MOP多目标规划
- 格式:docx
- 大小:36.42 KB
- 文档页数:3
多目标遗传算法里面的专业名词1.多目标优化问题(Multi-Objective Optimization Problem, MOP):是指优化问题具有多个相互冲突的目标函数,需要在不同目标之间找到平衡和妥协的解决方案。
2. Pareto最优解(Pareto Optimal Solution):指对于多目标优化问题,一个解被称为Pareto最优解,如果不存在其他解能在所有目标上取得更好的结果而不使得任何一个目标的结果变差。
3. Pareto最优集(Pareto Optimal Set):是指所有Pareto最优解的集合,也称为Pareto前沿(Pareto Front)。
4.个体(Domain):在遗传算法中,个体通常表示为一个潜在解决问题的候选方案。
在多目标遗传算法中,每个个体会被赋予多个目标值。
5.非支配排序(Non-Dominated Sorting):是多目标遗传算法中一种常用的个体排序方法,该方法将个体根据其在多个目标空间内的优劣程度进行排序。
6.多目标遗传算法(Multi-Objective Genetic Algorithm, MOGA):是一种专门用于解决多目标优化问题的遗传算法。
它通过模拟生物遗传和进化的过程,不断地进化种群中的个体,以便找到多个目标下的最优解。
7.多目标优化(Multi-Objective Optimization):是指优化问题具有多个目标函数或者多个约束条件,需要在各个目标之间取得平衡,找到最优的解决方案。
8.自适应权重法(Adaptive Weighting):是一种多目标遗传算法中常用的方法,用于动态调整不同目标之间的权重,以便在不同的阶段能够更好地搜索到Pareto前沿的解。
9.支配关系(Dominance Relation):在多目标优化问题中,一个解支配另一个解,指的是在所有目标上都至少不差于另一个解,并且在某个目标上能取得更好的结果。
多目标规划模型及其在生产优化中的应用随着科技的不断进步,企业在生产的过程中需要考虑的因素也越来越多,例如成本、质量、效率、环保等多个方面。
这些因素不仅对企业的发展起到了决定性的作用,而且对于整个行业的发展也具有重要意义。
因此,在这个时代,如何能够完成多目标规划,对于企业的生产优化是非常重要的。
本文将从多目标规划模型及其在生产优化中的应用方面进行探讨。
一、多目标规划模型的概述多目标规划(multi-objective programming,MOP)是指在满足多个目标的基础上,寻求最优方案的一种决策方法。
多目标规划模型是通过建立目标函数,对每个目标进行评价和权衡,从而实现多目标的决策优化模型。
多目标规划模型可以被用来解决许多现实生产和决策问题,例如资源配置问题、供应链管理问题、营销决策问题、风险管理和环境保护问题等等。
在这些问题中,优化目标多个,且有时目标之间存在着矛盾性,因此需要采用多目标规划模型来解决。
二、多目标规划模型在生产优化中的应用1. 降低成本和提高质量对于一个企业来说,成本和质量是两个非常重要的因素。
如何同时降低成本和提高质量成为了企业的一个难题。
多目标规划模型可以帮助企业在进行生产决策时,考虑多个目标,实现成本和质量的平衡。
在多目标规划模型中,建立成本和质量的目标函数,对企业的各项指标进行量化和分析,然后对目标函数进行加权,最终得到最优方案。
通过这种方式,企业可以在不降低产品质量的条件下,实现成本的降低,从而提高企业的效益。
2. 提高生产效率和降低能耗随着市场竞争的加剧,企业需要不断提高生产效率,从而降低成本,并提高企业的竞争力。
另一方面,环境保护也成为了现代企业生产的一个必须考虑的因素。
多目标规划模型可以在生产过程中,同时考虑生产效率和能耗,实现生产的可持续发展。
在多目标规划模型中,建立生产效率和能耗的目标函数,评估企业的各项指标,加权得到最优方案。
通过这种方式,企业可以在提高生产效率的同时,降低能耗,实现生产效率与环境保护的双赢。
多目标规划的原理和多目标规划是一种优化方法,用于解决同时存在多个目标函数的问题。
与单目标规划不同,多目标规划的目标函数不再是单一的优化目标,而是包含多个决策者所关心的目标。
目标函数之间可能存在冲突和矛盾,因此需要找到一个平衡点,使得各个目标都能得到满意的结果。
1.目标函数的建立:多目标规划需要明确各个决策者所关心的目标,并将其转化为数学模型的形式。
目标函数可以是线性的、非线性的,也可以包含约束条件。
2.解集的定义:解集是指满足所有约束条件的解的集合。
在多目标规划中,解集通常是一组解的集合,而不再是单个的最优解。
解集可以是有限的或无限的,可以是离散的或连续的。
3.最优解的确定:多目标规划中的最优解不再是唯一的,而是一组解的集合,称为非劣解集。
非劣解集是指在所有目标函数下都没有其他解比其更好的解。
要确定最优解,需要考虑非劣解集中的解之间的关系,即解集中的解是否有可比性。
4.解的评价:首先需要定义一种评价指标来比较不同解之间的优劣。
常用的方法有加权法、广义距离法、灰色关联法等。
评价指标的选择应该能够反映出决策者对不同目标的重视程度。
5. Pareto最优解:对于一个多目标规划问题,如果存在一组解,使得在任意一个目标函数下都没有其他解比其更好,那么这组解就被称为Pareto最优解。
Pareto最优解是解集中最为重要的解,决策者可以从中选择出最佳的解。
6.决策者的偏好:在实际应用中,决策者对不同目标的偏好有时会发生变化。
因此,多目标规划需要考虑决策者的偏好信息,并根据偏好信息对解集进行调整和筛选。
多目标规划在解决实际问题中具有广泛的应用,尤其在决策支持系统领域发挥了重要作用。
它不仅能够提供一组有竞争力的解供决策者参考,还能够帮助决策者更好地理解问题的本质和各个目标之间的权衡关系。
多目标规划既可以应用于工程、经济、管理等领域的决策问题,也可以用于社会、环境等领域的问题求解。
总之,多目标规划通过将多个目标函数集成为一个数学模型,寻找一组最佳的解集,从而在多个目标之间实现平衡和协调。
多目标规划
多目标规划是一种管理和决策方法,用于解决具有多个竞争目标的问题。
在日常生活和商业环境中,我们常常面临多个目标的冲突和权衡,面临难以做出有效决策的情况。
多目标规划通过将多个目标和约束条件转换为数学模型,帮助决策者找到最优的解决方案。
多目标规划的基本思想是将多个目标转化为一个目标函数,然后通过优化算法求解这个目标函数的最优解。
在多目标规划中,每个目标对应着一个权重,决策者可以根据实际需求和优先级为每个目标分配不同的权重。
优化算法会考虑各个目标的权重,尽量减小目标函数的值。
多目标规划的优势在于它能够同时优化多个目标,避免了单一目标规划的片面性。
它能够帮助管理者在多个目标之间进行权衡,找到最合理的解决方案。
例如,一个公司希望在降低成本的同时提高产品质量,采用多目标规划可以帮助公司找到一个平衡点,实现成本和质量的最优化。
多目标规划还可以应用于各种复杂的决策问题,如资源分配、供应链管理、生产计划等。
在资源分配问题中,多目标规划可以考虑到多个资源的利用效率和经济性,从而提高整体资源利用率。
在供应链管理中,多目标规划可以考虑到多个目标,如减少库存成本、提高交付效率和降低物流成本等,从而优化供应链的绩效。
多目标规划方法有许多不同的求解算法,如线性加权法、加权
规范化法、最坏目标法等。
不同的算法适用于不同的问题,可以根据实际情况和具体需求选择合适的方法。
总而言之,多目标规划是一种强大的管理和决策工具,能够帮助决策者在多个目标之间进行权衡和平衡,找到最优的解决方案。
它可以应用于各种不同的领域和问题,帮助解决现实生活和商业环境中的复杂决策问题。
多目标优化的求解方法多目标优化(MOP)就是数学规划的一个重要分支,就是多于一个的数值目标函数在给定区域上的最优化问题。
多目标优化问题的数学形式可以描述为如下:多目标优化方法本质就是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
目前主要有以下方法:(1)评价函数法。
常用的方法有:线性加权与法、极大极小法、理想点法。
评价函数法的实质就是通过构造评价函数式把多目标转化为单目标。
(2)交互规划法。
不直接使用评价函数的表达式,而就是使决策者参与到求解过程,控制优化的进行过程,使分析与决策交替进行,这种方法称为交互规划法。
常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权与法等。
(3)分层求解法。
按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。
而这些主要就是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法与蚁群算法、模拟退火算法及人工免疫系统等。
在工程应用、生产管理以及国防建设等实际问题中很多优化问题都就是多目标优化问题, 它的应用很广泛。
1)物资调运车辆路径问题某部门要将几个仓库里的物资调拨到其她若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少与总的运输费用最低, 这就是含有两个目标的优化问题。
利用首次适配递减算法与标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。
2)设计如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就就是一个含有四个目标的最优化问题。
Jo等人将遗传算法与有限元模拟软件结合应用于汽车零件多工序冷挤压工艺的优化。
多目标规划有关函数介绍多目标规划(Multi-Objective Programming,MOP)是一种在优化问题中同时优化多个目标函数的数学规划方法。
它与传统的单目标规划(Single-Objective Programming,SOP)方法相比,具有更高的复杂性和难度。
多目标规划的发展可以追溯到20世纪60年代,目前已经成为优化领域的重要研究领域之一、本文将介绍多目标规划中常用的几种函数及其特点。
1. 加权和函数(Weighted Sum Function)加权和函数是多目标规划中最简单和最常用的函数之一、它将多个目标函数按照一定的权重进行加权求和,得到一个综合的目标函数。
加权和函数的数学表示如下:f(x) = ∑(wi * fi(x))其中,f(x)是综合的目标函数,wi是权重系数,fi(x)是第i个目标函数。
加权和函数的特点是容易理解和计算,但存在一个重要的缺点:它偏向于解决具有明确优先级的目标。
因为加权和函数要求设定各个目标函数的权重,而这种权重的设定通常是主观的,因此,加权和函数在处理多目标问题时可能存在一定的偏向性。
2. 目标规则函数(Objective Rule Function)目标规则函数是一种将目标函数转换为约束条件的函数。
它通过将目标函数分别与一组规则进行比较,将满足规则的解视为可行解,进而将优化问题转化为一个带有约束的求解问题。
目标规则函数的数学表示如下:G(x) = (∑(max(0, fi(x) - τi))^2其中,G(x)是目标规则函数,fi(x)是第i个目标函数,τi是规则中的阈值。
目标规则函数的优点是能够帮助用户将优化问题转化为一个有约束的求解问题,从而减少了问题求解的复杂性。
但是,目标规则函数具有确定性和二值化的特性,因此可能会导致信息的丢失和解的不准确。
3. 基因函数(Genetic Function)基因函数是多目标规划中常用的一种函数,它基于遗传算法(Genetic Algorithm,GA),通过模拟自然界中的进化过程,不断演化出较好的解。
遗传算法求解多目标优化问题随着科技的发展和社会的进步,人们对各种问题的优化需求越来越高。
在现实生活中,我们常常面临多个目标之间的冲突,需要找到一种解决方案,能够在多个目标之间取得平衡。
在这种情况下,多目标优化问题应运而生。
多目标优化问题(Multi-Objective Optimization Problem,简称MOP)是指在具有多个冲突目标的复杂系统中寻找最优解的问题。
解决MOP问题的方法有很多种,其中一种被广泛应用的方法就是遗传算法。
遗传算法是一个基于自然进化过程的优化算法,通过模拟自然进化的过程来搜索最优解。
它将问题的解表示为一个个体(也称为染色体),通过交叉和变异等遗传操作产生下一代的个体,不断迭代,最终找到较好的解。
在使用遗传算法求解多目标优化问题时,需要采取一些特定的策略和算子来克服多目标之间的冲突。
下面我将介绍一些常见的策略和算子。
第一,适应度函数的设计。
在单目标优化问题中,适应度函数往往只有一个目标。
而在多目标优化问题中,适应度函数需要同时考虑多个目标的性能。
常用的适应度函数设计方法有线性加权和Chebyshev方法。
线性加权方法将各个目标按一定权重加权求和,而Chebyshev方法则选取各个目标值中最大的值作为适应度值。
第二,选择操作的策略。
在遗传算法中,选择操作是保留适应度较高的个体,淘汰适应度较低的个体。
针对多目标优化问题,常用的选择操作策略有非支配排序和拥挤度算子。
非支配排序方法将个体划分为不同的层级,每一层级的个体相对于其他层级的个体来说都是非支配的。
拥挤度算子则是通过计算个体在解空间中的密度来保留具有多样性的解。
第三,交叉和变异操作的设计。
在多目标优化问题中,交叉和变异操作需要保证生成的新个体能够在多个目标之间取得平衡。
常用的交叉操作有模拟二进制交叉(SBX)和离散型交叉。
SBX方法通过对父代染色体的值进行交叉,产生子代染色体的值。
离散型交叉则从父代染色体中随机选择一个目标值来构建子代染色体。
多目标优化的求解方法多目标优化(MOP)是数学规划的一个重要分支,是多于一个的数值目标函数在给定区域上的最优化问题。
多目标优化问题的数学形式可以描述为如下:多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
目前主要有以下方法:(1)评价函数法。
常用的方法有:线性加权和法、极大极小法、理想点法。
评价函数法的实质是通过构造评价函数式把多目标转化为单目标。
(2)交互规划法。
不直接使用评价函数的表达式,而是使决策者参与到求解过程,控制优化的进行过程,使分析和决策交替进行,这种方法称为交互规划法。
常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权和法等。
(3)分层求解法。
按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。
而这些主要是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法和蚁群算法、模拟退火算法及人工免疫系统等。
在工程应用、生产管理以及国防建设等实际问题中很多优化问题都是多目标优化问题, 它的应用很广泛。
1)物资调运车辆路径问题某部门要将几个仓库里的物资调拨到其他若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少和总的运输费用最低, 这是含有两个目标的优化问题。
利用首次适配递减算法和标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。
2)设计如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就是一个含有四个目标的最优化问题。
Jo等人将遗传算法与有限元模拟软件结合应用于汽车零件多工序冷挤压工艺的优化。
多目标规划求解方法介绍多目标规划(multi-objective programming,也称为多目标优化)是数学规划的一个分支,用于处理具有多个冲突目标的问题。
在多目标规划中,需要找到一组解决方案,它们同时最小化(或最大化)多个冲突的目标函数。
多目标规划已经在许多领域得到了应用,如工程、管理、金融等。
下面将介绍几种常见的多目标规划求解方法。
1. 加权和法(Weighted Sum Method):加权和法是最简单和最直接的多目标规划求解方法。
将多个目标函数通过赋予不同的权重进行加权求和,得到一个单目标函数。
然后使用传统的单目标规划方法求解该单目标函数,得到一个最优解。
然而,由于加权和法只能得到权衡过的解,不能找到所有的非劣解(即没有其他解比它更好),因此它在解决多目标规划问题中存在局限性。
2. 约束方法(Constraint Method):约束方法是将多目标规划问题转化为一系列带有约束条件的单目标规划问题。
通过引入额外的约束条件,限制目标函数之间的关系,使得求解过程产生多个解。
然后使用传统的单目标规划方法求解这些带有约束条件的问题,得到一组最优解。
约束方法可以找到非劣解集合,但问题在于如何选择合适的约束条件。
3. 目标规划算法(Goal Programming Algorithms):目标规划算法是特别针对多目标规划问题设计的一类算法。
它通过将多个目标函数转化为约束关系,建立目标规划模型。
目标规划算法可以根据问题的不同特点选择相应的求解方法,如分解法、交互法、加权法等。
这些方法与约束方法相似,但比约束方法更加灵活,能够处理更加复杂的问题。
4. 遗传算法(Genetic Algorithms):遗传算法是一种启发式的优化方法,也可以用于解决多目标规划问题。
它模仿自然界中的进化过程,通过不断地进化和迭代,从初始种群中找到优秀的个体,产生一个适应度高的种群。
在多目标规划中,遗传算法通过构建适应度函数来度量解的好坏,并使用交叉、变异等操作来产生新的解。
基于多目标规划的物流配送路径优化设计随着物流行业的不断发展,越来越多的企业开始重视物流配送路线的优化设计。
针对物流配送路线的优化问题,多目标规划便是一种非常有效的解决方案。
本文将从多目标规划的概念入手,探讨多目标规划在物流配送路径优化设计中的应用。
一、多目标规划的概念多目标规划,简称MOP(Multi-objective programming),是指在一个约束条件下,同时优化多个目标指标的一种数学规划方法。
与传统的单目标规划相比,多目标规划要求同时考虑并解决多个目标的冲突问题,更符合实际情况下实际需求。
二、多目标规划在物流配送路径优化设计中的应用物流配送路径优化设计中的目标指标往往不止一项,如避免拥堵、提高运输效率、降低配送成本等。
传统的优化方法通常只能满足其中一种或几种指标,不能兼顾多个指标的要求。
而多目标规划则可以同时考虑多个指标,对于决策者来说,能够提供更加全面的决策信息,揭示不同目标之间的权衡关系,选择出一个更加符合实际情况的最优方案。
以某物流企业为例,在进行路径优化设计时,往往需要考虑以下几个目标指标:1.最短运输路线:目的是为了让货物尽快到达目的地,减少运输时间,提高运输效率。
2.避免拥堵:目的是为了避免车辆在路上建议拥堵,减少行驶时间和油耗,降低配送成本。
3.最小化运输成本:目的是在满足上述目标的情况下,尽可能地降低配送成本,提高企业的经济效益。
如果只考虑单一目标,可能会出现这样的情况:将运输路线设定为最短路线,但是这条路线经过一个拥堵路段,导致运输时间增加,运输效率降低,甚至可能产生滞销问题,影响客户满意度和企业的经济效益。
如果使用多目标规划就可以避免这些问题,通过比较不同目标间的权重,综合考虑各个指标的作用,找出一条既避免拥堵、又能够在规定时间内将货物送达的最佳配送路径。
这样一来,就能够使企业在提高配送效率、降低配送成本和保护客户利益等方面达到更好的平衡。
三、多目标规划在物流配送路径优化设计中的实现方法1.把多个目标指标转化为数学模型:通过对各个指标的定义和要求,将其转化为数学模型,可以为实现多目标规划提供依据。
多目标规划教材简介多目标规划是一种在决策问题中同时考虑多个目标的优化方法。
在实际生活和工作中,我们经常会遇到需要在多个目标之间进行权衡和取舍的情况。
多目标规划通过将目标设置为一个优化问题的一部分,帮助决策者在各种不确定因素和限制条件下做出更科学、更合理的决策。
本教材将介绍多目标规划的基本概念、常用方法和应用案例,旨在帮助读者快速了解和掌握多目标规划的基本原理和应用技巧。
目录1.多目标规划概述2.多目标规划基本概念3.多目标规划求解方法1.加权和方法2.线性加权和方法3.Pareto优化方法4.扩展Pareto优化方法4.多目标规划应用案例1.生产配置的多目标优化2.项目投资的多目标决策3.能源系统的多目标优化5.多目标规划在实践中的挑战6.结语1. 多目标规划概述在日常生活和工作中,我们常常需要在多个目标之间做出决策。
比如,一个公司在制定生产计划时既要考虑生产成本,又要考虑产品质量和交货时间;一个投资者在选择投资项目时既要考虑投资收益,又要考虑投资风险和投资期限。
这些决策问题都存在多个目标,并且这些目标之间可能存在矛盾和冲突。
多目标规划是一种在这种情况下进行决策的优化方法。
它通过将多个目标设置为一个优化问题的一部分,将多目标问题转化为单目标问题求解。
多目标规划不仅能够帮助决策者进行各种不确定因素和限制条件下的决策,还能够提供一系列备选方案,以便决策者选择最优解。
2. 多目标规划基本概念多目标规划涉及一些基本概念和术语,下面是一些常用的概念:•目标函数:多目标规划的目标函数是待优化的函数,通常包含多个变量和目标。
目标函数的具体形式取决于具体的问题。
•可行解:满足约束条件的解称为可行解。
多目标规划的目标是找到一组可行解中的最优解。
•支配关系:多目标规划中的支配关系是指一个解在所有目标上优于另一个解。
一个解支配另一个解意味着它在所有目标上都比另一个解好。
•Pareto最优解:一个解在不被其他解支配的情况下被称为Pareto最优解。
多目标规划模型多目标规划模型是一种决策模型,用于解决具有多个目标的问题。
在现实生活中,许多问题往往涉及到多个决策目标,这些目标可能相互矛盾或相互关联。
例如,企业在生产过程中可能既希望降低成本,又希望提高产品质量;政府在制定经济政策时可能要考虑到经济增长、就业率和环境保护等多个方面的目标。
多目标规划模型的目标是找到一个可行解,使得所有目标都能达到一定的水平,同时尽量使各个目标之间的矛盾最小化。
为了达到这个目标,多目标规划模型通常涉及到寻找一系列最优解的问题。
多目标规划模型可以用以下形式表示:Minimize f(x) = (f1(x), f2(x), ..., fn(x))subject toh1(x) <= 0,h2(x) <= 0,...hm(x) <= 0,g1(x) = 0,g2(x) = 0,...gp(x) = 0,lb <= x <= ub.其中,f(x) = (f1(x), f2(x), ..., fn(x))是一个向量函数,表示多个决策目标,h(x) = (h1(x), h2(x), ..., hm(x))表示多个约束条件(不等式约束),g(x) = (g1(x), g2(x), ..., gp(x))表示多个约束条件(等式约束),x是决策变量的向量,lb和ub是决策变量的上下界。
多目标规划模型的求解过程通常涉及到权衡各个目标之间的重要性,设计一个适当的加权函数来对不同目标进行权重分配。
然后,可以利用优化算法进行求解。
常见的多目标优化算法包括线性规划(LP)、混合整数线性规划(MILP)、非线性规划(NLP)和遗传算法等。
多目标规划模型的应用非常广泛。
例如,在供应链管理中,企业需要同时考虑库存成本、运输成本和供货可靠性等多个目标;在金融投资中,投资者需要同时考虑风险和收益等多个目标;在城市规划中,政府需要同时考虑经济发展、环境保护和社会福利等多个目标。
第10章 多目标规划简介§10.1 基本概念与术语10.1.1 模型举例例1(物资调运优化): 假设物资调度部门计划将某种物资从若干个储存仓库,调运到若干个销售网点。
考虑到物资的时效性和销售效益,调度部门希望物资在运输过程中尽可能快地到达目的地;考虑到运输的成本,调度部门还希望物资的总运输费用最小。
假设m 个仓库的物资库存量为1a ,…,m a (单位:t);n 个销售网点预计销售量为1b ,…,n b (单位:t)。
仓库i 与销售网点j 之间的路程为ij d (单位:km),单位物资的运费为ij c (元)。
用物资吨公里总数来衡量物资的运输品质,吨公里总数最小意味着有适量的物资尽可能快地到达目的地。
记从仓库i 到销售网点j 运送的物资量为ij x 。
目标函数:(1)物资在运输过程中的吨公里总数为∑∑ijijij x d(2)物资运输费用总和为∑∑ijijij xc约束条件为产销平衡条件:i jija x=∑ j iij b x =∑优化问题模型:nj m i x nj b x mi a x x c x d ij j iij i jij i j ij ij i j ij ij ,,1 ,,,1 ,0 ,,1 , ,,1 , s.t.min ==≥====⎪⎪⎪⎭⎫⎝⎛∑∑∑∑∑∑多目标规划(MOP )问题描述:)3( ,0)( )2( ,0)( s.t.)1( ))(,),(),(()( min 21E j x h I i x g x f x f x f x f j i T p ∈=∈≥= )(x f 称为向量值目标函数。
变量可行域记为}32|{)()满足(-∈=x R x S nS 的像集)(S f Z =称为目标可行域,Z 中的元素)(x f z =称为目标向量。
如果不指明约束函数的具体形式,多目标规划问题可以简记为)(min )MOP (x f V Sx ∈-若每个目标函数)(x f i 都是凸函数,并且可行域S 是凸集,则(MOP )称为多目标凸规划问题。
处理多目标规划的方法1.约束法 1.1原理约束法又称主要目标法,它根据问题的实际情况.确定一个目标为主要目标,而把其余目标作为次要目标,并根据决策者的经验给次要的目标选取一定的界限值,这样就可以把次要目标作为约束来处理,从而就将原有多目标规划问题转化为一个在新的约束下,求主要目标的单目标最优化问题。
假设在p 个目标中,()1f x 为主要目标,而对应于其余(p-1)个目标函数()i f x 均可以确定其允许的边界值:(),2,3,...,ii i af b i p ≤≤=x 。
这样我们就可以将这()1p -个目标函数当做最优化问题的约束来处理,于是多目标规划问题转化称为单目标规划问题SP 问题:公式1()()()1min s.t.0(1,2,...,)(2,3,...,)i j j j f g i m a f b j p ⎧⎪≥=⎨⎪≤≤=⎩x x x上述问题的可行域为()(){}|0,1,2,...,;,2,3,...,i j j j R g i m a f b j p '=≥=≤≤=x x x2.评价函数法其基本思想就是将多目标规划问题转化为一个单目标规划问题来求解,而且该单目标规划问题的目标函数是用多目标问题的各个目标函数构造出来的,称为评价函数,例如若原多目标规划问题的目标函数为F(x),则我们可以通过各种不同的方式构造评价函数h(F(x)),然后求解如下问题:()()min s.t.h R⎧⎪⎨∈⎪⎩F x x 求解上述问题之后,可以用上述问题的最优解x *作为多目标规划问题的最优解,正是由于可以用不同的方法来构造评价函数,因此有各种不同的评价函数方法,下面介绍几种常用的方法。
评价函数法中主要有:理想点法、平方和加权法、线性加权和法、乘除法、最大最小法2.1理想点法考虑多目标规划问题:()()V-mins.t.0(1,2,...,)i g i m ⎧⎨≥=⎩F x x ,首先分别求解p 个单目标规划问题:()()min(1,2,...,)s.t.0(1,2,...,)i j f i p g j m ⎧=⎪⎨≥=⎪⎩x x令各个问题的最优解为*(1,2,...,)ii p =x ,而其目标函数值可以表示为:()*min ,1,2,...,i i Rf f i p ∈==x x其中:(){}|0(1,2,...,)jR g j m =≥=x x一般来说,不可能所有的*(1,2,...,)ii p =x 均相同,故其最优值*(1,2,...,)i f i p =组成的向量0***12[]T pfff =F 并不属于多目标规划的象集,所以0F 是一个几乎不可能达到理想点。
基于分解的多目标优化算法多目标优化问题(MOP)的目标函数有两个或两个以上,其解通常是一组Pareto最优解。
采用传统的优化算法处理多目标优化问题时不能达到令人满意的效果。
文字研究基于分解的多目标进化算法(MOEA/D),该算法将一个多目标优化问题分解为一组单目标优化问题并对它们同时优化,通过利用与每一个子问题相邻的子问题的优化信息来优化它本身,比其他同类的优化算法具有更低的计算复杂度。
在0—1背包问题和连续的多目标优化问题上,利用一些简单的分解方法本算法就可以比MOGLS和NSGA-Ⅱ表现得更加出色或者表现相近,未来该算法具有较大的发展空间。
一、多目标优化问题溯源多目标优化问题首先由法国经济学家V.Pareto在研究经济平衡时提出,并且引进和推广了Pareto最优解。
多目标优化问题中的每个目标称为子目标。
各个子目标之间的相互影响和作用,使得对多目标优化时不仅仅是满足每个子目标的最优化条件,而且要满足子目标间相互关系的约束条件。
因为子目标间的关系也就是子目标约束条件往往是复杂的,有时甚至是相互矛盾的,所以多目标优化问题实质上是处理这种不确定的子目标约束条件。
Pareto最优解,也就是说找不到比这个更好的解了,使得至少有一个目标函数有提升。
也即找不到一个解使得每一个目标函数都比它更不糟糕的解。
而弱Pareto最优解是指不存在一个点使得每一个目标函数相对于现在这个点都有提升,即找不到一个解使得每个目标函数值都比它好。
所谓的目标优化问题,一般就是指通过一定的优化算法获得目标函数的最优化解。
当优化的目标函数为一个时称之为单目标优化,当优化的目标函数有两个或两个以上时称为多目标优化。
不同于单目标优化的解为有限解,多目标优化的解通常是一组均衡解。
显而易见,多目标优化问题比单目标优化问题更接近工程实践,同时更加复杂。
很多工程实践中的优化问题最后都可以转化为多目标优化问题,因此,对多目标优化问题的深入研究对于实践应用更具价值。
多目标规划
multiple objectives programming
数学规划的一个分支。
研究多于一个目标函数在给定区域上的最优化。
又称多目标最优化。
通常记为VMP。
在很多实际问题中,例如经济、管理、军事、科学和工程设计等领域,衡量一个方案的好坏往往难以用一个指标来判断,而需要用多个目标来比较,而这些目标有时不甚协调,甚至是矛盾的。
因此有许多学者致力于这方面的研究。
1896年法国经济学家V.帕雷托最早研究不可比较目标的优化问题,之后,J.冯·诺伊曼、H.W.库恩、A.W.塔克尔、A.M.日夫里翁等数学家做了深入的探讨,但是尚未有一个完全令人满意的定义。
求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标或双目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
对多目标的线性规划除以上方法外还可以适当修正单纯形法来求解;还有一种称为层次分析法,是由美国运筹学家沙旦于70年代提出的,这是一种定性与定量相结合的多目标决策与分析方法,对于目标结构复杂且缺乏必要的数据的情况更为实用。
1947年,J.冯·诺伊曼和O.莫根施特恩从对策论的角度提出了有多个决策者在彼此有矛盾的情况下的多目标问题。
1951年,T.C.库普曼斯从生产和分配的活动中提出多目标最优化问题,引入有效解的概念,并得到一些基本结果。
同年,H.W.库恩和A.W.塔克尔从研究数学规划的角度提出向量极值问题,引入库恩-塔克尔有效解概念,并研究了它的必要和充分条件。
1963年,L.A.扎德从控制论方面提出多指标最优化问题,也给出了一些基本结果。
1968年,A.M.日夫里翁为了排除变态的有效解,引进了真有效解概念,并得到了有关的结果。
自70年代以来,多目标规划的研究越来越受到人们的重视。
至今关于多目标最优解尚无一种完全令人满意的定义,所以在理论上多目标规划仍处于发展阶段。
化多为少
即把多目标规划问题归为单目标的数学规划(线性规划或非线性规划)问题进行求解,即所谓标量化的方法,这是基本的算法之一。
①线性加权和法对于多目标规划问题(VMP),先选取向量
要求λi>0(i=1,2,…,m)
作各目标线性加权和
然后求解单目标数学规划问题。
λ的各个分量λi(i=1,2,…,m)通常叫做权系数。
它的大小反映了各相应分目标在问题中的重要程度。
一般,对权系数的不同选取,可以得到问题(VMP)的不同的有效解或弱有效解。
如何选取权系数,对于不同的问题可以有不同的处理方法。
线性规划
经济学家帕雷托
线性规划
上述偏差中,p的不同取值代表了不同意义的偏差。
当取p=2,λi=1(i=1,2,…,m),则偏差就为距离多目标规划多目标规划。
这种情形,理想点法也叫做最短距离法。