答:解:设出水管比进水管晚开x小时,进水管进水的速度为a 米3/时,出水管的出水速度为b米3/时,由题意得,,两式相除,得:,解得:x=15,经检验,x=15是原分式方程的解.故答案为:15.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.19.计算:(﹣1)2013+﹣|﹣2|+(2013﹣π)0﹣﹣.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用乘方的意义计算,第二项利用二次根式性质化简,第三项利用零指数幂法则计算,第四项利用负整数指数幂法则计算,最后一项利用立方根定义计算即可得到结果.解答:解:原式=﹣1+3﹣2+1﹣3+4=2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.考点:平行四边形的判定与性质.专题:探究型.分析:根据CE∥AB,DE交AC于点O,且OA=OC,求证△ADO≌△ECO,然后求证四边形ADCE 是平行四边形,即可得出结论.解答:解:猜想线段CD与线段AE的大小关系和位置关系是:相等且平行.理由:∵CE∥AB,∴∠DAO=∠ECO,∵在△ADO和△ECO中∴△ADO≌△ECO(ASA),∴AD=CE,∴四边形ADCE是平行四边形,∴CD AE.点评:此题主要考查了平行四边形的判定与性质等知识点的理解和掌握,解答此题的关键是求证△ADO≌△ECO,然后可得证四边形ADCE是平行四边形,即可得出结论.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.先化简,再求值.其中x=2.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.解答:解:原式=[﹣]•=•=•=.当x=2时,原式==.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?考点:分式方程的应用.分析:根据:原计划完成任务的天数﹣实际完成任务的天数=4,列方程即可.解答:解:设原计划每天种x棵树,据题意得,,解得x=30,经检验得出:x=30是原方程的解.答:原计划每天种30棵树.点评:此题主要考查了分式方程的应用,合理地建立等量关系,列出方程是解题关键.23.春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?考点:加权平均数;条形统计图;众数;极差.专题:图表型.分析:运用极差、众数、平均数的定义并结合条形统计图来分析和解决题目.解答:解:(1)专业知识方面3人得分极差是18﹣14=4分,工作经验方面3人得分的众数是15,在仪表形象方面丙最有优势;(2)甲得分:14×0.5+17×0.35+12×0.15=14.75分;乙得分:18×0.5+15×0.35+11×0.15=15.9分;丙得分:16×0.5+15×0.35+14×0.15=15.35分,∴应录用乙;(3)对甲而言,应加强专业知识的学习,同时要注意自己的仪表形象.对丙而言,三方面都要努力.重点在工作经验和仪表形象.点评:本题考查了从统计图中获取信息的能力和计算加权平均数的能力.24.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=AE+CD.(提示:解答需作辅助线哟!)考点:全等三角形的判定与性质;矩形的判定与性质.专题:证明题.分析:作CF⊥BE,垂足为F,得出矩形CFED,求出∠CBF=∠A,根据AAS证△BAE≌△CBF,推出BF=AE即可.解答:证明:作CF⊥BE,垂足为F,∵BE⊥AD,∴∠AEB=90°,∴∠FED=∠D=∠CFE=90°,∴四边形EFCD为矩形,∴CD=EF,∵∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°,∴∠BAE=∠CBF,在△BAE和△CBF中,,∴△BAE≌△CBF(AAS),∴BF=AE,∴BE=BF+FE=AE+CD.点评:本题考查了全等三角形的性质和判定,矩形的判定和性质的应用,关键是求出△BAE≌△CBF,主要考查学生运用性质进行推理的能力.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.25.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.考点:反比例函数综合题.专题:数形结合.分析:(1)根据菱形的性质可得菱形的边长,进而可得点C的坐标,代入反比例函数解析式可得所求的解析式;(2)设出点P的坐标,易得△COD的面积,利用点P的横坐标表示出△PAO的面积,那么可得点P的横坐标,就求得了点P的坐标.解答:解:(1)由题意知,OA=3,OB=4在Rt△AOB中,AB=∵四边形ABCD为菱形∴AD=BC=AB=5,∴C(﹣4,﹣5).设经过点C的反比例函数的解析式为(k≠0),则=﹣5,解得k=20.故所求的反比例函数的解析式为.(2)设P(x,y)∵AD=AB=5,OA=3,∴OD=2,S△COD=即,∴|x|=,∴当x=时,y==,当x=﹣时,y==﹣∴P()或().点评:综合考查反比例函数及菱形的性质,注意:根据菱形的性质得到点C的坐标;点P的横坐标的有两种情况.26.如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).(1)求当t为多少时?四边形PQAB为平行四边形;(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;(3)直接写出在(2)的情况下,直线PQ的函数关系式.考点:一次函数综合题.分析:(1)根据平行四边形PQAB的对边相等的性质得到关于t的方程,通过解方程求得t的值;(2)由题意得到:OC=4cm,OA=16cm.利用梯形的面积公式求得S梯形OABC=62(cm2),S四边形PQOC=,结合限制性条件“PQ所在直线将四边形OABC分成左右两部分的面积比为1:2”列出关于t的方程,通过解方程来求t的值;(3)根据(2)中求得的t的值可以得到点P、Q的坐标,则利用待定系数法来求直线PQ的解析式.解答:解:(1)ts后,BP=(15﹣2t)cm,AQ=4t cm.由BP=AQ,得15﹣2t=4t,t=2.5(s).又∵OA∥BC,∴当t=2.5s时,四边形PQAB为平行四边形.(2)∵点C坐标为(0,4),点A坐标为(16,0),∴OC=4cm,OA=16cm.∴S梯形OABC=(OA+BC)•OC=×(16+15)×4=62(cm2).∵t秒后,PC=2tcm,OQ=(16﹣4t)cm,∴S四边形PQOC=,又∵PQ所在直线将四边形OABC分成左右两部分的面积比为1:2,∴,解得(s).当(s)时,直线PQ将四边形OABC分成左右两部分的面积比为1:2.(3)当s时,P(,4),Q(,0).设直线PQ的解析式为:y=kx+b(k≠0),则,解得所以,此时直线PQ的函数关系式为.点评:本题考查了一次函数综合题,解题时,利用了梯形的面积公式、待定系数法求一次函数的解析式、平行四边形的判定定理等知识点,题中运用动点的运动速度与运动时间求出相关线段的长是解题的关键.。
ABCDEF八年级数学(下)期末试卷考生注意:本试卷共120分,考试时间100分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项,将此选项选择题(每题3分,本大题共30分)1、下列根式中,与3 是同类二次根式的是( ) A 、8 B 、0.3 C 、23D 、12 2、 若2(3)3a a -=-,则a 与3的大小关系是( )A 、 3a <B 、3a ≤C 、3a >D 、3a ≥3.、若实数a 、b 满足ab <0,则一次函数y =ax +b 的图象可能是( )A .B .C .D .4、已知P 1(-1,y 1),P 2(2,y 2)是一次函数1y x =-+图象上的两个点,则y 1,y 2的大小关系是( )A 、12y y =B 、12y y <C 、12y y >D 、不能确定 5、平行四边形, 矩形,菱形,正方形都具有的性质是( ) A 、对角线相等 B 、对角线互相平分 C 、对角线平分一组对角 D 、对角线互相垂直6、2022年将在北京张家口举办冬季奥运会,很多学校开设了相关的课程如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差:队员1 队员2 队员3 队员4 平均数 51 50 51 50 方差根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应选择A. 队员1B. 队员2C. 队员3 D. 队员47、如图,直线l 1 : y = 4x - 2 与l 2 : y = x +1的图象相交于点 P ,那么关于 x ,y 的二元一次方程组 4x - y = 2的解是 ( ) x-y=-18. 在平面直角坐标系中,一次函数 y = kx + b 的图象与直线 y = 2x 平行,且经过点A (0,6).则一次函数的解析式为 ( )A 、y=2x-3B 、y=2x+6C 、y=-2x+3D 、y=-2x-6 9.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠BFC 为( )A 、75︒B 、60︒C 、55︒D 、45︒10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m)与挖掘时间x (h )之间的关系如图5所示.根据图象所提供的信息,下列说法正确的是( ) A .甲队开挖到30 m 时,用了2 h B .开挖6 h 时,甲队比乙队多挖了60 mC .乙队在0≤x ≤6的时段,y 与x 之间的关系式为y =5x +20D .当x 为4 h 时,甲、乙两队所挖河渠的长度相等 二、填空题(每题3分,本大题共24分) 11、函数y=12xx-+中,自变量x 的取值范围为 . 12、若函数y = -2x m +2 +n -2正比例函数,则m 的值是 ,n 的值为________.243221323+⨯-÷13、 如图,菱形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AB 和CD 于点E 、F ,BD=6,AC=4,则图中阴影部分的面积和为 .14.、一组数据1,6,x ,5,9的平均数是5,那么这组数据的中位数是______,方差是______.15、将矩形纸片ABCD 沿直线AF 翻折,使点B 恰好落在CD 边的中点E 处,点F 在BC 边上,若CD =6,则FC = .16、如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于 x 的不等式kx +6<x +b 的解集是_____________.17、如图所示,四边形OABC 是正方形,边长为4,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在OA 上,且D 点的坐标为 (1,0),P 是OB 上一动点,则PA +PD 的最小值为 .18.、如图,平行四边形 ABCD 的周长是 52cm ,对角线 AC 与 BD 交于点 O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比 △AOB 的周长多 6cm ,则 AE 的长度为 .三、解答题(本大题共66分) 19、计算.(每小题4分,共计8分)(1)(2)20、(7分)已知a ,b ,c 满足|a -8|+b -5+(c -18)2=0. (1)求a ,b ,c 的值;并求出以a,b,c 为三边的三角形周长; (2)试问以a ,b ,c 为边能否构成直角三角形?请说明理由。
2015-2016学年陕西省西安市碑林区铁一中学八年级(下)期末数学试卷一、选择题1.下列图形是中心对称图形的是(.下列图形是中心对称图形的是( )A. B. C. D.2.下列说法不一定成立的是(.下列说法不一定成立的是( )A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2 D.若a>b,则1+a>b﹣13.下列各式从左到右的变形正确的是(.下列各式从左到右的变形正确的是( )A.B.C.D.4.若分式的值为零,则x的取值为(的取值为( )A.x≠3 B.x≠﹣3 C.x=3 D.x=﹣35.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,)的解集为(﹣2),4x+2<kx+b<0的解集为(A.x<﹣2 B.﹣2<x<﹣1 C.x<﹣1 D.x>﹣16.下列命题中,真命题是(.下列命题中,真命题是( )A.两条对角线互相垂直平分的四边形是矩形B.有一条对角线平分一组对角的四边形是菱形C.两条对角线相等的四边形是矩形D.一组对边平行,一组对角相等的四边形是平行四边形7.如图,在四边形ABCD中,E,F分别为DC、AB的中点,G是AC的中点,则EF与AD+CB的关系是(的关系是( )A.2EF=AD+BC B.2EF>AD+BC C.2EF<AD+BC D.不确定8.已知关于x的不等式组有且只有3个整数解,则a的取值范围是( )A.a>﹣1 B.﹣1≤a<0 C.﹣1<a≤0 D.a≤09.如图,在△ABC中,AB=8,BC=12,∠B=60°,将△ABC沿着射线BC的方向平的面积是()移4个单位后,得到△A'B'C',连接AC,则△A'B'C的面积是(A.16 B. C. D.10.已知点D与点A(0,8),B(0,﹣2),C(x,y)是平行四边形的四个顶点,长的最小值为()其中x,y满足x﹣y+6=0,则CD长的最小值为(A . B. C. D.10二、填空题11.分解因式:ax2﹣8ax+16a= .12.已知一个多边形的内角和为540°,则这个多边形是,则这个多边形是 边形. 13.关于x的方程=3+无解,则m的值为的值为 .14.如图,△ABC中,AC的中垂线交AC、AB于点D、F,BE⊥DF交DF延长线于点E,若∠A=30°,BC=6,AF=BF,则四边形BCDE的面积是.的面积是15.已知等腰三角形的一边长是10m,面积是30m2,则这个三角形另两边的长为 .16.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK= .三、解答题17.解方程:=2﹣.18.先化简,再求值:÷(x+2﹣),其中x=2.19.小明同学正在黑板上画△ABC绕△ABC外一点P旋转60°角的旋转图,当他完成A、B两点旋转后的对应点Aʹ、Bʹ时,不小心将旋转中心P擦掉了(如图所示).请你帮助小明找到旋转中心P,(要求只作图,不写作法,保留作图痕迹)20.如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD 相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.21.为加快城市群的建设与发展,建成后,为加快城市群的建设与发展,在在A,B两城市间新建一条城际铁路,两城市间新建一条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.22.学校计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购学校计划购买一批平板电脑和一批学习机,经投标,买4台学习机多200元,购买2台平板电脑和3台学习机共需8100元. (1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过166600元,且购买学习机的台数不超过购买平板电脑台数的 1.5倍.请问有哪几种购买方案?哪种方案最省钱?23.如图,在▱ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作平行四边形AGDB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证:四边形DEBF是菱形.24.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC(∠BAC是一个可以变化的角),AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小明是这样思考的:利用变换和等边三角形将边的位置重新组合,他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A'BC,连接A'A,当点A落在A'C 上时,此题可解(如图2).的最大值是(1)请你回答:AP的最大值是参考小明同学思考问题的方法,解决下列问题:(2)如图3,等腰,等腰Rt△ABC,边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是多少?为什么?(结果可以不化简)提示:要解决AP+BP+CP的最小值问题,可仿照题目给出的作法,把△ABP绕B 点逆时针旋转60°,得到△A'BP'.(3)如图4,O是等边△ABC内一点,OA=3,OB=4,OC=5,则S△AOC +S△AOB= .2015-2016学年陕西省西安市碑林区铁一中学八年级(下)期末数学试卷参考答案与试题解析一、选择题1.下列图形是中心对称图形的是(.下列图形是中心对称图形的是( )A. B. C. D.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误.故选:C.2.下列说法不一定成立的是(.下列说法不一定成立的是( )A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2 D.若a>b,则1+a>b﹣1【解答】解:A、两边都加c不等号的方向不变,故A不符合题意;B、两边都减c不等号的方向不变,故B不符合题意;C、c=0时,ac2=bc2,故C符合题意;D、a>b,则1+a>b+1>b﹣1,故D不符合题意;故选:C.3.下列各式从左到右的变形正确的是(.下列各式从左到右的变形正确的是( )A.B.C.D.【解答】解:分子分母都乘以15,分式的值不变,故D符合题意;故选:D.4.若分式的值为零,则x的取值为(的取值为( )A.x≠3 B.x≠﹣3 C.x=3 D.x=﹣3【解答】解:由题意得:x2﹣9=0,x﹣3≠0,解得:x=﹣3,故选:D.5.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,的解集为()﹣2),4x+2<kx+b<0的解集为(A.x<﹣2 B.﹣2<x<﹣1 C.x<﹣1 D.x>﹣1【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x 轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故选:B.6.下列命题中,真命题是(.下列命题中,真命题是( )A.两条对角线互相垂直平分的四边形是矩形B.有一条对角线平分一组对角的四边形是菱形C.两条对角线相等的四边形是矩形D.一组对边平行,一组对角相等的四边形是平行四边形【解答】解:A、两条对角线互相垂直平分的四边形是菱形,故错误,是假命题;B、一条对角线平分一组对角的四边形可能是菱形或者正方形,故错误,是假命题;C、两条对角线相等的平行四边形是矩形,故错误,是假命题;D、一组对边平行,一组对角相等的四边形是平行四边形,正确,是真命题,故选:D.7.如图,在四边形ABCD中,E,F分别为DC、AB的中点,G是AC的中点,则EF与AD+CB的关系是(的关系是( )A.2EF=AD+BC B.2EF>AD+BC C.2EF<AD+BC D.不确定【解答】解:∵E,F分别为DC、AB的中点,G是AC的中点,∴EG=AD,FG=BC,在△EFG中,EF<EG+FG,∴EF<(AD+BC),∴2EF<AD+BC.故选:C.8.已知关于x的不等式组有且只有3个整数解,则a的取值范围是( )A.a>﹣1 B.﹣1≤a<0 C.﹣1<a≤0 D.a≤0【解答】解:∵解不等式x﹣a>0得:x>a,解不等式3x+4<13得:x<3,∴不等式组的解集为a<x<3,∵关于x的不等式组有且只有3个整数解,∴﹣1≤a<0,故选:B.9.如图,在△ABC中,AB=8,BC=12,∠B=60°,将△ABC沿着射线BC的方向平)的面积是(移4个单位后,得到△A'B'C',连接AC,则△A'B'C的面积是(A.16 B. C. D.【解答】解:∵△ABC沿着射线BC的方向平移4个单位后,得到△AʹBʹCʹ,∴AʹBʹ=AB=8,∠AʹBʹCʹ=∠B=60°,BʹC=12﹣4=8,过点Aʹ作AʹD⊥BʹC于D,则AʹD=AʹBʹ=×8=4,∴△AʹBʹC的面积=BʹC•AʹD=×8×4=16.故选:C.10.已知点D与点A(0,8),B(0,﹣2),C(x,y)是平行四边形的四个顶点,)其中x,y满足x﹣y+6=0,则CD长的最小值为(长的最小值为(A. B. C. D.10【解答】解:根据平行四边形的性质可知:对角线AB、CD互相平分,∴CD过线段AB的中点M,即CM=DM,∵A(0,8),B(0,﹣2),∴M(0,3),∵点到直线的距离垂线段最短,∴过M 作直线的垂线交直线于点C ,此时CM 最小,直线x ﹣y +6=0,令x=0得到y=6;令y=0得到x=﹣6,即F (﹣6,0),E (0,6), ∴OE=6,OF=6,EM=3,EF==6,∵△EOF ∽△ECM , ∴, 即,解得:CM=,则CD 的最小值为2CM=3.因为当AB 为边时,CD 长恒为10,当AB 为对角线时CD 最短是3根号2, 10>3, 故选:B .二、填空题11.分解因式:ax 2﹣8ax +16a= a (x ﹣4)2 . 【解答】解:ax 2﹣8ax +16a , =a (x 2﹣8x +16),(提取公因式) =a (x ﹣4)2.(完全平方公式)12.已知一个多边形的内角和为540°,则这个多边形是,则这个多边形是 五 边形. 【解答】解:根据多边形的内角和可得:(n ﹣2)180°180°=540°=540°, 解得:n=5.则这个多边形是五边形.故答案为:五.13.关于x的方程=3+无解,则m的值为的值为 8 .【解答】解:去分母可得:5x+3=3(x﹣1)+m∴5x+3=3x﹣3+m∴x=由于该分式方程无解,故将x=代入x﹣1=0,∴﹣1=0∴m=8故答案为:814.如图,△ABC中,AC的中垂线交AC、AB于点D、F,BE⊥DF交DF延长线18 .于点E,若∠A=30°,BC=6,AF=BF,则四边形BCDE的面积是的面积是【解答】解:∵AF=BF,即F为AB的中点,又DE垂直平分AC,即D为AC的中点,∴DF为三角形ABC的中位线,∴DE∥BC,DF=BC,又∠ADF=90°,∴∠C=∠ADF=90°,又BE⊥DE,DE⊥AC,∴∠CDE=∠E=90°,∴四边形BCDE为矩形,∵BC=6,∴DF=BC=3,在Rt△ADF中,∠A=30°,DF=3,tan30°==,即AD=3,∴tan30°∴CD=AD=3,则矩形BCDE的面积S=CD•BC=18.故答案为:18.15.已知等腰三角形的一边长是10m,面积是30m2,则这个三角形另两边的长为 m、m或10m、2m或10m、6m .【解答】解:分三种情况计算.不妨设AB=10m,过点C作CD⊥AB,垂足为D, 则S=AB•CD,△ABC∴CD=6m.当AB为底边时,AD=DB=5m(如图①).AC=BC==m;当AB为腰且三角形为锐角三角形时(图②)AB=AC=10m ,AD==8m,BD=2m,BC==2m;当AB为腰且三角形为钝角三角形时(图③).AB=BC=10m ,BD==8m,AC==6m.所以另两边的长分别为m、m,或10m、2m,或10m、6m.故答案为:m、m或10m、2m或10m、6m.16.如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK= 2﹣3 .【解答】解:连接BH ,如图所示: ∵四边形ABCD 和四边形BEFG 是正方形, ∴∠BAH=∠ABC=∠BEH=∠F=90°, 由旋转的性质得:AB=EB ,∠CBE=30°, ∴∠ABE=60°,在Rt △ABH 和Rt △EBH 中,,∴Rt △ABH ≌△Rt △EBH (HL ),∴∠ABH=∠EBH=∠ABE=30°,AH=EH , ∴∠BHA=∠BHE=60°,∴∠KHF=180°﹣60°﹣60°60°=60°=60°, ∵∠F=90°,∴∠FKH=30°, ∴AH=AB•tan ∠ABH=×=1,∴EH=1,∴FH=﹣1,在Rt △FKH 中,∠FKH=30°, ∴KH=2FH=2(﹣1),∴AK=KH ﹣AH=2(﹣1)﹣1=2﹣3;故答案为:2﹣3.三、解答题17.解方程:=2﹣.【解答】解:去分母得:2x=4x﹣4﹣3,解得:x=3.5,经检验x=3.5是分式方程的解.18.先化简,再求值:÷(x+2﹣),其中x=2.【解答】解:原式=÷=•=,当x=2时,原式=.19.小明同学正在黑板上画△ABC绕△ABC外一点P旋转60°角的旋转图,当他完成A、B两点旋转后的对应点Aʹ、Bʹ时,不小心将旋转中心P擦掉了(如图所示).请你帮助小明找到旋转中心P,(要求只作图,不写作法,保留作图痕迹)【解答】解:如图所示,点P即为所求.20.如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD 相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.【解答】解:(1)∵△ABC是等边三角形,且BD⊥AC,AE⊥BC,∴∠C=60°,CE=BC,CD=AC;而BC=AC,∴CD=CE,△CDE是等边三角形.(2)由(1)知:AE、BD分别是△ABC的中线,∴AO=2OE,而AO=12,∴OE=6.21.为加快城市群的建设与发展,两城市间新建一条城际铁路,建成后,建成后,为加快城市群的建设与发展,在在A,B两城市间新建一条城际铁路,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.【解答】解:设城际铁路现行速度是xkm/h.由题意得:×=.解这个方程得:x=80.经检验:x=80是原方程的根,且符合题意.则×=×=0.6(h).答:建成后的城际铁路在A,B两地的运行时间是0.6h.22.学校计划购买一批平板电脑和一批学习机,经投标,购买1台平板电脑比购学校计划购买一批平板电脑和一批学习机,经投标,买4台学习机多200元,购买2台平板电脑和3台学习机共需8100元.(1)求购买1台平板电脑和1台学习机各需多少元?(2)学校根据实际情况,决定购买平板电脑和学习机共100台,要求购买的总费用不超过166600元,且购买学习机的台数不超过购买平板电脑台数的 1.5倍.请问有哪几种购买方案?哪种方案最省钱?【解答】解:(1)设购买1台平板电脑和1台学习机各需x元,y元,根据题意得:,解得:,答:购买1台平板电脑和1台学习机各需3000元和700元;(2)设购买平板电脑x台,学习机(100﹣x)台,根据题意得:,解得:40≤x≤42,∵x只能取正整数,∴x=40,41,42,当x=40时,y=60;x=41时,y=59;x=42时,y=58;方案1:购买平板电脑40台,学习机60台,费用为120000+42000=162000(元); 方案2:购买平板电脑41台,学习机59台,费用为123000+41300=164300(元); 方案3:购买平板电脑42台,学习机58台,费用为126000+40600=166600(元), 则方案1最省钱.23.如图,在▱ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作平行四边形AGDB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证:四边形DEBF是菱形.【解答】证明:(1)在平行四边形ABCD 中,AB∥CD,AB=CD∵E、F分别为AB、CD的中点∴DF=DC,BE=AB∴DF∥BE,DF=BE∴四边形DEBF为平行四边形,∴DE∥BF;(2)∵AG∥BD,∴∠G=∠DBC=90°,∴△DBC 为直角三角形,又∵F为边CD的中点,∴BF=DC=DF,又∵四边形DEBF为平行四边形,∴四边形DEBF是菱形.24.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC(∠BAC是一个可以变化的角),AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小明是这样思考的:利用变换和等边三角形将边的位置重新组合,他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A'BC,连接A'A,当点A落在A'C 上时,此题可解(如图2)(1)请你回答:AP的最大值是的最大值是6 .参考小明同学思考问题的方法,解决下列问题:(2)如图3,等腰,等腰Rt△ABC,边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是多少?为什么?(结果可以不化简)提示:要解决AP+BP+CP的最小值问题,可仿照题目给出的作法,把△ABP绕B 点逆时针旋转60°,得到△A'BP'.(3)如图4,O是等边△ABC内一点,OA=3,OB=4,OC=5,则S△AOC +S△AOB=6+ .【解答】解:(1)如图2,∵△ABP逆时针旋转60°得到△AʹBC,∴∠AʹBA=60°,AʹB=AB,AP=AʹC,∴△AʹBA是等边三角形,∴AʹA=AB=BAʹ=2,在△AAʹC中,AʹC<AAʹ+AC=6,即AP<6,当点Aʹ、A、C三点共线时,AʹC=AAʹ+AC,即AP=6,∴AP的最大值是:6,故答案是:6.(2)AP+BP+CP的最小值是2+2.理由:如图3,∵Rt△ABC是等腰三角形,∴AB=BC,以B为中心,将△APB逆时针旋转60°得到△A'P'B,则A'B=AB=BC=4,PA=PʹAʹ,PB=PʹB,∴P A+PB+PC=PʹAʹ+P'B+PC.∵当A'、P'、P、C四点共线时,P'A+P'B+PC最短,即线段A'C最短,∴A'C=PA+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵由旋转可知,∠A'BA=60°,∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在Rt△A'DC中,A'C=====2+2,∴AP+BP+CP的最小值是:2+2(或).(3)如图4,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至带你O',连接OO',则△AOO'是边长为3的等边三角形,△COO'是边长为3、4、5的直角三角形,∴S△AOC +S△AOB=S四边形AOCO'=S△COO'+S△AOO'=×3×4+×3×=6+.故答案为:6+.。
E ODC BA2015-2016学年度第二学期期末质量检测八年级 数学一、选择题(本大题共10题,每题3分,共30分) 1.下列二次根式中,是最简二次根式的是A. B. 0.5 C.50 D.5下列计算正确的是 A.752=+ C. D.4. 若平行四边形中两个内角的度数比为1:2,则其中较大的内角是 A .120° B .90° C .60° D .45°5. 已知一组数据5、3、5、4、6、5、14.关于这组数据的中位数、众数、平均数, 下列说法正确的是A.中位数是4B.众数是14C.中位数和众数都是5D.中位数和平均数都是5 6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点, 则下列式子中,一定成立的是A.OE BC 2=B. OE AC 2=C.OE AD =D.OE OB = 7. 要得到y=2x-4的图象,可把直线y=2xA . 向左平移4个单位 B. 向右平移4个单位 C. 向上平移4个单位 D. 向下平移4个单位 8. 对于函数y=-3x+1,下列结论正确的是A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大9.甲、乙两班举行电脑汉字录入比赛,参加学生每分钟录入汉字的个数统计计算后填入下表:某同学根据上表分析得出如下结论:22540=÷15)15(2-=-5112题①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀); ③甲班的成绩波动情况比乙班的成绩波动大. 其中正确结论的序号是A. ①②③ B .①② C .①③ D .②③10.王老师开车从甲地到相距240千米的乙地,如果油箱剩余油量Y (升)与行驶路程X (千米)之间是一次函数关系,如图,那么到达乙地时油 箱剩余油量是A. 10升B.20升C. 30升D. 40升二.填空题(本大题共6题,每题3分, 共18分)11 .函数3X2X Y +=的自变量X 的取值范围是______________12. 四边形ABCD 是周长为20cm 的菱形,点A 的坐标是则点B 的坐标为___________13.已知样本x 1 ,x 2 , x 3 , x 4的平均数是3,则x 1+3,x 2+3, x 3+3, x 4+3的平均数为 ____14.若一次函数y =(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是____15.如图,以Rt △ABC 的三边为斜边分别向外作等 腰直角三角形,若斜边AB =3,则图中阴影部分 的面积为________.16.如图,矩形ABCD 中,AB=3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B落在点B ′处,当△AEB ′为直角三角形时,BE 的长为___三、解答题(本大题共8题,共72分,解答时要写出必要的文字说明,演算步骤或推证过程)17.计算(本题共2小题,每小题5分,共10分) (1) 32)48312123(÷+-(2) (18.(本题满分8分)已知一次函数的图象经过(-2,1)和(1,4)两点, (1)求这个一次函数的解析式; (2)当x =3时,求y 的值。
某某省某某市吴中区2015-2016学年八年级(下)期末数学试卷一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题纸上作答.)1.下列各项调查,属于抽样调查的是()A.调查你班学生每位同学穿鞋的尺码B.调查一批洗衣机的使用寿命,从中抽取5台C.调查一个社区所有家庭的年收入D.调查你所在年级同学的业余爱好2.分式有意义,x的取值X围是()A.x≠2 B.x≠﹣2 C.x=2 D.x=﹣23.下列根式中,与是同类二次根式的是()A. B. C.D.4.转动转盘,当转盘停止转动时,指针落在红色区域的可能性最大的是()A.B.C.D.5.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于()A.20 B.18 C.16 D.146.若=,则的值为()A.1 B.C.D.7.顺次连结一个平行四边形的各边中点所得四边形的形状是()A.平行四边形B.矩形 C.菱形 D.正方形8.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C. D.9.反比例函数y=图象上有两点A(x1,y1),B(x2,y2),若x1<0<x2,y1<y2,则m的取值X围是()A.m>B.m<C.m≥D.m≤10.如图,在矩形ABCD中,AB=1,BC=,M为BC中点,连接AM,过D作DE⊥AM于E,则DE的长度为()A.1 B.C.D.二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)11.下列事件:①对顶角相等,②矩形的对角线相等,③同位角相等,④平行四边形是中心对称图形中,不是必然事件的是______ (填写序号).12.当x=______时,分式的值为0.13.约分:﹣ =______.14.如图,在△ABC中,若DE∥BC, =,且S△ADE=4cm2,则四边形BCED的面积为______.15.某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100 400 800 1 000 2 000 4 000发芽的频数85 300 652 793 1 604 3204发芽的频率根据以上数据可以估计,该玉米种子发芽的概率为______(精确到0.1).16.已知反比例函数y=(b为常数,b≠0)的图象经过点(a,),则2a﹣b+1的值是______.17.如图是利用四边形的不稳定性制作的菱形凉衣架.已知其中每个菱形的边长为20cm,在墙上悬挂凉衣架的两个铁钉A、B之间的距离为20cm,则∠1=______度.18.如图,正方形ABCD位于第一象限,边长为3,横坐标为1的点A在直线y=x上,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD公共点,则k的取值X围是______.三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.计算:(1)÷×;(2)﹣(15﹣2)(x>0)20.解分式方程:.21.先化简,再求值:÷(﹣),其中a=+1,b=﹣1.22.为了掌握我区中考模拟数学试题的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,将随机抽取的部分学生成绩(得分为整数,满分为130分)分为5组:第一组55~70;第二组70~85;第三组85~100;第四组100~115;第五组115~130,统计后得到如图所示的频数分布直方图(2016春•吴中区期末)如图,E、F是▱ABCD对角线AC 上的两点,AF=CE.(1)求证:BE=DF;(2)若DF的延长线交BC于G,且点E、F是线段AC的三等分点,则=______.24.吴中区是闻名遐迩的“鱼米之乡”,可谓“月月有花、季季有果、天天有鱼虾”.今年五月枇杷上市后,某超市用20 000元以相同的进价购进质量相同的枇杷.超市的销售方案是:将枇杷按分类包装销售,其中挑出优质的枇杷400千克,以进价的2倍价格销售,剩下的批把以高于进价30%销售.结果超市将枇杷全部售完后获利17 200元(其它成本不计).问:枇杷进价为每千克多少元?(获利=售价一进价)25.如图,Rt△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD,垂足为E.(1)求证:CD2=DE•AD;(2)求证:∠BED=∠ABC.26.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简: ==;===﹣1.以上这种化简过程叫做分母有理化.还可以用以下方法化简:====﹣1.(1)请任用其中一种方法化简:①;②(n为正整数);(2)化简: +++….27.(10分)(2016春•吴中区期末)如图1,在梯形ABCD中,AB∥CD,AD⊥AB,AB=12,CD=9,点M从点A出发,以每秒2个单位长度的速度向点B运动,同时,点N从点C出发,以每秒1个单位长度的速度向点D运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AB于点P,连接BD交NP于点Q,连接MQ.设运动时间为t秒.(1)BM=______,BP=______;(用含t的代数式表示)(2)若t=3,试判断四边形BNDP的形状;(3)如图2,将△BQM沿AB翻折,得△BKM.①是否存在某时刻t,使四边形BQMK为菱形,若存在,求出t的值,若不存在,请说明理由;②在①的条件下,要使四边形BQMK为正方形,则BD=______.28.(15分)(2016春•吴中区期末)己知点A(a,b)是反比例函数y=(x>0)图象上的动点,AB∥x轴,AC∥y轴,分别交反比例函数y=(x>0)的图象于点B、C,交坐标轴于D、E,且AC=3CD,连接BC.(1)求k的值;(2)在点A运动过程中,设△ABC的面积为S,则S是否变化?若不变,请求出S的值;若改变,请写出S关于a的函数关系式;(3)探究:△ABC与以点O、D、E为顶点的三角形是否相似.2015-2016学年某某省某某市吴中区八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题纸上作答.)1.下列各项调查,属于抽样调查的是()A.调查你班学生每位同学穿鞋的尺码B.调查一批洗衣机的使用寿命,从中抽取5台C.调查一个社区所有家庭的年收入D.调查你所在年级同学的业余爱好【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:调查你班学生每位同学穿鞋的尺码属于全面调查;调查一批洗衣机的使用寿命,从中抽取5台属于抽样调查;调查一个社区所有家庭的年收入属于全面调查;调查你所在年级同学的业余爱好属于全面调查;故选:B.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.分式有意义,x的取值X围是()A.x≠2 B.x≠﹣2 C.x=2 D.x=﹣2【考点】分式有意义的条件.【分析】根据分式有意义的条件:分母不等于0,即可求解.【解答】解:根据题意得:x+2≠0,解得:x≠﹣2.故选B.【点评】本题主要考查了分式有意义的条件,正确理解条件是解题的关键.3.下列根式中,与是同类二次根式的是()A. B. C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.【点评】本题主要考查了同类二次根式,解题的关键是熟记化简根式的方法.4.转动转盘,当转盘停止转动时,指针落在红色区域的可能性最大的是()A.B.C.D.【考点】可能性的大小.【分析】根据几何概率的定义,面积越大,指针指向该区域的可能性越大.【解答】解:因为四个选项中的转盘均被均分为4份,所以哪个选项中红色区域份数最多,指针落在红色区域的可能性就越大,四个选项中D中共有3份,故指针落在红色区域的可能性最大,故选D.【点评】考查了可能性的大小的知识,用到的知识点为:在总面积相等的情况下,哪部分的面积较大,相应的概率就大.5.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于()A.20 B.18 C.16 D.14【考点】平行四边形的性质.【分析】由平行四边形的性质和角平分线可求得AE=AB,则可求得四边形ABCD的周长.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵BC=6,DE=2,∴AB=AE=AD﹣DE=BC﹣DE=6﹣2=4,∴▱ABCD的周长=2(AB+BC)=2×(4+6)=20,故选A.【点评】本题主要考查平行四边形的性质,根据平行四边形的性质求得AB=AE是解题的关键.6.若=,则的值为()A.1 B.C.D.【考点】比例的性质.【分析】根据合分比性质求解.【解答】解:∵ =,∴==.故选D.【点评】考查了比例性质:常见比例的性质有内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.7.顺次连结一个平行四边形的各边中点所得四边形的形状是()A.平行四边形B.矩形 C.菱形 D.正方形【考点】中点四边形.【分析】连接平行四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.【解答】解:顺次连接平行四边形ABCD各边中点所得四边形必定是:平行四边形,理由如下:(如图)根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形.故选:A.【点评】本题考查了中点四边形,此题实际上是平行四边形的判定和三角形的中位线定理的应用,通过做此题培养了学生的推理能力,题目比较好,难度适中.8.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C. D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据mn>0确定反比例函数的图象的位置,然后根据m、n同号确定答案即可.【解答】解:∵mn>0,∴m、n同号,且反比例函数y=的图象位于第一、三象限,∴排除C、D;∵当m>0时则n<0,∴排除A,∵m>0时则n>0,∴A正确,故选A.【点评】本题考查了反比例函数的性质及一次函数的性质,解题的关键是了解两种函数的性质.9.反比例函数y=图象上有两点A(x1,y1),B(x2,y2),若x1<0<x2,y1<y2,则m的取值X围是()A.m>B.m<C.m≥D.m≤【考点】反比例函数图象上点的坐标特征.【分析】先根据题意列出关于m的不等式,求出m的取值X围即可.【解答】解:∵反比例函数y=图象上有两点A(x1,y1),B(x2,y2),x1<0<x2,y1<y2,∴点A在第三象限,点B在第一象限,∴1﹣5m>0,解得m<.故选B.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10.如图,在矩形ABCD中,AB=1,BC=,M为BC中点,连接AM,过D作DE⊥AM于E,则DE的长度为()A.1 B.C.D.【考点】相似三角形的判定与性质;矩形的性质.【分析】先求出△ADE的面积是矩形面积的一半,再用勾股定理求出AM,最后用面积公式求解即可.【解答】解:如图,连结DM,在矩形ABCD中,AB=1,BC=,∴S矩形ABCD=AB×BC=1×=,∵M为BC中点,∴S△ADM=S矩形ABCD=,在RT△ABM中,AB=1,BM=BC=,根据勾股定理得,AM==,∴S△ADM=AM×DE=××DE=,∴DE=,故选C【点评】本题考查了矩形的性质,三角形的面积的计算,勾股定理,解本题的关键是判断△ADE的面积是矩形面积的一半.二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)11.下列事件:①对顶角相等,②矩形的对角线相等,③同位角相等,④平行四边形是中心对称图形中,不是必然事件的是③(填写序号).【考点】随机事件.【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:①对顶角相等是必然事件;②矩形的对角线相等是必然事件;③同位角相等是随机事件;④平行四边形是中心对称图形是必然事件.故答案是:③【点评】本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.当x= 5 时,分式的值为0.【考点】分式的值为零的条件.【分析】由分式的值为0可得出x﹣5=0且x≠0,解方程即可得出结论.【解答】解:∵分式的值为0,∴,解得:x=5.故答案为:5.【点评】本题考查了分式的值为零的条件,解题的关键是得出x﹣5=0且x≠0.本题属于基础题,难度不大,解决该题型题目时牢记分式值为零的条件是分子等于零且分母不等于零.13.约分:﹣ =.【考点】约分.【分析】先提取出分子分母中的公因式,再消去公因式,即得最后结果.【解答】解:,故答案为:【点评】本题主要考查分式的约分,找到分子分母公因式是解题的关键.14.如图,在△ABC中,若DE∥BC, =,且S△ADE=4cm2,则四边形BCED的面积为32cm2.【考点】相似三角形的判定与性质.【分析】由DE∥BC,可证△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方,求△ABC的面积,再与△ADE的面积作差即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴===,∵S△ADE=4cm2,∴S△ABC=36cm2,∴四边形BCED的面积为:32cm2,故答案为:32cm2.【点评】本题考查了相似三角形的判定与性质.关键是利用平行线得相似,利用相似三角形的面积的性质求解.15.某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100 400 800 1 000 2 000 4 000发芽的频数85 300 652 793 1 604 3204发芽的频率根据以上数据可以估计,该玉米种子发芽的概率为0.8 (精确到0.1).【考点】利用频率估计概率.【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在0.8左右,从而得到结论.【解答】解:∵观察表格,发现大量重复试验发芽的频率逐渐稳定在0.8左右,∴该玉米种子发芽的概率为0.8,故答案为:0.8.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.16.已知反比例函数y=(b为常数,b≠0)的图象经过点(a,),则2a﹣b+1的值是 1 .【考点】反比例函数图象上点的坐标特征.【分析】由点在反比例函数图象上可得出b=a,将其代入2a﹣b+1中即可得出结论.【解答】解:∵反比例函数y=(b为常数,b≠0)的图象经过点(a,),∴=,即b=a,∴2a﹣b+1=2a﹣×a+1=1.故答案为:1.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是得出b=a.本题属于基础题,难度不大,解决该题型题目时,根据点在反比例函数图象上得出a、b之间的关系是关键.17.如图是利用四边形的不稳定性制作的菱形凉衣架.已知其中每个菱形的边长为20cm,在墙上悬挂凉衣架的两个铁钉A、B之间的距离为20cm,则∠1= 60 度.【考点】菱形的性质.【分析】根据题意可得已知菱形的一对角线的长和其边长,则可根据三角函数求得的度数,从而不难求得∠1的度数.【解答】解:由题意可得,菱形较长的对角线为20cm,∵菱形的对角线互相垂直平分,根据勾股定理可得,另一对角线的一半等于10cm,则=30°,∴∠1=60°.故答案为60.【点评】此题主要考查菱形的性质和勾股定理,综合利用了直角三角形的性质.18.如图,正方形ABCD位于第一象限,边长为3,横坐标为1的点A在直线y=x上,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD公共点,则k的取值X围是1≤k≤16 .【考点】反比例函数与一次函数的交点问题;正方形的性质.【分析】根据题意求出点A的坐标,根据正方形的性质求出点C的坐标,根据反比例函数图象上点的坐标特征解答即可.【解答】解:∵点A在直线y=x上,横坐标为1,∴点A的坐标为(1,1),∵正方形ABCD的边长为3,∴点C的坐标为(4,4),当双曲线y=经过点A时,k=1×1=1,当双曲线y=经过点C时,k=4×4=16,∴双曲线y=与正方形ABCD公共点,则k的取值X围是1≤k≤16,故答案为:1≤k≤16.【点评】本题考查的是反比例函数与一次函数的交点问题以及正方形的性质,掌握反比例函数图象上点的坐标特征、以及正方形的性质是解题的关键.三、解答题:(本大题共10小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.计算:(1)÷×;(2)﹣(15﹣2)(x>0)【考点】二次根式的混合运算.【分析】(1)先化简二次根式,再进行计算即可;(2)先化简二次根式,再进行计算即可.【解答】解:(1)原式=3××=;(2)原式=3﹣(3﹣2x)=2x.【点评】本题考查了二次根式的混合运算,把二次根式化为最简二次根式是解题的关键.20.解分式方程:.【考点】解分式方程.【分析】左右两边同乘以最简公分母是x2﹣4,以下步骤可按解整式方程的步骤计算即可解答,注意最后一定要验根.【解答】解:方程两边同乘以最简公分母(x+2)(x﹣2),得(x﹣2)x﹣(x+2)2=8,x2﹣2x﹣x2﹣4x﹣4=8,﹣6x=12,x=﹣2,经检验:x=﹣2不是原方程的根,∴原方程无解.【点评】本题主要考查分式方程的解法.注意:解分式方程时确定最简公分母很关键,解分式方程必须检验.21.先化简,再求值:÷(﹣),其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=•=,当a=+1,b=﹣1时,原式=2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.为了掌握我区中考模拟数学试题的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,将随机抽取的部分学生成绩(得分为整数,满分为130分)分为5组:第一组55~70;第二组70~85;第三组85~100;第四组100~115;第五组115~130,统计后得到如图所示的频数分布直方图(2016春•吴中区期末)如图,E、F是▱ABCD对角线AC 上的两点,AF=CE.(1)求证:BE=DF;(2)若DF的延长线交BC于G,且点E、F是线段AC的三等分点,则=.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由AF=CE可得AE=CF,再结合平行四边形的性质证明△ABE≌△CDF,从而得出BE=DF;(2)先证明BE∥GF,由已知条件得出BG=CG=BC=AD,由平行线得出△CGF∽△ADF,得出对应边成比例,即可得出结果【解答】(1)证明:∵AF=CE,∴AF﹣EF=CE﹣EF.∴AE=CF.∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.AD∥BC,AD=BC,∴∠BAE=∠DCF.在△ABE和△CDF中,,∴△ABE≌△CDF(SAS).∴BE=DF;(2)解:如图所示:由(1)得:△ABE≌△CDF,∴∠AEB=∠DFC,∴∠BEC=∠GFC,∴BE∥GF,∵点E、F是线段AC的三等分点,∴AE=EF=FC,∴BG=CG=BC=AD,∵AD∥BC,∴△CGF∽△ADF,∴=;故答案为:.【点评】此题主要考查了相似三角形的判定与性质、全等三角形的性质与判定、平行四边形的性质等知识;熟练掌握平行四边形的性质,由平行线证明三角形相似是解决问题的关键.24.吴中区是闻名遐迩的“鱼米之乡”,可谓“月月有花、季季有果、天天有鱼虾”.今年五月枇杷上市后,某超市用20 000元以相同的进价购进质量相同的枇杷.超市的销售方案是:将枇杷按分类包装销售,其中挑出优质的枇杷400千克,以进价的2倍价格销售,剩下的批把以高于进价30%销售.结果超市将枇杷全部售完后获利17 200元(其它成本不计).问:枇杷进价为每千克多少元?(获利=售价一进价)【考点】分式方程的应用.【分析】设枇杷进价为每千克x元,根据超市将枇杷全部售完后获利17 200元列出分式方程,求出方程的解即可得到结果;【解答】解:设枇杷进价为每千克x元,根据题意得:400×(2x﹣x)+(﹣400)×30%x=17200,解得:x=40,经检验x=40是分式方程的解,且符合题意,则枇杷进价为每千克40元.【点评】此题考查了分式方程的应用,找出题中的等量关系是解本题的关键.25.如图,Rt△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD,垂足为E.(1)求证:CD2=DE•AD;(2)求证:∠BED=∠ABC.【考点】相似三角形的判定与性质.【分析】(1)证明∠CED=∠ACB=90°,∠CDE=∠ADC,得到△CDE∽△ADC,列出比例式,化为等积式即可解决问题.(2)运用(1)中的结论,证明△BDE∽△ADB,即可解决问题.【解答】证明(1)∵CE⊥AD,∴∠CED=∠ACB=90°,∵∠CDE=∠ADC,∴△CDE∽△ADC,∴CD:AD=DE:CD,∴CD2=DE•AD.(2)∵D是BC的中点,∴BD=CD;∵CD2=DE•AD,∴BD2=DE•AD∴BD:AD=DE:BD;又∵∠ADB=∠BDE,∴△BDE∽△ADB,∴∠BED=∠ABC.【点评】该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是深入把握题意、大胆猜测推理、科学求解论证.26.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简: ==;===﹣1.以上这种化简过程叫做分母有理化.还可以用以下方法化简:====﹣1.(1)请任用其中一种方法化简:①;②(n为正整数);(2)化简: +++….【考点】分母有理化.【分析】(1)根据阅读材料中的方法将各式化简即可;(2)原式分母有理化后,合并即可得到结果.【解答】解:(1)①原式====+;②原式====﹣;(2)原式=++…+=﹣1+﹣+…+﹣=﹣1.【点评】此题考查了分母有理化,弄清阅读材料中的解题方法是解本题的关键.27.(10分)(2016春•吴中区期末)如图1,在梯形ABCD中,AB∥CD,AD⊥AB,AB=12,CD=9,点M从点A出发,以每秒2个单位长度的速度向点B运动,同时,点N从点C出发,以每秒1个单位长度的速度向点D运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AB于点P,连接BD交NP于点Q,连接MQ.设运动时间为t秒.(1)BM= 12﹣2t ,BP= 3+t ;(用含t的代数式表示)(2)若t=3,试判断四边形BNDP的形状;(3)如图2,将△BQM沿AB翻折,得△BKM.①是否存在某时刻t,使四边形BQMK为菱形,若存在,求出t的值,若不存在,请说明理由;②在①的条件下,要使四边形BQMK为正方形,则BD= 12.【考点】四边形综合题.【分析】(1)先用t表示出,AM,再通过线段和差关系表示出MB、BP;(2)把t=3代入DN、BP中,若DN=BP,则四边形满足一组对边平行且相等,是平行四边形,否则就是梯形;(3)①由于△BQM沿AB翻折成△MKB,只要QM=QB,四边形BQMK就是菱形,因为QP⊥AB,MP、BP可由t表示出来,可通过MP=PB计算出t;②若四边形BQMK为正方形,则∠MQB是直角,∠QBA=45°,可通过等腰直角三角形间的三边关系,先求出t,再分别计算出BQ、DQ.【解答】解:(1)∵AB∥CD,AD⊥AB,AB=12,CD=9,过点N作NP⊥AB于点P,∴四边形APND是矩形,∴DN=AP.∵AB=12,CD=9,AM=2t,=t,∴DN=9﹣t,∴BM=AB﹣AM=12﹣2t,BP=AB﹣AP=AB﹣DN=12﹣(9﹣t)=3+t.答案:12﹣2t,3+t;(2)当t=3时,DN=9﹣t=6,BP=3+t=6,∴DN=PB,又∵DN∥BP,∴四边形BNDP是平行四边形.(3)①当t=1.5时,四边形BQMK为菱形.理由如下:∵△BQM沿AB翻折,得△BKM,∴BQ=BK,QM=MK,当QM=QB时,四边形MQBK是菱形.∵QP⊥AB,∴MP=BP.∵MP=AP﹣AM=DN﹣AM=(9﹣t)﹣2t=9﹣3t,BP=AB﹣AP=AB﹣DN=3+t,当9﹣3t=3+t时,t=1.5.即当t=1.5时,四边形BQMK为菱形.②当菱形BQMK为正方形时,∠MQB=90°,BM=12﹣2t,BP=3+t,∴∠QBM=45°.∵cos∠MBQ=cos45°===,∴BQ=6﹣t.∵cos∠MBQ=cos45°===,即6+2t=12﹣2t,解得t=1.5.∴BQ=6.∵DC∥AB,∴∠NDB=∠DBM=45°,在RT△DNQ中,DQ=DN=(9﹣t),∴BD=BQ++=12.答案:12.【点评】点评:本题是一个直角梯形与动点的结合题目,考察了矩形的性质和判定、平行四边形的判定、菱形的性质及正方形的性质.等腰直角三角形的三边1:1:间关系或者特殊角的三角函数是解决本题的关键.28.(15分)(2016春•吴中区期末)己知点A(a,b)是反比例函数y=(x>0)图象上的动点,AB∥x轴,AC∥y轴,分别交反比例函数y=(x>0)的图象于点B、C,交坐标轴于D、E,且AC=3CD,连接BC.(1)求k的值;(2)在点A运动过程中,设△ABC的面积为S,则S是否变化?若不变,请求出S的值;若改变,请写出S关于a的函数关系式;(3)探究:△ABC与以点O、D、E为顶点的三角形是否相似.【考点】反比例函数综合题.【分析】(1)由反比例函数图象上点的坐标特征用函数a的代数式表示出来b,并找出点C 坐标,根据AC=3CD,即可得出关于k的一元一次方程,解方程即可得出结论;(2)根据(1)得出A、C的坐标,由AB∥x轴找出B点的坐标,由此即可得出AB、AC的长度,利用三角形的面积公式即可得出结论;(3)由已知可得出∠BAC=∠DOE=90°,因此分两种情况来讨论.①△ABC∽△ODE是否成立?根据相似三角形的性质验证对应线段是否成比例,从而得出结论;②△ABC∽△OED是否成立?根据相似三角形的性质验证对应线段是否成比例,从而得出结论.【解答】解:(1)∵A(a,b),且A在反比例函数y=(x>0)的图象上,∴b=,∵AC∥y轴,且C在反比例函数y=(x>0)的图象上,∴C(a,).又∵AC=3CD,∴AD=4CD,即=4•,∴k=2.(2)由(1)可知:A(a,),C(a,).∵AB∥x轴,∴B点的纵坐标为,∵点B在反比例函数y=的函数图象上,∴=,解得:x=,∴点B(,),∴AB=a﹣=,AC=﹣=,∴S=AB•AC=••=,∴在点A运动过程中,△ABC面积不变,始终等于.(3)连接DE,如图所示.∵由已知可知:∠BAC=∠DOE=90°,∴△ABC与以点O、D、E为顶点的三角形如果相似,那么点A与点O一定是对应顶点.下面分两种情况进行探究:①△ABC∽△ODE是否成立?∵==, ==,∴=.又∵∠BAC=∠DOE=90°,∴△ABC∽△ODE.∴在点A的运动过程中,△ABC∽△ODE始终成立;②△ABC∽△OED是否成立?==, ==,当=时,即=,∴a=2.∴在点A的运动过程中,当a=2时,△ABC∽△OED.【点评】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及相似三角形的判定及性质,解题的关键是:(1)根据线段间的关系找出关于k的一元一次方程;(2)用含a的代数式表示出线段AB、AC;(3)根据线段间的关系找出三角形是否相似.本题属于中档题,难度不大,解决该题型题目时,根据对应线段成比例来证出三角形相似是难点,在日常练习中应加强该方面的练习.。
八年级(下)期末数学试卷一、选择题(本大题共10小题,调分30分,每小题给出的四个选项中,只有一项题目要求的,)1.(3分)点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(﹣3,2)D.(3,2)2.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列关于判定平行四边形的说法错误的是()A.一组对角相等且一组对边平行的四边形B.一组对边相等且另一组对边平行的四边形C.两组对角分别相等的四边形D.四条边相等的四边形4.(3分)如图,足球图片中的一块黑色皮块的内角和是()A.720°B.540°C.360°D.180°5.(3分)如图四条直线,可能是一次函数y=kx﹣k(k≠0)的图象的是()A.B.C.D.6.(3分)为了了解某校九年级学生的体能情况,随机抽查了该校九年级若干名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的直方图,请根据图示计算,仰卧起坐次数在25~30次的学生人数占被调查学生人数的百分比为()A.40%B.30%C.20%D.10%7.(3分)如图,在△ABC中,∠C=90°,BC=1,AC=2,BD是∠ABC的平分线,设△ABD,△BCD的面积分别是S1,S2,则S1:S2等于()A.2:1B.:1C.3:2D.2:8.(3分)在Rt△ABC中,∠C=90°,∠A=30°,BC=4,D、E分别为AC、AB边上的中点,连接DE并延长DE到F,使得EF=2ED,连接BF,则BF长为()A.2B.2C.4D.49.(3分)如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A 坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)10.(3分)A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.对于以下说法:①乙车出发1.5小时后甲才出发;②两人相遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是km/h;④当乙车出发2小时时,两车相距13km.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)如果一个n边形的外角和是内角和的一半,那么n=.12.(3分)在▱ABCD中,如果∠A+∠C=140°,那么∠C等于.13.(3分)写出同时具备下列两个条件的一次函数关系式.(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(1,﹣2).14.(3分)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为.15.(3分)如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若ab=4,大正方形的面积为16,则小正方形的边长为.16.(3分)在Rt△ABC中,∠C=90°,AC=15cm,BC=8cm,AX⊥AC于A,P、Q两点分别在边AC和射线AX上移动.当PQ=AB,AP=时,△ABC和△APQ 全等.17.(3分)如图,在△ABC中,∠B=∠C=30°,底边,线段AB的垂直平分线交BC于点E,则△ACE的周长为.18.(3分)如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF⊥AD于F.则OE+OF=.三.解答题(第19、20、21、22题每小题5分,共20分)19.(5分)如图,一块四边形的土地,其中∠BAD=90°,AB=4m,BC=13m,CD=12m,AD=3m.(1)试说明BD⊥BC;(2)求这块土地的面积.20.(5分)已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.21.(5分)已知:如图.矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别相交于点E、F.(1)求证:△BOE≌DOF;(2)当EF与AC满足什么关系时,以A、E、C、F为顶点的四边形是菱形?并给出证明.22.(5分)已知如图,一次函数y=ax+b图象经过点(1,2)、点(﹣1,6).求:(1)这个一次函数的解析式;(2)一次函数图象与两坐标轴围成的面积.四.应用题(每小题8分,共16分)23.(8分)2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5~60.5160.0860.5~70.5400.270.5~80.5500.2580.5~90.5m0.3590.5~100.524n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m=,n=;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?24.(8分)为全面落实乡村振兴总要求,充分发扬“为民服务孺子牛”“创新发展拓荒牛”“艰苦奋斗老黄牛”精神,某镇政府计划在该镇试种植苹果树和桔子树共100棵.已知平均每棵果树的投入成本和产量如表所示,且苹果的售价为10元/kg,桔子的售价为6元/kg.成本(元/棵)产量(kg/棵)苹果树12030桔子树8025设种植苹果树x棵.(1)若种植苹果树和桔子树共获利y元,求y与x之间的函数关系式;(2)若种植苹果树45棵,求种植苹果树和桔子树共获利多少元?五、综合探究题(10分)25.(10分)如图所示,O为ABC的边AC上一动点,过点O的直线MN∥BC,设MN分别交∠ACB的平分线及其外角平分线于点E、F.(1)求证:OE=OF;(2)当点O在何处时,四边形AECF是矩形?(3)在(2)的条件下,请在△ABC中添加条件,使四边形AECF变为正方形,并说明你的理由.八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,调分30分,每小题给出的四个选项中,只有一项题目要求的,)1.(3分)点M(﹣3,2)关于y轴对称的点的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(﹣3,2)D.(3,2)【解答】解:点M(﹣3,2)关于y轴对称的点的坐标为(3,2).故选:D.2.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.3.(3分)下列关于判定平行四边形的说法错误的是()A.一组对角相等且一组对边平行的四边形B.一组对边相等且另一组对边平行的四边形C.两组对角分别相等的四边形D.四条边相等的四边形【解答】解:A、一组对角相等且一组对边平行的四边形是平行四边形,故不符合题意;B、一组对边相等且另一组对边平行的四边形不一定是平行四边形,故符合题意;C、两组对角分别相等的四边形是平行四边形,故不符合题意;D、四条边相等的四边形是平行四边形,故不符合题意;故选:B.4.(3分)如图,足球图片中的一块黑色皮块的内角和是()A.720°B.540°C.360°D.180°【解答】解:∵黑色皮块是正五边形,∴黑色皮块的内角和是(5﹣2)×180°=540°.故选:B.5.(3分)如图四条直线,可能是一次函数y=kx﹣k(k≠0)的图象的是()A.B.C.D.【解答】解:当k>0时,一次函数y=kx﹣k(k≠0)的图象经过第一、三、四象限,故选项A不符合题意,选项D符合题意;当k<0时,一次函数y=kx﹣k(k≠0)的图象经过第一、二、四象限,故选项B、C不符合题意;故选:D.6.(3分)为了了解某校九年级学生的体能情况,随机抽查了该校九年级若干名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的直方图,请根据图示计算,仰卧起坐次数在25~30次的学生人数占被调查学生人数的百分比为()A.40%B.30%C.20%D.10%【解答】解:由频率分布直方图可以得出,被调查的总人数=3+10+12+5=30.又仰卧起坐次数在25~30次的学生人数为12,故百分比为40%.故选:A.7.(3分)如图,在△ABC中,∠C=90°,BC=1,AC=2,BD是∠ABC的平分线,设△ABD,△BCD的面积分别是S1,S2,则S1:S2等于()A.2:1B.:1C.3:2D.2:【解答】解:过D作DE⊥AB于E,则DE=DC又∠C=90°,BC=1,AC=2,∴AB==,∴S1:S2=AB:BC=:1.故选:B.8.(3分)在Rt△ABC中,∠C=90°,∠A=30°,BC=4,D、E分别为AC、AB边上的中点,连接DE并延长DE到F,使得EF=2ED,连接BF,则BF长为()A.2B.2C.4D.4【解答】解:在Rt△ABC中,∠C=90°,∠A=30°,BC=4,∴AB=2BC=8,∠ABC=60°,∵E为AB边上的中点,∴AE=EB=4,∵D、E分别为AC、AB边上的中点,∴DE∥BC,∴∠AED=∠AED=60°,∴∠BEF=∠ABC=60°,在Rt△AED中,∠A=30°,∴AE=2DE,∵EF=2DE,∴AE=EF,∴△BEF为等边三角形,∴BF=BE=4,故选:C.9.(3分)如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A 坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)【解答】解:点A第一次关于y轴对称后在第二象限,点A第二次关于x轴对称后在第三象限,点A第三次关于y轴对称后在第四象限,点A第四次关于x轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505余1,∴经过第2021次变换后所得的A点与第一次变换的位置相同,在第二象限,坐标为(﹣1,2).故选:C.10.(3分)A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.对于以下说法:①乙车出发1.5小时后甲才出发;②两人相遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是km/h;④当乙车出发2小时时,两车相距13km.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:由图象可得,乙车出发1.5小时后甲乙相遇,故①错误;两人相遇时,他们离开A地20km,故②正确;甲的速度是(80﹣20)÷(3﹣1.5)=40(km/h),乙的速度是km/h,故③正确;当乙车出发2小时时,两车相距:20+(2﹣1.5)×40﹣×2=km,故④错误;故选:B.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)如果一个n边形的外角和是内角和的一半,那么n=6.【解答】解:由题意得(n﹣2)•180°×=360°,解得n=6.故答案为:6.12.(3分)在▱ABCD中,如果∠A+∠C=140°,那么∠C等于70°.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=140°,∴∠C=70°.故答案为:70°.13.(3分)写出同时具备下列两个条件的一次函数关系式y=﹣x﹣1(答案不唯一).(写出一个即可)(1)y随x的增大而减小;(2)图象经过点(1,﹣2).【解答】解:该一次函数为y=kx+b(k≠0),∵y随x的增大而减小;图象经过点(1,﹣2),∴k<0,k+b=﹣2,∴答案可以为y=﹣x﹣1.故答案为:y=﹣x﹣1(答案不唯一).14.(3分)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为17.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=6,BC=AD=8,∴△OBC的周长=OB+OC+BC=3+6+8=17.故答案为:17.15.(3分)如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若ab=4,大正方形的面积为16,则小正方形的边长为2.【解答】解:由题意可知:中间小正方形的边长为a﹣b,∵每一个直角三角形的面积为:ab=×4=2,∴4×ab+(a﹣b)2=16,∴(a﹣b)2=16﹣8=8,∴a﹣b=2.故答案为:2.16.(3分)在Rt△ABC中,∠C=90°,AC=15cm,BC=8cm,AX⊥AC于A,P、Q两点分别在边AC和射线AX上移动.当PQ=AB,AP=8cm或15cm时,△ABC和△APQ 全等.【解答】解:①当P运动到AP=BC时,如图1所示:在Rt△ABC和Rt△QP A中,,∴Rt△ABC≌Rt△QP A(HL),即AP=B=8cm;②当P运动到与C点重合时,如图2所示:在Rt△ABC和Rt△PQA中,,∴Rt△ABC≌Rt△PQA(HL),即AP=AC=15cm.综上所述,AP的长度是8cm或15cm.故答案为:8cm或15cm.17.(3分)如图,在△ABC中,∠B=∠C=30°,底边,线段AB的垂直平分线交BC于点E,则△ACE的周长为.【解答】解:过A点作AF⊥BC,垂足为F,∵∠B=∠C=30°,∴AB=AC=2AF,∵BC=,∴BF=CF=,∵AC2=AF2+CF2,∴AC2=(AC)2+()2,解得AC=2,∴AF=1,∵DE垂直平分AB,∴AE=BE,∴△ACE的周长为AE+EC+AC=BE+EC+AC=BC+AC=.故答案为.18.(3分)如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE⊥AB于E,OF⊥AD于F.则OE+OF=9.6.【解答】解:如图,连接AC交BD于点G,连接AO,∵四边形ABCD是菱形,∴AC⊥BD,AB=AD=10,BG=BD=8,根据勾股定理得:AG===6,∵S△ABD=S△AOB+S△AOD,即BD•AG=AB•OE+AD•OF,∴16×6=10OE+10OF,∴OE+OF=9.6.故答案为:9.6.三.解答题(第19、20、21、22题每小题5分,共20分)19.(5分)如图,一块四边形的土地,其中∠BAD=90°,AB=4m,BC=13m,CD=12m,AD=3m.(1)试说明BD⊥BC;(2)求这块土地的面积.【解答】解:(1)在Rt△ABD中,∠BAD=90°,AB=4m,AD=3m,由勾股定理得:BD=5m,∵BC=12m,CD=13m,BD=5m∴BD2+BC2=DC2,∴∠DBC=90°,即BD⊥BC;(2)四边形ABCD的面积是S△ABD+S△BDC==36(m2).20.(5分)已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)点B2的坐标为(﹣4,﹣3).21.(5分)已知:如图.矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别相交于点E、F.(1)求证:△BOE≌DOF;(2)当EF与AC满足什么关系时,以A、E、C、F为顶点的四边形是菱形?并给出证明.【解答】证明:(1)∵四边形ABCD是矩形,∴OB=OD,∵AE∥CF,∴∠E=∠F,∠OBE=∠ODF,在△BOE与△DOF中,,∴△BOE≌△DOF(AAS);(2)当EF⊥AC时,四边形AECF是菱形.证明:∵△BOE≌△DOF,∴OE=OF,∵四边形ABCD是矩形,∴OA=OC,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形.22.(5分)已知如图,一次函数y=ax+b图象经过点(1,2)、点(﹣1,6).求:(1)这个一次函数的解析式;(2)一次函数图象与两坐标轴围成的面积.【解答】解:(1)依题意,当x=1时,y=2;当x=﹣1时,y=6.则解之得∴一次函数解析式为:y=﹣2x+4.(2)一次函数图象与y轴、x轴分别相交于A、B两点,由y=﹣2x+4,得A点坐标(0,4),B点坐标(2,0),即OA=4,OB=2.∴S△AOB===4.即一次函数图象与两坐标轴围成的面积为4.四.应用题(每小题8分,共16分)23.(8分)2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5~60.5160.0860.5~70.5400.270.5~80.5500.2580.5~90.5m0.3590.5~100.524n(1)这次抽取了200名学生的竞赛成绩进行统计,其中:m=70,n=0.12;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?【解答】解:(1)16÷0.08=200,m=200×0.35=70,n=24÷200=0.12;故答案为200,70;0.12;(2)如图,(3)1500×(0.08+0.2)=420,所以该校安全意识不强的学生约有420人.24.(8分)为全面落实乡村振兴总要求,充分发扬“为民服务孺子牛”“创新发展拓荒牛”“艰苦奋斗老黄牛”精神,某镇政府计划在该镇试种植苹果树和桔子树共100棵.已知平均每棵果树的投入成本和产量如表所示,且苹果的售价为10元/kg,桔子的售价为6元/kg.成本(元/棵)产量(kg/棵)苹果树12030桔子树8025设种植苹果树x棵.(1)若种植苹果树和桔子树共获利y元,求y与x之间的函数关系式;(2)若种植苹果树45棵,求种植苹果树和桔子树共获利多少元?【解答】解:(1)由题意,得种植桔子树(100﹣x)棵,∴y=(30×10﹣120)x+(25×6﹣80)(100﹣x)=180x﹣70(100﹣x)=110x+7000(0≤x≤100);即y与x之间的函数关系式为:y=110x+7000(0≤x≤100);(2)当x=45时,y=110×45+7000=11950,答:若种植苹果树45棵,求种植苹果树和桔子树共获利11950元.五、综合探究题(10分)25.(10分)如图所示,O为ABC的边AC上一动点,过点O的直线MN∥BC,设MN分别交∠ACB的平分线及其外角平分线于点E、F.(1)求证:OE=OF;(2)当点O在何处时,四边形AECF是矩形?(3)在(2)的条件下,请在△ABC中添加条件,使四边形AECF变为正方形,并说明你的理由.【解答】(1)证明:∵MN∥BC,∴∠OEC=∠BCE,∵CE平分∠ACB,∴∠BCE=∠OCE,∴∠OEC=∠OCE,∴EO=CO,同理:FO=CO,∴EO=FO;(2)解:当点O运动到AC的中点时,四边形CEAF是矩形.理由如下:由(1)得:EO=FO,又∵O是AC的中点,∴AO=CO,∴四边形CEAF是平行四边形,∵EO=FO=CO,∴EO=FO=AO=CO,∴EF=AC,∴四边形CEAF是矩形;(3)解:当点O运动到AC的中点时,且△ABC中满足∠ACB为直角时,四边形AECF 是正方形.理由如下:∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,∵MN∥BC,∠ACB=90°,∴∠AOE=∠ACB=90°,∴AC⊥EF,∴四边形AECF是正方形.。
八年级下册数学期末试卷注意事项:1.本试卷满分150分,考试用时120分钟.2.答题前,考生务必将班级、姓名、考试号等填写在答题卷相应的位置上. 3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效. 一、选择题(每小题3分,共24分.每题有且只有一个答案正确) 1.若53=b a ,则b b a +的值是 ( ▲ )A .53B .58C .85D .232. 如图,天平右盘中的每个砝码的质量都是1克, 则物体A 的质量m 克的取值范围表示在数轴上 为 ( ▲ )A. B. C. D.3. 下列命题中,有几个真命题 ( ▲ ) ①同位角相等 ②直角三角形的两个锐角互余 ③平行四边形的对角线互相平分且相等 ④对顶角相等A. 1个 B . 2个 C. 3个 D. 4个 4. 若反比例函数xm y 2+=的图象在各个象限内y 随着x 的增大而增大,则m 的取值范围是( ▲ ) A .2-<mB .2->mC .2<mD .2>m5. 在一个不透明的盒子里有形状、大小完全相同的黄球2个、红球3个、白球4个,从盒子里任意摸出1个球,摸到红球的概率是 ( ▲ )A.92 B. 94 C. 32 D. 31 6. 如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC 相似的是 ( ▲ )A .B .C .D .ABC7. 如果不等式组⎩⎨⎧≥<m x x 5有解,那么m 的取值范围是 ( ▲ ) A .5>m B. 5<m C.5≥m D. 5≤m8. 如图,在矩形ABCD 中,AB =4cm ,AD =12cm ,点P 在AD 边上以每秒l cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返..运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在这段时间内,线段PQ 有多少次平行于AB ? ( ▲ )A .1B .2C .3D .4二、填空题(每小题3分,共30分)将答案填写在题中横线上. 9.当m = ▲ 时,分式22m m --的值为零. 10. 命题“全等三角形的面积相等”的逆命题是 ▲11.在比例尺为1∶1 00 000的地图上,量得甲、乙两地的距离是15cm ,则两地的实际距离 ▲ km .12. 如图是一种贝壳的俯视图,点C 分线段AB 近似于黄金分割(AC > BC ).已知AB =10cm ,则AC 的长约为 ▲ cm .(结果精确到0.1cm )13. 扬州市义务教育学业质量监测实施方案如下:3、4、5年级在语文、数学、英语3个科目中各抽1个科目进行测试,各年级测试科目不同.对于4年级学生,抽到数学科目的概率为 ▲ .14. 如图,使△AOB ∽△COD ,则还需添加一个条件是: ▲ (写一个即可)ODCBA第12题图 第14题图15. 若关于x 的分式方程xm x x -=--525无解,则m 的值为____▲_____16. 如图,△ABC 中,∠B =90°,AB =6,BC =8,将△ABC 沿DE 折叠,使点C 落在AB •边上的C ′处,并且C ′D ∥BC ,则CD 的长是 ▲17. 某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个.设A 型包装箱每个可以装x 件文具,根据题意列方程为 ▲ .18. 如图,双曲线2(0)y x x=>经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC的面积是 ▲三、解答题(本大题10小题,共96分)解答应写出文字说明、证明过程或演算步骤. 19.(本题满分8分)(1)解不等式,并把解集表示在数轴上 (2)解分式方程 242x x +>-211x x x-=-20.(本题满分8分)先化简:1)111(2-÷-+x xx ,再选择一个恰当的x 值代入并求值. 21.(本题满分8分)如图,已知D E 、分别是△ABC 的边AC AB 、上的点,若55A ∠=︒,85C ∠=︒, 40ADE ∠=︒.(1)请说明:△ADE ∽△ABC ;(2)若8,6,10AD AE BE ===,求AC 的长.22.(本题满分8分)如图,点D ,E 在△ABC 的边BC 上, 连接AD ,AE . ①AB =AC ;②AD =AE ;③BD =CE .以 此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答) ;(2)请选择一个真命题进行证明(先写出所选命题,然后证明).ED CB AEDCBA第16题图 第18题图23.(本题满分10分)如图,在单位长度为1的方格 纸中.ABC △如图所示:(1)请在方格纸上建立平面直角坐标系,使(0,0)A ,(4,4)C -并求出B 点坐标( , ); (2)以点A 为位似中心,位似比为1:2,在第一,二象限内将ABC △缩小,画出缩小后的位似图形A B C '''△; (3)计算A B C '''△的面积S24.(本题满分10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌.(1)用树状图或列表的方法计算两次摸取纸牌上数字之积为奇数的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之积为奇数,则甲胜;如果两次摸出纸牌上数字之积为偶数,则乙胜。
八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。
CBA2015—2016学年第二学期初二期末试卷数 学学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C .6D .74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CDAB CP第13题图第14题图第8题图第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S(单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米10.如右图,矩形ABCD中,AB=2,BC=4,P为矩形边上的一个动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以A,P,B为顶点的三角形面积为y,则下列图象能大致反映y与x的函数关系的是()二、填空题(本题共18分,每小题3分)11.如图,点D,E分别为△ABC的边AB,BC的中点,若DE=3cm,则AC=cm.12.已知一次函数2()y m x m=++,若y随x的增大而增大,则m的取值范围是.13.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ACD ∽△ABC(只填一个即可).14.如图,在□ABCD中,BC=5,AB=3,BE平分∠ABC交AD于点E,交对角线AC于点F,则AEFCBFSS△△= .DAB CFE DB CAEDAB CSt/平方米/小时16060421ODAFE CB第15题图15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在 BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEFCD A B20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F .(1)求证:△CDE ∽△CBF ;(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?y x (元)(度)400120240216B AOEDAFB CEDBAC图1 图225.已知正方形ABCD 中,点M 是边CB (或CB 的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N .(1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————ADB C MADBCM y x1A BHO2015—2016学年第二学期期末试卷 初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分) 题号 123456 7 8 9 10 答案C A B AD BDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分OFE CADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---=Q △(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分 ∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分21FECADByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x =⋯⋯⋯5分即:3CD =∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AB∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2 ⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.640021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩ ⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.EDBAC25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥ ∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形654321EN AD B CMNADB CMyy = -x+33)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分 260m m +-3=2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1∴232m m m =-+-260m m +-7= 1261m m ==, 经检验,1261m m ==,是方程232m m m=-+-的解 ∵点P (m ,-m +3)在第四象限∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分 综上所述,满足条件的点P 的坐标为P (6,-3).yx y = -x+3E D P (m ,-m +3)O。
2015-2016学年某某省某某市东平县八年级(下)期末数学试卷一、选择题(共20小题,每小题3分,满分60分)1.下列图形是中心对称而不是轴对称的是()A.B.C.D.2.下列各式中正确的是()A. =±5 B.± =±6 C. =10 D. =﹣3 3.在实数3.1415926,,,1.010010001…,,π,4.中,无理数有()A.4个B.3个C.2个D.1个4.a,b都是实数,且a<b,则下列不等式的变形正确的是()A.a+x>b+x B.﹣a+1<﹣b+1 C.3a<3b D.>5.对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y的值随x值的增大而增大6.已知三角形三条边的长度分别是:①1,,;②2,3,4;③3n,4n,5n(n>0);④32,42,52.其中一定能构成直角三角形的有()A.1组B.2组C.3组D.4组7.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中四边形的三个角都为直角8.的结果是()A.﹣3 B.9 C.3 D.﹣99.若代数式有意义,则实数x的取值X围是()A.x≥﹣1且x≠﹣3 B.x≥﹣1 C.x>﹣1 D.x>﹣1且x≠3 10.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形11.三角形DEF是由三角形ABC平移得到的,点A(﹣1,﹣4)的对应点为D(1,﹣1),则点B(1,1)的对应点E,点C(﹣1,4)的对应点F的坐标分别为()A.B.C.D.12.如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()A.B.C.D.13.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3 B.3.514.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s 与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4 B.3 C.2 D.115.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD,BD,则下列结论:①AD=BC=CE;②BD,AC互相平分;③四边形ACED是菱形;④四边形ABED的面积为AB2.其中正确的个数是()A.4个B.3个C.2个D.1个16.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.1417.大明眼镜店的某种近视镜,进价每副800元,零售价每副1200元.六一儿童节期间,该店经理对学生开展优惠活动,但利润仍不低于5%,那么学生购买价格最多打()A.6折B.7折C.8折D.9折18.如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于E,若∠CAE=15°,则∠BOE=()A.30°B.45°C.60°D.75°19.如图在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是()A.30 B.12 C.24 D.620.如图,观察图象,判断下列说法错误的是()A.方程组的解是B.不等式﹣x+≤2x﹣1的解集是x≥1C.不等式﹣x+>2x﹣1的解集是x>1D.方程=2x﹣1的解是x=1二、填空题(本大题共有4小题,每小题3分,共12分)21.已知:|a+2|+=0,则a b=.22.若不等式组的解集是x>3,则m的取值X围是.23.如图所示,△A′B′C′是由△ABC向右平移5个单位长度,然后绕B点逆时针旋转90°得到的(其中A′、B′、C′的对应点分别是A、B、C),点A′的坐标是(4,4)点B′的坐标是(1,1),则点A的坐标是.24.如图,螺旋形是由一系列等腰直角三角形组成的,其序号依次为①②③④⑤…,若第1个等腰直角三角形的直角边为1,则第2016个等腰直角三角形的面积为.三、解答题(本大题共有5小题,共48分)25.计算:(1)(2+)2016(2﹣)2016﹣2×|﹣|﹣(﹣)0﹣÷﹣;(2)解不等式组:,并判断x=是否为不等式组的解.26.一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?27.如图,已知点D是等边三角形ABC外的一点,将△BCD绕点C顺时针旋转至△ACE处.(1)求旋转角的度数;(2)求∠BDC的度数;(3)证明:AD=BD+CD.28.直线y=x+8与x轴、y轴分别交于点A和D点B,M是OB上的一点,如果将△ABM沿直线AM折叠,点B恰好落在x轴上的点N处,求:(1)点N的坐标;(2)直线AM的函数表达式.29.如图,已知正方形ABCD,E为AD的中点,连接BE和EC,BE交AC于点P,连接DP,交CE于Q.求证:(1)△ABP≌△ADP;(2)DP⊥CE.2015-2016学年某某省某某市东平县八年级(下)期末数学试卷参考答案与试题解析一、选择题(共20小题,每小题3分,满分60分)1.下列图形是中心对称而不是轴对称的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,也是中心对称图形;B、是轴对称图形,也是中心对称图形;C、不是轴对称图形,是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列各式中正确的是()A. =±5 B.± =±6 C. =10 D. =﹣3 【考点】算术平方根;平方根.【分析】依据平方根、算术平方根的定义和性质求解即可.【解答】解:A、=5,故A错误;B、±=±6,故B正确;C、负数没有算术平方根,故C错误;D、==3,故D错误.故选:B.【点评】本题主要考查的是平方根、算术平方根的定义和性质,掌握相关性质是解题的关键.3.在实数3.1415926,,,1.010010001…,,π,4.中,无理数有()A.4个B.3个C.2个D.1个【考点】无理数.【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数,;(3)含有π的绝大部分数.【解答】解:3.1415926是有限小数,是有理数,开放开不尽是无理数,=3,是有理数,1.010010001…是无限不循环小时,是无理数,是有理数;π是无理数;4.是无限循环小数,是有理数.故选:B.【点评】本题主要考查的是无理数的认识,掌握常见无理数的类型是解题的关键.4.a,b都是实数,且a<b,则下列不等式的变形正确的是()A.a+x>b+x B.﹣a+1<﹣b+1 C.3a<3b D.>【考点】不等式的性质.【分析】根据不等式的性质1,可判断A,根据不等式的性质3、1可判断B,根据不等式的性质2,可判断C、D.【解答】解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;B、不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确;D、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故D错误;故选:C.【点评】本题考查了不等式的性质,不等式的两边都乘或除以同一个负数,不等号的方向改变.5.对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y的值随x值的增大而增大【考点】一次函数的性质.【分析】根据一次比例函数图象的性质可知.【解答】解:A、将点(﹣1,3)代入原函数,得y=﹣3×(﹣1)+1=4≠3,故A错误;B、因为k=﹣3<0,b=1>0,所以图象经过一、二、四象限,y随x的增大而减小,故B,D 错误;C、当x>1时,函数图象在第四象限,故y<0,故C正确;故选C.【点评】本题考查的是一次函数的性质,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.6.已知三角形三条边的长度分别是:①1,,;②2,3,4;③3n,4n,5n(n>0);④32,42,52.其中一定能构成直角三角形的有()A.1组B.2组C.3组D.4组【考点】勾股定理的逆定理.【分析】先求得三边的平方,再验证两小边的平方和等于最长边的平方即可.【解答】解:①12+()2=()2,故是直角三角形,正确;②22+32≠42,故不是直角三角形,错误;③(3n)2+(4n)2=(5n)2,故是直角三角形,正确;④(32)2+(42)2≠(52)2,故不是直角三角形,错误.故选B.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中四边形的三个角都为直角【考点】矩形的判定.【分析】根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.【解答】解:A、对角线是否相互平分,能判定平行四边形;B、两组对边是否分别相等,能判定平行四边形;C、一组对角是否都为直角,不能判定形状;D、其中四边形中三个角都为直角,能判定矩形.故选D.【点评】本题考查的是矩形的判定定理,难度简单.8.的结果是()A.﹣3 B.9 C.3 D.﹣9【考点】二次根式的性质与化简.【分析】根据=|a|计算即可.【解答】解: =|﹣3|=3.故选C.【点评】本题考查了二次根式的性质与化简: =|a|.9.若代数式有意义,则实数x的取值X围是()A.x≥﹣1且x≠﹣3 B.x≥﹣1 C.x>﹣1 D.x>﹣1且x≠3 【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件和分式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+1≥0,x+3≠0,解得,x≥﹣1且x≠﹣3,故选:A.【点评】本题考查的是二次根式有意义的条件和分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.10.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形【考点】中点四边形.【分析】首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:D.【点评】本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.11.三角形DEF是由三角形ABC平移得到的,点A(﹣1,﹣4)的对应点为D(1,﹣1),则点B(1,1)的对应点E,点C(﹣1,4)的对应点F的坐标分别为()A.B.C.D.【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:点A的对应点D,是横坐标从﹣1到1,说明是向右移动了1﹣(﹣1)=2个单位,纵坐标是从﹣4到﹣1,说明是向上移动了﹣1﹣(﹣4)=3个单位,那么其余两点移运转规律也如此,即横坐标都加2,纵坐标都加3.故点E、F的坐标为(3,4)、(1,7).故选D.【点评】本题考查了平移中点的变化规律,横坐标右移加,左移减;纵坐标上移加,下移减.左右移动改变点的横坐标,上下移动改变点的纵坐标.12.如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()A.B.C.D.【考点】一次函数与二元一次方程(组).【分析】根据图象求出交点P的坐标,根据点P的坐标即可得出答案.【解答】解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(﹣2,3),∴方程组的解是,故选A.【点评】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.13.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3 B.3.5【考点】线段垂直平分线的性质;勾股定理;矩形的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.【解答】解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.14.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s 与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4 B.3 C.2 D.1【考点】一次函数的应用.【分析】根据题意结合横纵坐标的意义得出辆摩托车的速度进而分别分析得出答案.【解答】解:由图象可得:出发1小时,甲、乙在途中相遇,故①正确;甲骑摩托车的速度为:120÷3=40(千米/小时),设乙开汽车的速度为a千米/小时,则,解得:a=80,∴乙开汽车的速度为80千米/小时,∴甲的速度是乙速度的一半,故④正确;∴×(80﹣40)=60(千米),故②正确;乙到达终点所用的时间为1.5小时,甲得到终点所用的时间为3小时,故③错误;∴正确的有3个,故选:B.【点评】此题主要考查了一次函数的应用,读函数的图象时首先要理解横纵坐标表示的含义是解题关键.15.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD,BD,则下列结论:①AD=BC=CE;②BD,AC互相平分;③四边形ACED是菱形;④四边形ABED的面积为AB2.其中正确的个数是()A.4个B.3个C.2个D.1个【考点】菱形的判定;全等三角形的判定与性质;等边三角形的性质;平移的性质.【分析】根据平移的定义可知AB=CD,AB∥CD推出四边形ABCD是平行四边形,同理可知四边形ACED是平行四边形由此即可解决问题.【解答】解:∵△DCE是由△ABC平移得到,∴AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∴AD=BC=CE,BD与AC互相平分,故①②正确,∵AD∥CE,AD=CE,∴四边形ACED是平行四边形,∵AC=CE,∴四边形ACED是菱形,故③正确,∵四边形ABED的面积=3S△ABC=3×(AB)2=(AB)2,故④正确,∴①②③④正确,故选A.【点评】本题考查菱形的判定、等边三角形的性质、平移等知识,解题的关键是利用平移不变性解决问题,记住菱形的判定方法,属于中考常考题型.16.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质;直角三角形斜边上的中线;三角形中位线定理.【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选:A.【点评】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.17.大明眼镜店的某种近视镜,进价每副800元,零售价每副1200元.六一儿童节期间,该店经理对学生开展优惠活动,但利润仍不低于5%,那么学生购买价格最多打()A.6折B.7折C.8折D.9折【考点】一元一次不等式的应用.【分析】设打x折,利用销售价减进价等于利润得到1200﹣800≥800×5%,然后解不等式求出x的X围,从而得到x的最小值即可.【解答】解:设打x折,根据题意得1200﹣800≥800×5%,解得x≥7.所以最低可打七折.故选B.【点评】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.注意打x折时,标价要乘0.1x为销售价.18.如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于E,若∠CAE=15°,则∠BOE=()A.30°B.45°C.60°D.75°【考点】矩形的性质;平行线的性质;三角形内角和定理;角平分线的性质;等腰三角形的判定;等边三角形的判定与性质.【分析】由矩形ABCD,得到OA=OB,根据AE平分∠BAD,得到等边三角形OAB,推出AB=OB,求出∠OAB、∠OBC的度数,根据平行线的性质和等角对等边得到OB=BE,根据三角形的内角和定理即可求出答案.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,∴OA=OB,∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°=∠AEB,∴AB=BE,∵∠CAE=15°,∴∠DAC=45°﹣15°=30°,∠BAC=60°,∴△BAO是等边三角形,∴AB=OB,∠ABO=60°,∴∠OBC=90°﹣60°=30°,∵AB=OB=BE,∴∠BOE=∠BEO=(180°﹣30°)=75°.故选D.【点评】本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,平行线的性质,角平分线的性质,等腰三角形的判定等知识点,解此题的关键是求出∠OBC的度数和求OB=BE.19.如图在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是()A.30 B.12 C.24 D.6【考点】等腰三角形的性质.【分析】由图形知,本图是轴对称图形,对称轴是AD所在的直线.所以阴影部分的面积为全面积的一半,由轴对称图形的性质知,BD=BC=3,AD是三角形的高,AD=4,S△ABC=12,从而得到阴影部分的面积为6.【解答】解:∵AB=AC∵△ABC是等腰三角形AD为等腰三角形的中线∴AD⊥BC∴△ABD、△ACD关于AD对称,△BEF与△CEF关于AD对称∵AB=AC,AD===4∴S△DFB=S△DFC,S△EBF=S△ECF,S△BE=S△ACE∴S阴=S△ABC=×BC×AD==6.故选D.【点评】本题通过观察可以发现是轴对称图形,且阴影部分的面积为全面积的一半,根据轴对称图形的性质求解.其中看出三角形BEF与三角形CEF关于AD对称,面积相等是解决本题的关键.20.如图,观察图象,判断下列说法错误的是()A.方程组的解是B.不等式﹣x+≤2x﹣1的解集是x≥1C.不等式﹣x+>2x﹣1的解集是x>1D.方程=2x﹣1的解是x=1【考点】一次函数与一元一次不等式;一次函数与二元一次方程(组).【分析】根据函数图象,利用函数与方程,不等式的关系即可求解.【解答】解:A、B、D正确;C、不等式﹣x+>2x﹣1的解集是:x<1.∴不等式﹣x+>2x﹣1的解集是x>1的说法错误,故选C.【点评】本题要求利用图象求解各问题,先画函数图象,根据图象观察,得出结论.认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.二、填空题(本大题共有4小题,每小题3分,共12分)21.已知:|a+2|+=0,则a b= ﹣8 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+2=0,3﹣b=0,解得a=﹣2,b=3,所以,a b=(﹣2)3=﹣8.故答案为:﹣8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.22.若不等式组的解集是x>3,则m的取值X围是m≤3 .【考点】不等式的解集.【分析】根据“同大取较大”的法则进行解答即可.【解答】解:∵不等式组的解集是x>3,∴m≤3.故答案为:m≤3.【点评】本题考查的是不等式的解集,熟知“同大取较大”的法则是解答此题的关键.23.如图所示,△A′B′C′是由△ABC向右平移5个单位长度,然后绕B点逆时针旋转90°得到的(其中A′、B′、C′的对应点分别是A、B、C),点A′的坐标是(4,4)点B′的坐标是(1,1),则点A的坐标是(﹣1,﹣2).【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【分析】△A′B′C′是由△ABC向右平移5个单位长度,然后绕B′点逆时针旋转90°得到的,则△ABC可以看成由△A′B′C′绕点B顺时针旋转90°,然后向左平移5个单位长度而得到点A的坐标.【解答】解:把点(4,4)绕点B顺时针旋转90°,然后向左平移5个单位长度而得到点的坐标是(﹣1,﹣2).【点评】运用逆向思维的方法,解题更方便且易于理解.24.如图,螺旋形是由一系列等腰直角三角形组成的,其序号依次为①②③④⑤…,若第1个等腰直角三角形的直角边为1,则第2016个等腰直角三角形的面积为22014.【考点】等腰直角三角形;规律型:图形的变化类.【分析】分别写出几个直角三角形的直角边的长,找到规律,从而写出第2016个等腰三角形的直角边的长,从而求得直角三角形的面积即可.【解答】解:第①个直角三角形的边长为1=()0,第②个直角三角形的边长为=()1,第③个直角三角形的边长为2=()2,第④个直角三角形的边长为2=()3,…第2016个直角三角形的边长为()2015,面积为:×()2015×()2015=22014.故答案为:22014.【点评】此题考查了等腰三角形及图形的变化类问题,要结合图形熟练运用勾股定理计算几个具体值,从中发现规律.三、解答题(本大题共有5小题,共48分)25.计算:(1)(2+)2016(2﹣)2016﹣2×|﹣|﹣(﹣)0﹣÷﹣;(2)解不等式组:,并判断x=是否为不等式组的解.【考点】二次根式的混合运算;零指数幂;解一元一次不等式组.【分析】(1)根据平方差公式、零指数幂、二次根式的除法和合并同类项可以解答本题;(2)先求出不等式组的解集,即可判断x=是否为不等式组的解.【解答】解:(1)(2+)2016(2﹣)2016﹣2×|﹣|﹣(﹣)0﹣÷﹣=﹣2×﹣1﹣﹣3=1﹣﹣1﹣﹣3=﹣;(2),解不等式①,得x<4,解不等式②,得x≤1,故原不等式组的解集是x≤1,∵,故x=不是不等式组的解.【点评】本题考查二次根式的混合运算、零指数幂、解一元一次不等式组,解题的关键是明确它们各自的计算方法.26.一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?【考点】一元一次不等式的应用.【分析】(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果乙店盈利×x;列出函数解析式利用函数性质求得答案即可.【解答】解:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17(10﹣x)+9(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).【点评】此题考查一元一次不等式的运用,一次函数的实际运用,找出题目蕴含的不等关系与等量关系解决问题.27.如图,已知点D是等边三角形ABC外的一点,将△BCD绕点C顺时针旋转至△ACE处.(1)求旋转角的度数;(2)求∠BDC的度数;(3)证明:AD=BD+CD.【考点】三角形综合题.【分析】(1)根据旋转角的定义,∠BCA计算旋转角,由此即可解决问题.(2)先证明△DCE是等边三角形,推出∠DEC=60°,∠AEC=120°,再根据全等三角形性质∠BDC=∠AEC,由此即可解决问题.(3)根据AD=AE+ED,只要证明AE=BD,DE=CD即可.【解答】解:(1)∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,∵△ACE是由△BCD旋转得到,∴∠BCA就是旋转角,∴旋转角为60°.(2)∵△ACE是由△BCD旋转得到,∴∠DCE=∠BCA=60°,∠BDC=∠AEC,∵CD=CE,∴△CDE是等边三角形,∴∠DEC=60°,∠AEC=180°﹣∠DEC=120°,∴∠BDC=120°.(3)∵△BCD≌△ACE,△DEC是等边三角形,∴AE=BD,DE=CD,∵AD=AE+DE,∴AD=BD+CD.【点评】本题考查三角形综合题、等边三角形的判定和性质、全等三角形的性质、旋转变换等知识,解题的关键是充分利用旋转不变性解决问题,发现△DEC是等边三角形是解题的突破口,属于中考常考题型.28.直线y=x+8与x轴、y轴分别交于点A和D点B,M是OB上的一点,如果将△ABM沿直线AM折叠,点B恰好落在x轴上的点N处,求:(1)点N的坐标;(2)直线AM的函数表达式.【考点】翻折变换(折叠问题);待定系数法求一次函数解析式.【分析】(1)由△ABM沿AM折叠,点B恰好落在x轴上的N处得到AB=AN,而AB的长度根据已知可以求出,所以N点的坐标由此求出;(2)由于折叠得到NM=BM,在直角△NMO中根据勾股定理可以求出OM,也就求出M的坐标,而A的坐标已知,由此即可求出直线AM的解析式.【解答】解:(1)∵直线y=与x轴、y轴分别交于A和B,∴A(﹣6,0)、B(0,8),∴OA=6,OB=8,∴AB=10,而△ABM沿AM折叠,点B恰好落在x轴上的C处∴AB=AN=10,∴N(4,0);(2)设M(0,b),则NM=BM=8﹣b,∵NM2=NO2+OM2,∴b=3,∴M(0,3),而A(﹣6,0),设直线AM的解析式为y=kx+b(k≠0),,解得,∴直线AM的解析式为:y=x+3.【点评】本题综合考查了一次函数图象和性质与几何知识的应用,题中利用折叠知识与直线的关系以及直角三角形等知识求出线段的长是解题的关键.29.如图,已知正方形ABCD,E为AD的中点,连接BE和EC,BE交AC于点P,连接DP,交CE于Q.求证:(1)△ABP≌△ADP;(2)DP⊥CE.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)利用“SAA”即可证明△ABP≌△ADP;(2)若要证明DP⊥CE,则问题可转化为证明∠EQD=90°即可.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠BAP=∠DAP=45°,在△ABP和△ADP中,,∴△ABP≌△ADP;(2)∵E为AD的中点,∴AE=DE,。
2015年八年级数学(下)期末考试卷考试时间:120分钟 总分:120分 命题:Mr. Xiong 一、选择题 (10×3′=30分)1、已知a<b 且ab ≠0,化简二次根式b a 3-的正确结果是( ) A. -a ab - B.-a ab C.a ab D.a ab -2、三角形的三边长a 、b 、c ,由下列条件不能判断它是直角三角形的是( ) A. a:b:c=7:16:14 B.222c b a =-C.2a =(b+c)(b-c)D.a:b:c=15:9:123、如图,在矩形纸片ABCD 中,AB=5CM ,BC=10CM ,CD 上有一点E ,ED=2cm ,AD 上有一点P ,PD=3cm ,过点P 作PF ⊥AD ,交BC 于点F ,将纸片折叠,使点P 与点E 重合,折痕与PF 交于点Q ,则PQ 的长是( ). A.413 cm B.3cm C.2cm D.27cm 4、5、已知a-b=2+3,b-c=3-2,则ac bc ab c b a ---++222的值为( ) A 、310 B 、123 C 、10 D 、156、数据10,10,x ,8的众数与平均数相同,那么这组数的中位数是()A .10 B .8C .12D .47、已知每一个小时有一列速度相同的动车从甲地开往乙地,图中OA 、MN 分别是第一列动车和第二列动车离甲地的路程S (km )与运行时间t (h )的函数图象,折线DB ﹣BC是一列从乙地开往甲地速度为100km/h 的普通快车距甲地的路程S (km )与运行时间t (h )的函数图象.以下说法错误的是( )第3题8、已知一次函数y=(2k-1)x-k 的图像不经过第一象限,则k 的取值范围是( )A. 21 kB. 0<k<21C. 0≤k<21D. 0≤k ≤219、如图所示,一个圆柱高为8cm ,底面圆的半径为5cm ,则从圆柱左下角A 点出发.沿圆柱体表面到右上角B 点的最短路程为( )A .B.C.D .以上都不对10、如图所示.直线y=x+2与y 轴相交于点A ,OB 1=OA ,以OB 1为底边作等腰三角形A 1OB 1,顶点A 1在直线y=x+2上,△A 1OB 1记作第一个等腰三角形;然后过B 1作平行于OA 1的直线B 1A 2与直线y=x+2相交于点A 2,再以B 1A 2为腰作等腰三角形A 2B 1B 2,记作第二个等腰三角形;同样过B 2作平行于OA 1的直线B 2A 3与直钱y=x+2相交于点A 3,再以B 2A 3为腰作等腰三角形A 3B 2B 3,记作第三个等腰三角形;依此类推,则等腰三角形A 10B 9B 10的面积为( )A .3•48 B .3•49 C .3•410 D .3•411 二、填空题(每小题3分,共24分)11、已知2753n 是整数,则正整数n 的最小值是_____________.12、如图,正方形ABCD 的边长为4,点P 在DC 边上且DP=1,点Q 是AC 上一动点,则DQ+PQ 的最小值为______.A . 普通快车比第一列动车晚发车0.5hB . 普通快车比第一列动车晚到达终点1.5hC . 第二列动车出发后1h 与普通快车相遇D .普通快车与迎面的相邻两动车相遇的时间间隔为0.7h第7题第十题图13、如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴,y 轴上,顶点O 与原点O 重合连接AC ,将矩形纸片OABC 沿AC 折叠,使点B 落在D 的位置,若B (1, 2)则点D 的坐标为_____________.14、如图,直线y=kx+b 经过A (-1,2)、B (-2, 0)两点,则0≤kx+b ≤-2x 的解集是____________.15、若a ,b ,c ,是直角三角形的三条边长,斜边c 上的高的长是h ,给出下列结论:(1)以a 2,b 2,c 2的长为边的三条线段能组成一个三角形;(2)以,,的长为边的三条线段能组成一个三角形; (3)以a +b ,c +h ,h 的长为边的三条线段能组成直角三角形;(4)以,,的长为边的三条线段能组成直角三角形;(5)以,,的长为边的三条线段能组成直角三角形.其中正确结论的序号为________.16、甲、乙、丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.设甲丙交手a 局,乙丙交手b 局,甲乙交手c 局,则4a ﹣1+b ﹣2c 0=________,a-2, b-15, c-5三数的方差为________.17、一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A=30°,∠B=90°,BC=8米.当正方形DEFH 运动到什么位置,即当AE=________米时,有222BC AE DC +=.18、小王、小阳两人同时从甲、乙两地出发相向而行,小王先到达乙地后原地休息,她们二人的距离y (km )与步行的时间x (h )之间的函数关系的图像如图所示,则直线AB 的解析式为______________________. 三、解答题(共66分) 19、(6分)计算x x xx x 23)3221286÷+-(20、如图,三角形ABC 为等边三角形,D 、F 分别为BC 、AC 上的一点,且CD=BF,以AD 为边作等边三角形ADE 。
求证:四边形CDEF 为平行四边形。
(6分)21、(6分)化简1)12122(2222+÷+----+x xx x x x x x x 并解答(1)当x=1+2时,求原代数式的值。
(2)原代数式的值能等于-1吗?为什么?22、(8分)有一块直角三角形的绿地,量得两直角边长分别为BC=6m ,AC=8m . (1)求AB 的长;(2)现在要将直角三角形绿地扩充成等腰三角形绿地,且扩充部分是以AC 为直角边的直角三角形,求扩充后等腰三角形绿地的周长.第22题图23、我市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a ,b .(9分)队别 平均分 中位数 方差 合格率 优秀率七年级6.7 m 3.41 90%n 八年级7.1 7.5 1.69 80% 10% (1)请依据图表中的数据,求a ,b 的值; (2)直接写出表中的m ,n 的值;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.第23题图24、如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(9分)(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.第24题图25、(10分)为改善生态环境,防止水土流失,某村计划在江汉堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:甲林场乙林场购树苗数量销售单价购树苗数量销售单价4元/棵不超过1000棵时4元/棵不超过2000棵时超过1000棵的部分 3.8元/棵超过2000棵3.6元/棵的部分设购买白杨树苗x棵,到两家林场购买所需费用分别为y甲(元)、y乙(元).(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为元,若都在乙林场购买所需费用为元;(2)分别求出y甲、y乙与x之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?26、(12分)如图①所示,直线L:5=+与x轴负半轴、y轴正半轴分别交于A、y mx mB两点。
(1)当OA=OB时,试确定直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,BN=3,求MN的长。
(3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。
问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。
2015年八年级数学(下)期末考试卷答案 一选择题1~5:AAACD 6~10:ADCBB 二填空题11.6 12.5 13.⎪⎭⎫ ⎝⎛5653-, 14.-2≤x ≤-1 15.②③⑤ 16.12,314 17.849 18. y=3x(4.8≤x ≤8) 三解答题 19.23 20.略 21. (1)化简结果11-+x x ,值为12+;(2)当11-+x x =-1时,x=0 经检验当x=0时,原分式无意义,故原代数式的值不能为-1. 22. (1)10m (2)周长为 32m ,(5420+)m,380m 23. (1)a=5, b=1 (2)m=6, n=20% (3)①八年级队平均分高于七年级队;②八年级队的成绩比七年级队稳定。
24. (1)略 (2)四边形BECD 是菱形;(3)当∠A=45º时,四边形BECD 是正方形。
25. (1)5900元, 6000元(2)⎩⎨⎧>+≤≤=为整数)且(为整数)且甲x x x x x x 10002008.310000(4y(3)当0≦x ≦1000或x=3000时,到两林场购买所需费用一样;当1000<x <3000时,到甲林场购买合算; 当X >3000时,到乙林场购买合算。
26. (1)y=x+5(2) MN=7(3) PB 的长是定值, PB=25。
⎩⎨⎧>+≤≤=为整数)且(为整数)且(乙x x x x x x y 20008006.3200004。