北师大版八年级数学上册 第一章 勾股定理 单元练习试题 含答案
- 格式:doc
- 大小:194.50 KB
- 文档页数:15
第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、若,,为的三边长,则下列条件中不能判定是直角三角形的是()A. ,,B.C.D.2、如图,矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2,则矩形的面积为()A. B.2 C.4 D.3、如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cmB.12cmC.16cmD.20cm4、如图,O是正内一点,,,,将线段BO以点B为旋转中心逆时针旋转得到线段,下列五个结论中,其中正确的结论是()可以由绕点B逆时针旋转得到;点O与的距离为4;;;.A. B. C. D.5、如图:图形A的面积是()A.225B.144C.81D.无法确定6、如图,一个小球沿倾斜角为的斜坡向下滚动,经过5秒时,测得小球的平均速度为米秒.已知,则小球下降的高度是()A.1米B.1.5米C.2米D.2.5米7、用圆心角为120°,半径为3 cm的扇形纸片卷成一个圆锥形无底纸冒(如图所示),则这个纸冒的高是()A.3 cmB.2 cmC.3 cmD.4 cm8、在Rt△ABC中,∠C=90°,AB=15,AC:BC=3:4,则这个直角三角形的面积是()A.24B.48C.54D.1089、如图,在△ABC中,AB=AC=5,P是BC边上除B、C点外的任意一点,则代数式AP2+PB•PC等于()A.25B.15C.20D.3010、如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,点M,N分别是AB,AC的中点,则线段MN长的最大值为()A.5B.C.5D.11、在直角坐标系中,点P(-2,3)到原点的距离是( )A. B. C. D.212、如图所示,点B,D在数轴上,OB=3,OD=BC=1,∠OBC=90°,以D为圆心,DC长为半径画弧,与数轴正半轴交于点A,则点A表示的实数是()A. B. 1 C. 1 D.不能确定13、如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b>a)拼接在一起,则四边形ABCD的面积为()A.b 2+(b﹣a)2B.b 2+a 2C.(b+a)2D.a 2+2ab14、如图,在矩形中,,,过对角线交点作交于点,交于点,则的长是( )A.1B.C.2D.15、如图,将等腰直角三角形()沿折叠,使点落在边的中点处,,那么线段的长度为()A.5B.4C.4. 25D.二、填空题(共10题,共计30分)16、如图,等边的边与轴交于点,点是反比例函数图像上一点,若为边的三等分点时,则等边的边长为________.17、如图,在△ABC中,AB=BC=6,AO=BO,P是射线CO上在AB下方的一个动点,∠AOC =45°.则当△PAB为直角三角形时,AP的长为________.18、如图,巳知AB是⊙O的一条直径,延长AB至C点,使得AC=3BC,CD与⊙O相切,切点为D.若CD= ,则线段BC的长度等于________.19、《九章算术》中有一个“折竹抵地”问题:“今有竹高九尺,末折抵地,去本三尺,问折者高几何?”意思是:现有竹子高9尺,折后竹尖抵地与竹子底部的距离为3尺,问折处高几尺?即:如图,AB+AC=9尺,BC=3尺,则AC=________尺.20、已知△ABC中,AB=5,AC=3,BC=4,P为边AB上一点,且△APC为等腰三角形,则CP 的长为________21、如图,已知菱形ABCD的周长为16,面积为8 ,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为________.22、如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要________cm.23、如图,线段AB=2,过点B作BD⊥AB,使BD= AB,连接AD,在AD上截取DE=DB.在AB上截取AC=AE.那么线段AC的长为________.24、在⊙O中,弦AB=24cm,圆心O到弦AB的距离为5cm,则⊙O的半径为________cm.25、如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA8的长度为________.三、解答题(共5题,共计25分)26、如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.求AB的长.27、如图,在平面直角坐标系xOy中,点A、B坐标分别为(4,2)、(0,2),线段CD 在于x轴上,CD=,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D随着点C同时同速同方向运动,过点D作x轴的垂线交线段AB于点E、交OA于点G,连结CE交OA于点F.设运动时间为t,当E点到达A点时,停止所有运动.(1)求线段CE的长;(2)记S为RtΔCDE与ΔABO的重叠部分面积,试写出S关于t的函数关系式及t的取值范围;(3)连结DF,①当t取何值时,有DF=CD?②直接写出ΔCDF的外接圆与OA相切时t的值.28、在Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,点P为BC边上一点,把△PBD沿PD翻折,点B落在点E处,设PE交AC于F,连接CD(1)求证:△PCF的周长=CD;(2)设DE交AC于G,若, CD=6,求FG的长29、将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B (0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S= 时,求点M的坐标(直接写出结果即可).30、如图,AB是的直径,弦于点E,若,,求的长.参考答案一、单选题(共15题,共计45分)1、D2、A3、D4、C5、C6、B7、B8、C9、A10、D11、B12、C13、A14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)28、29、30、。
第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、分别以下列四组数为一个三角形的边长:(1)6,8,10,;(2)5,12,13;(3)8,15,17;(4)4,5,6,其中能构成直角三角形的有 ( )A.4组B.3组C.2组D.1组2、下列判断中正确的有()个①直角三角形的两边为3和4,则第三边长为5②有一个内角等于其它两个内角和的三角形是直角三角形③若三角形的三边满足b2=a2﹣c2,则△ABC是直角三角形④若△ABC中,∠A:∠B:∠C=8:15:17,则△ABC是直角三角形A.1B.2C.3D.43、如图,等边三角形OAB的顶点O在坐标原点,顶点A在x轴上,OA=2,将等边三角形OAB绕原点顺时针旋转105°至OA′B′的位置,则点B′的坐标为()A.(,- )B.(- ,)C.(- , )D.(,- )4、四边形中,,则的值为()A.15B.C.D.205、如图,点C是线段AB上一点,分别以AC,BC为边在线段AB的同侧作等边△ACD和等边△BCE,连结DE,点F为DE的中点,连结CF.若AB=2a(a为常数,a>0),当点C在线段AB上运动时,线段CF的长度l的取值范围是()A. B. C. D.6、如图,平面直角坐标系中,与轴分别交于、两点,点的坐标为,.将沿着与轴平行的方向平移多少距离时与轴相切()A.1B.2C.3D.1或37、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A.斜边长为25B.三角形周长为25C.斜边长为5D.三角形面积为208、如图,已知在4 4的网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则cos∠CAB的值为()A. B. C. D.9、一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4B.8C.10D.1210、在中,若,,,则下列结论正确的是()A. B. C. D. 不是直角三角形11、直角三角形三边的长分别为3、4、x,则x可能取的值为()A.5B.C.5或D.不能确定12、如图,将半径为4cm的圆折叠后圆弧正好经过圆心,问折痕长()A. cmB. cmC. cmD. cm13、如图,有一块直角三角形纸片,两直角边分别为AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于( )A.2cmB.3cmC.4cmD.5cm14、⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4B.6C.7D.815、如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()7二、填空题(共10题,共计30分)16、如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是________.17、如图为某楼梯的侧面,测得楼梯的斜长AB为5米,高BC为3米,计划在楼梯表面铺地毯,地毯的长度至少需要________米.18、如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C 恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H 处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG= S△FGH;④AG+DF=FG.其中正确的是________.(把所有正确结论的序号都选上)19、如图,已知A为⊙O外一点,连结OA交⊙O于P,AB为⊙O的切线,B为切点,AP=5㎝,AB=㎝,则劣弧与AB,AP所围成的阴影的面积是________.20、已知的三边长分别是,则的面积是________.21、如图,已知菱形ABCD中,∠BAD=120°,AD=8,则这个菱形的面积为________。
八年级数学上册第1章勾股定理单元检测试题班级:__________姓名:__________一、单选题(共10题;共30分)1.下列各组数中,能构成直角三角形的是()A. 4,5,6B. 6,8,11C. 1,1,D. 5,12,22.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A. 25B. 14,C. 7D. 7或253.已知a、b、c是三角形的三边长,如果满足(a-6)2+=0,则三角形的形状是( )A. 底与腰不相等的等腰三角形B. 等边三角形C. 钝角三角形D. 直角三角形4.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5m,消防车的云梯最大升长为13m,则云梯可以达到该建筑物的最大高度是()A. 12mB. 13mC. 14mD. 15m5.一块木板如图所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,木板的面积为()A. 60B. 30C. 24D. 126.如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的个数为()A. 1B. 2C. 3D. 47.一个三角形的三边的长分别是3、4、5,则这个三角形最长边上的高是()A. 4B.C.D.8.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A. 12B. 14C. 16D. 189.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A. 0B. 1C.D.10.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A. ∠A+∠B=∠CB. ∠A:∠B:∠C=1:2:3C. a2=c2﹣b2D. a:b:c=3:4:6二、填空题(共8题;共24分)11.如图为某楼梯的侧面,测得楼梯的斜长AB为13米,高BC为5米,计划在楼梯表面铺地毯,地毯的长度至少需要________米.12.在直角三角形ABC中,斜边AB=2,则AB2+AC2+BC2=________.13.一直角三角形的一条斜边和一直角边的长度分别是4和3,则它的另一直角边长是________.14.已知直角三角形的两边的长分别是3和4,则第三边长为________.15.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是________ .16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________17.要在一个长方体中放入一细直木条,现知长方体的长为2,宽为,高为,则放入木盒的细木条最大长度为________ .18.如图,一根旗杆在离地面9米处断裂,旗杆顶部落在离旗杆底部12米处,则旗杆折断之前有________米.三、解答题(共66分)19.已知:如图,在△ABC 中,∠C=90°,D 是BC 的中点,AB=10,A C=6.求AD 的长度.20.求如图的Rt△ABC的面积.21.如图,∠AOB=90°,OA=90cm,OB=30cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?22.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?23.铁路上A,B两站(视为直线上的两点)相距50km,C,D为两村庄(视为两个点),DA⊥AB于点A,CB⊥AB于点B(如图).已知DA=20km,CB=10km,现在要在铁路AB上建一个土特产收购站E,使得C,D 两村庄到收购站E的直线距离相等,请你设计出收购站的位置,并计算出收购站E到A站的距离.24.如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我国反走私A艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是13海里,A、B两艇的距离是5海里;反走私艇B 测得距离C艇12海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?25.已知在中,,,.(1)判断△ABC的形状,并说明理由;(2)试在下面的方格纸上补全△ABC,使它的顶点都在方格的顶点上。
第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,数轴上的点A表示的数是-1,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.2.8B. -C.D.2、如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若 AC=3,BC=4.则BD的长是()A.2B.3C.4D.53、如图,在四边形ABCD中,,,,.分别以点A,C为圆心,大于长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()4、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cmB.4cmC.5cmD.6cm5、如图,在平行四边形中,对角线与相交于点,则的长为()A.8B.4C.3D.56、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A. B. C. D.7、如图,已知正方形ABCD的边长为3,E为CD上一点,DE=1,以点A为中心,把△ADE 顺时针旋转90°得△ABE',连接EE',则EE'的长度为( )8、如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△=6+.其中正确的结论是()AOBA.①②③⑤B.①②③④C.①②③④⑤D.①②③9、下列四组数中,不能构成直角三角形边长的一组是( )A. B. C. D.10、如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则ΔCEF的周长等于A.8B.9.5C.10D.11.511、满足下列条件的,不是直角三角形的是()A. B. C.D.12、图1为一个长方体,AD=AB=10,AE=6,M,N为所在棱的中点,图2为图1的表面展开图,则图2中MN的长度为()A.11B.10C.10D.813、已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)﹣CD2,其中结论正确的个数是()A.1B.2C.3D.414、将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC 的长为()A. B.2 C.1.5 D.15、在直角三角形中,自锐角顶点引的两条中线为和,则这个直角三角形的斜边长是( )A.3B.2C.2D.6二、填空题(共10题,共计30分)16、《九章算术》是我国古代重要的数学著作之一,在“勾股”中记载了一道“折竹抵地”问题:“今有竹高一丈,未折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程求出AC的长为________.17、如图,正方形ABCD中,AB=2,对角线AC,BD相交于点O,将△OBC绕点B逆时针旋转得到△O′BC′,当射线O′C′经过点D时,线段DC′的长为________.18、在中,若,,,则________.19、如图,在矩形中,,,对角线相交于点O,点P为边上一动点,连接,以为折痕,将折叠,点A的对应点为点E,线段与相交于点F.若为直角三角形,则的长________.20、如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为________.21、在△ABC中,AB=4,AC=3,BC=5,则△ABC的面积是________.22、如图,平面直角坐标系内有一点A(3,4),O为坐标原点.点B在x轴上,若△AOB 为等腰三角形,则点B的坐标为________.23、如图,长方形ABCD中,AB=3,BC=4,点E是BC边上任一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处,当CE的长为________时,△CEB′恰好为直角三角形.24、在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(尺),中部一处折断,竹梢触地面处离竹根尺,试问折断处离地面________尺.25、在直角三角形ABC中,∠C=90º,如果c=13,a=5,那么b=________.三、解答题(共5题,共计25分)26、如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD,求AC 的长和cos∠ADC的值.27、如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,试求∠A的度数.28、已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.29、如图,学校有一块空地ABCD,准备种草皮绿化已知∠ADC=90°,AD=4米,CD=3米,AB=13米,BC=12米,求这块地的面积.30、如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,求树高AB多少米.(结果保留根号)参考答案一、单选题(共15题,共计45分)1、B2、A3、A4、C5、B6、B7、A8、A9、B10、A11、C12、A13、D14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
北师大版八年级数学上册第一章勾股定理单元测试题一、选择题(每小题4分,共40分)1.下列各组数分别为三角形三边的长,其中不能构成直角三角形的一组是(B) A.3,4,5 B.4,5,6C.34,54,1 D.9,12,152.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为圆心,以正方形的对角线为半径画弧交数轴正半轴于点A,则点A表示的数是(B)A.32B. 2C. 3 D.1.43.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8 cm,另一只朝左挖,每分钟挖6 cm,10分钟后,两只小鼹鼠相距(B)A.50 cm B.100 cmC.140 cm D.80 cm4.如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若AC=6,BC=8,则BD的长是(A)A.4B.5C.6D.75.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是(A) A.8 cm B.5 2 cmC.5.5 cm D.1 cm6.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为(C)A.4 B.6 C.16 D.557.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案.已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49;②x-y=2;③x+y=9;④2xy+4=49;其中说法正确的是(C)A.①② B.①②③C.①②④ D.①②③④8.小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5 m远的水底,竹竿高出水面0.5 m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为(A)A.2 m B.2.5 mC.2.25 m D.3 m9.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A 重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C 的长为(A)A.3 3 B.6 C.3 2 D.2110.(钦州中考)如图,6个边长为1的小正方形及其部分对角线所构成的图形中,如果从A 点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有(C)A.1种 B.2种 C.3种 D.4种二、填空题(每小题4分,共20分)11.在平面直角坐标系中,点A的坐标是(0,9),点B的坐标是(-12,0),则A,B两点间的距离是15.12.在Rt△ABC中,∠C=90°,周长为60 cm,且两直角边BC∶AC=5∶12,则△ABC的面积为120cm2.13.如图,在网格中,小正方形边长为a,则图中是直角三角形的是△ABC与△DEF.14.将一根长为25 cm的筷子置于底面直径为5 cm,高为12 cm的圆柱形水杯中,设筷子露在杯子外面的长为h cm,则h的取值范围是12≤h≤13.15.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于6或10.三、解答题(共40分)16.(8分)如图,在3×4正方形网格中,每个小正方形的边长都是1.(1)分别求出线段AB,CD的长度;(2)在图中画线段EF,使得EF的长为5,AB,CD,EF三条线段能否构成直角三角形,并说明理由.解:(1)AB=32+22=13;CD=22+22=2 2.(2)如图,EF =22+12=5, ∵CD 2+EF 2=8+5=13,AB 2=13, ∴CD 2+EF 2=AB 2.∴AB ,CD ,EF 三条线段可以组成直角三角形.17.(10分)如图,四边形ABCD 中,AB =1,BC =2,CD =2,AD =3,且AB ⊥BC.求证:AC ⊥CD.证明:由AB =1,BC =2,且AB ⊥BC ,得AC 2=AB 2+BC 2=5. 在△ACD 中,AD 2=32=9,AC 2+CD 2=5+22=9, ∴AC 2+CD 2=AD 2.∴△ACD 为直角三角形,∠ACD =90°. ∴AC ⊥CD. 18.(10分)如图,圆柱的底面周长为6 cm ,AC 是底面圆的直径,高BC =6 cm ,点P 是BC 上一点,且PC =23BC.一只蚂蚁从点A 出发沿着圆柱体的表面爬行到点P 的最短距离是多少?解:画侧面展开图,如图,因为圆柱的底面周长为6 cm , 所以展开图中AC =3 cm. 又因为PC =23BC ,所以PC =23×6=4(cm).在Rt △ACP 中,AP 2=AC 2+CP 2,得AP =5 cm. 所以蚂蚁爬行的最短距离是5 cm.19.(10分)如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,试证明:(1)△ACE ≌△BCD ; (2)AD 2+DB 2=DE 2.证明:(1)∵∠ACB =∠ECD =90°, ∴∠ACD +∠BCD =∠ACD +∠ACE , 即∠BCD =∠ACE.∵△ACB 和△ECD 都是等腰直角三角形, ∴BC =AC ,DC =EC. ∴△ACE ≌△BCD(SAS). (2)∵△ACB 是等腰直角三角形, ∴∠B =∠BAC =45°. ∵△ACE ≌△BCD , ∴∠CAE =∠B =45°.∴∠DAE=∠CAE+∠BAC=45°+45°=90°.∴AD2+AE2=DE2.∵△ACE≌△BCD,∴AE=DB.∴AD2+DB2=DE2.20.(10分)如图,在正方形ABCD纸片上有一点P,PA=1,PD=2,PC=3.现将△PCD剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合).求:(1)线段PG的长;(2)∠APD的度数.【解答】(1)根据题意可得△AGD≌△CPD,∴∠GDA=∠PDC.∵∠ADC=90°,∴∠GDP=90°.又∵GD=PD=2,∴PG=2 2.(2)∵AG=3,AP=1,(22)2+12=32,∴∠APG=90°.又由(1)可知△PDG是等腰直角三角形,∴∠GPD=45°,∴∠APD=135°.21、(12分)如图,在正方形ABCD中,E是BC中点,F在AB上,且AF∶FB=3∶1.(1)请判断EF与DE的位置关系,并说明理由;(2)若此正方形的面积为16,求DF的长.解:(1)EF 与DE 垂直,即EF ⊥DE.理由:设正方形边长为a , 则AD =DC =a ,AF =34a ,FB =14a ,BE =EC =12a.在Rt △DAF 中,DF 2=AD 2+AF 2=2516a 2.在Rt △CDE 中,DE 2=CD 2+CE 2=54a 2.在Rt △EFB 中,EF 2=FB 2+BE 2=516a 2.∵DE 2+EF 2=54a 2+516a 2=2516a 2=DF 2,∴△DFE 为直角三角形,∠DEF =90°.∴EF ⊥DE. (2)∵正方形的面积为16,∴a 2=16. ∵DF 2=2516a 2=2516×16=25,∴DF =5.。
第一章勾股定理单元测试卷一.选择题(共12小题)1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3B.4 C.2D.4(第1题) (第4题) (第5题)2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:63.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形4.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC 的长为()A.﹣1 B.+1 C.﹣1 D.+15.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.B.C.D.6.以下列各组线段为边长,能构成直角三角形的是()A.1,1,B.3,4,5 C.5,10,13 D.2,3,47.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.40海里D.50海里(第7题) (第9题) (第10题)8.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42 B.32 C.42或32 D.不能确定9.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,则这个直角三角形的面积为()A.3 B.6 C.D.10.如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.1011.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4、5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1、5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米(第11题) (第12题)12.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8cm,AC=17cm,AB=5cm,BD=10m,则C,D两辆车之间的距离为()A.5m B.4m C.3m D.2m二.填空题(共5小题)13.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△P AB为直角三角形时,AP的长为.(第13题) (第14题) (第15题) 14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米.15.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是.16.如图,四边形ABCD中,AD=3,CD=4,∠ABC=∠ACB=∠ADC=45°,则BD的长为.17.如果矩形的周长是14cm,相邻两边长之比为3:4,那么对角线长为cm.三.解答题(共5小题)18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?19.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?20.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,求线段AE的长.21.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线DE交AB于点E,连接CE.求证:BE2=AC2+AE2.22.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.参考答案一.选择题(共12小题)1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3B.4 C.2D.4【解答】解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故选A.2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:6【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选D.3.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.http://www、czsx、com、cn4.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC 的长为()A.﹣1 B.+1 C.﹣1 D.+1【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=5,在Rt△ADC中,DC===1,∴BC=+1.故选D.5.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A.B.C. D.【解答】解:△ABC的面积=×BC×AE=2,由勾股定理得,AC==,则××BD=2,解得BD=,故选:A.6.以下列各组线段为边长,能构成直角三角形的是()A.1,1,B.3,4,5 C.5,10,13 D.2,3,4【解答】解:A、12+12≠()2,不能构成直角三角形,故此选项错误;B、32+42=52,能构成直角三角形,故此选项正确;C、52+102≠132,不能构成直角三角形,故此选项错误;D、22+32≠42,不能构成直角三角形,故此选项错误.故选B.7.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.40海里D.50海里【解答】解:连接BC,由题意得:AC=16×2=32(海里),AB=12×2=24(海里),CB==40(海里),故选:C.8.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42 B.32 C.42或32 D.不能确定【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.综上所述,△ABC的周长是42或32.故选:C.9.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,则这个直角三角形的面积为()A.3 B.6 C.D.【解答】解:∵在Rt△ABC中,∠ACB=90°,AB=,BC=2,∴AC==3,∴这个直角三角形的面积=AC•BC=3,故选A.10.如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.10【解答】解:根据勾股定理可得a2+b2=17,四个直角三角形的面积是:ab×4=17﹣5=12,即:ab=6.故选:B.11.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4、5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1、5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米【解答】解:由题意可知.BE=CD=1、5m,AE=AB﹣BE=4、5﹣1、5=3m,BD=5m由勾股定理得CE==4m故离门4米远的地方,灯刚好打开,故选A.12.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8cm,AC=17cm,AB=5cm,BD=10m,则C,D两辆车之间的距离为()A.5m B.4m C.3m D.2m【解答】解:在RT△AOC中,∵OA2+OC2=AC2,∴OA===15(m),∴OB=0A+AB=20m,在RT△BOD中,∵BD2=OB2+OD2,∴OD===10(m),∴CD=OD﹣OC=2m,故选:D.二.填空题(共5小题)13.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△P AB为直角三角形时,AP的长为2或2.【解答】解:当∠APB=90°时,分两种情况讨论,情况一:如图1,∵AO=BO,∴PO=BO,∵∠AOC=120°,∴∠AOP=60°,∴△AOP为等边三角形,∴∠OAP=60°,∴∠∠PBA=30°,∴AP=AB=2;情况二:如图2,∵AO=BO,∠APB=90°,∴PO=BO,∵∠AOC=120°,∴∠BOP=60°,∴△BOP为等边三角形,∴∠OBP=60°,∴AP=AB•sin60°=4×=2;当∠BAP=90°时,如图3,∵∠AOC=120°,∴∠AOP=60°,∴AP=OA•tan∠AOP=2×=2.故答案为:2或2.14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯2米.【解答】解:在直角三角形AOB中,根据勾股定理,得:OB=6m,根据题意,得:OB′=6+2=8m.又∵梯子的长度不变,在Rt△A′OB′中,根据勾股定理,得:OA′=6m.则AA′=8﹣6=2m.15.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是11cm≤a≤12cm.【解答】解:当筷子与杯底垂直时h最大,h最大=24﹣12=12cm.当筷子与杯底及杯高构成直角三角形时a最小,如图所示:此时,AB===13cm,故a=24﹣13=11cm.所以a的取值范围是:11cm≤a≤12cm.故答案是:11cm≤a≤12cm.16.如图,四边形ABCD中,AD=3,CD=4,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′==3,∠D′DA+∠ADC=90°由勾股定理得CD′==,∴BD=CD′=,故答案为:.17.如果矩形的周长是14cm,相邻两边长之比为3:4,那么对角线长为5cm.【解答】解:设矩形的相邻两边的长度分别为3acm,4acm,由题意3a+4a=7,a=1,所以矩形的相邻两边分别为3cm,4cm,所以对角线长==5cm,故答案为5.三.解答题(共5小题)18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?【解答】解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.19.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=3,DB=,根据勾股定理得:CD==,在Rt△ACD中,AC=4,CD=,根据勾股定理得:AD==;(2)△ABC为直角三角形,理由为:∵AB=BD+AD=+=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.20.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,求线段AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴在Rt△ACB中,AC═==,∴在Rt△ACD中,AD===,在Rt△ADE中,AE===2.21.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线DE交AB于点E,连接CE.求证:BE2=AC2+AE2.【解答】证明:∵如图,边BC的垂直平分线DE交AB于点E,∴CE=BE.∵在Rt△ABC中,∠A=90°,∴由勾股定理得到:CE2=AC2+AE2∴BE2=AC2+AE2.22.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.【解答】解:(1)S2+S3=S1,由三个四边形都是正方形则:∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(2)∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(3)∵S1=AB2,S2=BC2,S3=AC2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.。
第1章勾股定理一.选择题(共12小题)1.下列为勾股数的是()A.2,3,4 B.,,C.6,7,8 D.5,12,132.已知a,b,c是△ABC的三边,且满足(a﹣b)(a2﹣b2﹣c2)=0,则△ABC是()A.直角三角形B.等边三角形C.等腰直角三角形D.等腰三角形或直角三角形3.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或104.已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A.5 B.25 C.7 D.155.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:66.下列各组线段中的三个长度:①9,12,15;②7,24,25;③32,42,52;④3a,4a,5a (a>0);⑤m2﹣n2,2mn,m2+n2(m,n为正整数,且m>n)其中可以构成直角三角形的有()A.5组B.4组C.3组D.2组7.△ABC中,AB=7,BC=24,AC=25.在△ABC内有一点P到各边的距离相等,则这个距离为()A.1 B.2 C.3 D.48.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.109.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6410.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2C.72cm2D.108cm211.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为()A.13cm B.12cm C.10cm D.8cm12.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤b≤13 B.12≤b≤15 C.13≤b≤16 D.15≤b≤16 二.填空题(共6小题)13.如图,BD为△ABC的中线,AB=10,AD=6,BD=8,△ABC的周长是.14.直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是cm.15.如图,点A、B、C分别是正方体展开图的小正方形的顶点,则∠BAC的大小为.16.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.17.已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.三.解答题(共10小题)18.如图为一个广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求图中△ABC的周长和面积.19.如图,一根竹子高10米,折断后竹子顶端C落在竹子底端A的4米处,折断处B离地面的高度AB是多少?20.如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD 的长.21.已知:如图,四边形ABCD,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.求四边形ABCD 的面积.22.长方形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,求DE的长.23.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,AB的垂直平分线DE交AB于点D,交AC于点E,连接BE.(1)求AD的长;(2)求AE的长.24.如图,一个放置在地面上的长方体,长为15cm,宽为10cm,高为20cm,点B与点C 的距离为5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?25.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是多少?26.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?参考答案一.选择题(共12小题)1.【解答】解:A、22+32≠42,不能构成勾股数,故错误;B、()2+()2≠()2,不能构成勾股数,故错误;C、62+72≠82,不能构成勾股数,故错误;D、52+122=132,能构成勾股数,故正确.故选:D.2.【解答】解:∵(a﹣b)(a2﹣b2﹣c2)=0,∴a﹣b=0,或a2﹣b2﹣c2=0,即a=b或a2=b2+c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.3.【解答】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD﹣CD=8﹣2=6,则BC的长为6或10.故选:C.4.【解答】解:依题意得:x2﹣4=0,y2﹣3=0,∴x=2,y=,斜边长==,所以正方形的面积=()2=7.故选:C.5.【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选:D.6.【解答】解:①中有92+122=152;②中有72+242=252;③(32)2+(42)2≠(52)2;④中有(3a)2+(4a)2=(5a)2;⑤中有(m2﹣n2)2+(2mn)2=(m2+n2)2,所以可以构成4组直角三角形.故选:B.7.【解答】解:∵△ABC中,AB=7,BC=24,AC=25,∴AB2+BC2=72+242=252=AC2,∴∠ABC=90°,连接AP,BP,CP.设PE=PF=PG=xS△ABC=×AB×CB=84,S△ABC=AB×x+AC×x+BC×x=(AB+BC+AC)•x=×56x=28x,则28x=84,x=3.故选:C.8.【解答】解:由题意得:大正方形的面积是9,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,即a2+b2=9,a﹣b=1,解得a=,b=,则ab=4.解法2,4个三角形的面积和为9﹣1=8;每个三角形的面积为2;则ab=2;所以ab=4故选:A.9.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.10.【解答】解:由图可得,A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.即A、B、C、D、E、F、G的面积之和为3个G的面积.∵G的面积是62=36cm2,∴A、B、C、D、E、F、G的面积之和为36×3=108cm2.故选:D.11.【解答】解:如下图所示:∵长方体的底面边长分别为2cm和4cm,高为5cm.∴PA=4+2+4+2=12(cm),QA=5cm,∴PQ==13cm.故选:A.12.【解答】解:如图,连接BO,AO,当吸管底部在O点时吸管在罐内部分a最短,此时a就是圆柱形的高,即a=12;当吸管底部在A点时吸管在罐内部分a最长,即线段AB的长,在Rt△ABO中,AB===13,故此时a=13,所以12≤a≤13,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是:15≤b≤16.故选:D.二.填空题(共6小题)13.【解答】解:∵AB=10,AD=6,BD=8,∴AB2=AD2+BD2=100,∴△ABD是直角三角形且AD⊥BD.又BD为△ABC的中线,∴AB=BC=10,AD=CD=6.∴,△ABC的周长=AB+BC+AD=2AB+2AD=20+12=32.故答案是:32.14.【解答】解:当这个直角三角形的两直角边分别为3cm,4cm时,则该三角形的斜边的长为:=5(cm).当这个直角三角形的一条直角边为3cm,斜边为4cm时,则该三角形的另一条直角边的长为:=(cm).故答案为:5或.15.【解答】解:连接BC.根据勾股定理可以得到:AB=BC=,AC=2,∵()2+()2=(2)2,即AB2+BC2=AC2,∴△ABC是等腰直角三角形.∴∠BAC=45°.故答案为:45°.16.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.17.【解答】解:∵a+b=10,ab=18,c=8,∴(a+b)2﹣2ab=100﹣36=64,c2=64,∴a2+b2=c2,∴此三角形是直角三角形.故答案为:直角.三.解答题(共10小题)18.【解答】解:在△ABD中,∵AB=13m,AD=12m,BD=5m,∴AB2=AD2+BD2,∴AD⊥BC,在Rt△ADC中,∵AD=12m,AC=15m,∴DC==9(m),∴△ABC的周长为42m,△ABC的面积为84m2.19.【解答】解:设竹子折断处离地面x米,则斜边为(10﹣x)米,根据勾股定理得:x2+42=(10﹣x)2解得:x=4.2.答:折断处离地面的高度是4.2米.20.【解答】解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得x=6,∴AD2=102﹣62=64,∴AD=8.故AD的长为8.21.【解答】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC=,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.22.【解答】解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x,△ADE中,DE2=AE2+AD2,即x2=(10﹣x)2+16.∴x=(cm).23.【解答】解:(1)如图所示:∵在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB=10,∵DE垂直平分AB,∴AD=BD=5.(2)∵DE垂直平分AB,∴BE=AE,设EC=x,则AE=BE=8﹣x,故62+x2=(8﹣x)2,解得:x=,∴AE=8﹣=.24.【解答】解:如图所示,根据勾股定理得,AB==25cm.答:需要爬行的最短距离是25cm.25.【解答】解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.答:蚂蚁沿着台阶面爬到B点的最短路程是25dm.26.【解答】解:(1)由题意得:该长方体中能放入木棒的最大长度是:(cm).(2)分三种情况可得:AG=cm>AG=cm >AG=cm,所以最短路程为cm;(3)∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B==13(Cm).。
第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、在直角三角形中,两条直角边的长分别为12和5,则斜边上的中线长是()A.6.5B.8.5C.13D.2、等腰三角形的腰长为,底长为,则其底边上的中线长为().A. B. C. D.3、如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠,折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为,则点E的坐标为()A. B. C. D.4、如图,A、B、C分别是小正方形的三个顶点,且每个小正方形的边长均为1,则sin∠BAC的值为()A. B. C.1 D.5、如图,在▱OABC中C(2,0),AC⊥OC,反比例函数y= (k>0)在第一象限内的图象过点A,且与BC交于点D,点D的横坐标为3,连接AD,△ABD的面积为,则k的值为()A.4B.5C.D.6、小明量得家中的彩电屏幕的长为58厘米,宽为46厘米,你能判断这是一台多少英寸的电视机。
()A.9英寸(23厘米)B.21英寸(54厘米)C.29英寸(74厘米) D.34英寸(87厘米)7、下列各组数据中,不能构成直角三角形的一组数是()A.9,12,15B.0.2,0.3,0.4C. ,1,D.40,41,98、直角三角形的两条直角边的长分别为5,12,则斜边上的高线的长为()A. cmB.13cmC. cmD. cm9、如图,是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.5≤a≤12B.5≤a≤13C.12≤a≤13D.12≤a≤1510、如图,在平行四边形ABCD中,AC与BD相交于点O,AB⊥AC,∠DAC=45°,AC=2,则BD的长为()A.6B.2C.D.311、如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,下列说法中正确的个数是()①AC•BC=AB•CD ②AC2=AD•DB ③BC2=BD•BA ④CD2=AD•DB.A.1个B.2个C.3个D.4个12、下列各数为边不能组成直角三角形的一组是()A.15,12,9B. ,2,C.8,15,17D. ,2,13、如图,已知一商场自动扶梯的长l为13米,高度h为5米,自动扶梯与地面所成的夹角为θ,则tanθ的值等于()A. B. C. D.14、如图是由5个正方形和5个等腰直角三角形组成的图形,已知③号正方形的面积是1,那么①号正方形的面积是()A.4B.8C.16D.3215、如图,⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,则⊙O的半径长为()A.3cmB.4cmC.5cmD.6cm二、填空题(共10题,共计30分)16、如图,已知中,为直径,平分,弦,则半径的为________ .17、如图,已知点A(0,3),B(4,0),点C在第一象限,且AC=5 ,BC=10,则直线OC的函数表达式为________.18、如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠B=45°,则隧道开通后,汽车从A地到B地比原来少走________千米.19、如图,在长方形ABCD中,DC=6cm,在DC上存在一点E,沿直线AE把△ADE折叠,使点D恰好落在BC边上的点F处,若△ABF的面积为24cm2,那么折叠的△ADE的面积为________.20、Rt△ABC中,∠ACB=90°,CD是高,AC=4cm,BC=3cm,则CD=________.21、一直角三角形的两条直角边长分别为12、5,则斜边上的中线长是________22、如图,△ABC内接于⊙O,半径为5,BC=6,CD⊥AB于D点,则tan∠ACD的值为________.23、如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为________.24、如图,在平面直角坐标系中,点A,A1, A2,……在工轴上,点P,P1 , P2 ,在直线l:y=kx+ (k>0)上,∠OPA=90°,点P(1,1) ,A(2,0),且AP1,A1P2,……均与OP平行,A1P1, A2P2,……均与AP平行,则有下列结论:①直线AP1的函数解析式为y=x-2;②点P2的纵坐标是;③点P2021的纵坐标为( )2021。
八(上)第一章 勾股定理单元检测班级_______ 姓名_______ 分数________一、填空题(每题3分,共24分)1.三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定2.若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2十338=10a +24b +26c ,则△ABC 的面积是( )A.338B.24C.26D.303.若等腰△ABC 的腰长AB =2,顶角∠BAC =120°,以 BC 为边的正方形面积为( ) A.3 B.12 C.427 D.3164.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A.42 B.32 C.42 或32 D.37 或 335.直角三角形三条边的比是3∶4∶5.则这个三角形三条边上的高的比是( )A.15∶12∶8B. 15∶20∶12C. 12∶15∶20D.20∶15∶126.在△ABC 中,∠C =90°,BC =3,AC =4.以斜边AB 为直径作半圆,则这个半圆的面积等于( )A.258π B. 254π C. 2516πD.25π 7.如图1,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A.2cmB.3 cmC.4 cmD.5 cm图1D 18cm图2B8.如图2,一个圆桶儿,底面直径为16cm,高为18cm,则一只小虫底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.20cmB.30cmC.40cmD.50cm二、填空题(每小题3分,共24分)9.在△ABC中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的长方形的面积是___.10.一个长方体同一顶点的三条棱长分别是3、4、12,则这个长方体内能容下的最长的木棒为___.11.在△ABC中,∠C=90°,BC=60cm,CA=80cm,一只蜗牛从C点出发,以每分20cm的速度沿CA→AB→BC的路径再回到C点,需要___分的时间.12.如图3,一艘船由岛A正南30海里的B处向东以每小时20海里的速度航行2小时后到达C处.则AC间的距离是___.13.在△ABC中,∠B=90°,两直角边AB=7,BC=24,三角形内有一点P到各边的距离相等,则这个距离是___.14.已知两条线段长分别为5cm、12cm,当第三条线段长为___时,这三条线段可以组成一个直角三角形,其面积是___.15.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;图3 列举:7、24、25,猜想:72=24+25;…………列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=___,c=___.16.已知:正方形的边长为1.(1)如图4(a ),可以计算出正方形的对角线长为2;如图(b),两个并排成的矩形的对角线的长为___;n个并排成的矩形的对角线的长为___.(2)若把(c)(d)两图拼成如图5“L”形,过C作直线交DE于A,交DF于B .若DB =53,则 DA 的长度为___.三、解答题(共58分)17.如图6,折叠长方形一边AD ,点D 落在BC 边的点F 处,BC =10cm ,AB =8cm ,求:(1)FC 的长;(2)EF 的长.18.为了丰富少年儿童的业余生活,某社区要在如图7所示AB 所在的直线建一图书室,本社区有两所学校所在的位置在点C 和点D 处,CA ⊥AB 于A ,DB ⊥AB 于B ,已知AB =25km ,CA =15km ,DB =10km ,试问:图书室E 应该建在距点A 多少km 处,才能使它到两所学校的距离相等?19.一艘渔船正以30海里/时的速度由西向东追赶渔群,在A 处看见小岛C 在船北偏东 60°.40分钟后,渔船行至 B 处,此时看见小岛 C 在船的北偏东30°,已知小岛C 为中心周围10海里以内为我军导弹部队军事演习的着弹危险区,问这艘渔船继续航行(追赶鱼群),是否有进入危险区的可能?图5EF BCAD图4(a ) (b ) (c ) (d )图6图7E DCBA20.在Rt△ABC中,AC=BC,∠C=90°,P、Q在AB上,且∠PCQ=45°试猜想分别以线段AP、BQ、PQ为边能组成一个三角形吗?若能试判断这个三角形的形状.21.如图8,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:图8①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时AP的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP的长;若不能,请你说明理由.参考答案一、1.A 2.D 3.B 4.C 5.D.提示:由三角形面积公式,可得12·AB ·CD =12·BC ·AC .设BC =3k ,AC =4k ,AB =5k ,则5k ·CD =2k ·4k .所以CD =135k .所以AC ∶BC ∶CD =4k ∶3k ∶125k =20∶15∶12;6.A.提示:在Rt △ABC 中,由勾股定理可以得到AB 2=42+32=25,所以AB =5.所以半圆的面积S =12π252⎛⎫ ⎪⎝⎭=258π;7.B 8.B.二、9.108 10.13 11.12 12.由勾股定理,可以得到AB 2+BC 2=AC 2,因为AB=30,BC =20×2=40,所以302+202=AC 2,所以AC =50,即AC 间的距离为50海里;13.314.13cm ,30cm 2或522 15.84、85 16、52. 三、17.(1)在Rt △ABC 中,由勾股定理可以得到AF 2=AB 2+BF 2,也就是 102=82+BF 2.所以BF =6,FC =4(cm) (2)在Rt △ABC 中,由勾股定理,可以得到EF 2=FC 2+(8-EF )2.也就是EF 2=42+(8-EF )2.所以EF =5(cm)18.10米;19.设小岛C 与AB 的垂直距离为a ,则易求得a 2=300>102,所以这艘渔船继续航行不会进入危险区;20.能组成一个三角形,且是一个以PQ 为斜边的直角三角形.理由是:可将△CBQ 绕点C 顺时针旋转90°,则CB 与CA 重合,Q 点变换到Q ′点,此时,AQ ′=BQ ,△APQ ′是直角三角形,即AP 2+AQ ′2=PQ ′2,另一方面,可证得△CPQ ′≌△CPQ (SAS ),于是,PQ ′=PQ ,则AP 2+BQ 2=PQ 2.21.①能.设AP =x 米,由于BP 2=16+x 2,CP 2=16+(10-x )2,而在Rt △PBC 中,有BP 2+ CP 2=BC 2,即16+x 2+16+(10-x )2=100,所以x 2-10x +16=0,即(x -5)2=9,所以x -5=±3,所以x =8,x =2,即AP =8或2,②能.仿照①可求得AP =4.第一章勾股定理单元检测题班级_____ 姓名_____ 分数_____一、选择题(每小题3分,共30分)1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25 B .321,421,521 C .3,4,5 D .4,721,821 2.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( ) A .1倍 B .2倍 C .3倍 D .4倍 3.在下列说法中是错误的( )A .在△ABC 中,∠C =∠A 一∠B ,则△ABC 为直角三角形B .在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3则△ABC 为直角三角形 C .在△ABC 中,若a =53c ,b =54c ,则△ABC 为直角三角形 D .在△ABC 中,若a ∶b ∶c =2∶2∶4,则△ABC 为直角三角形4.四组数:①9,12,15;②7,24,25;③32,42,52;④3a ,4a ,5a (a >0)中,可以构成直角三角形的边长的有( )A .4组B .3组C .2组D .1组5.三个正方形的面积如图1,正方形A 的面积为( ) A . 6 B . 36 C . 64 D . 86.一块木板如图2所示,已知AB =4,BC =3,DC =12,AD =13,∠B =90°,木板的面积为( )A .60B .30C .24D .127.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( ) A .6cm B .8.5cm C .1330cm D .1360cm8.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A .50cmB .100cmC .140cmD .80cm9.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当它把绳子的下端拉开5m 后,发现下端刚好接触地面,则旗杆的高为 ( )A .8cmB .10cmC .12cmD .14cm10.在△ABC 中,∠ACB =90°,AC =40,CB =9,M 、N 在AB 上且AM =AC ,BN =BC ,则MN 的长为( )A .6B .7C .8D .9 二、填空题(每小题3分,共30分)A DBC图211.在△ABC中,∠C=90°,若a=5,b=12,则c=___.12.在△ABC中,∠C=90°,若c=10,a∶b=3∶4,则ab=.13.等腰△ABC的面积为12cm2,底上的高AD=3cm,则它的周长为___.14.等边△ABC的高为3cm,以AB为边的正方形面积为___.15.直角三角形三边是连续整数,则这三角形的各边分别为___.16.在Rt△ABC中,斜边AB=2,则AB2+BC2+CA2=___.17.有两棵树,一棵高6米,另一棵高3米,两树相距4米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了___米.18.一座桥横跨一江,桥长12m,一般小船自桥北头出发,向正南方驶去,因水流原因到达南岸以后,发现已偏离桥南头5m,则小船实际行驶___m.19.一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是___.20.在Rt△ABC中,∠C=90°,中线BE=13,另一条中线AD2=331,则AB=___.三、解答题(每小题8分,共40分)21.某车间的人字形屋架为等腰△ABC,跨度AB=24m,上弦AC=13m.求中柱CD (D为底AB的中点).22.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺.求竹竿高与门高.23.如图3,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部什么位置断裂的吗?请你试一试.图3OB′图4BAA′24.如图4所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m.现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离为3m,同时梯子的顶端B下降到B′,那么BB′也等于1m吗?25.在△ABC中,三条边的长分别为a,b,c,a=n2-1,b=2n,c=n2+1(n>1,且n 为整数),这个三角形是直角三角形吗?若是,哪个角是直角?与同伴一起研究.参考答案:A卷:一、1.B2.B3.D4.B5.B6.C7.D8.B9.C10.C二、11.1312.4813.1814.1215.3、4、516.817.518.1319.2400 20.20三、21.5米22.设门高为x尺,则竹杆长为(x+1)尺,依题意由勾股定理,得x2+42=(x+1)2,解得x=7.5,所以门高为7.5尺,则竹杆长为8.5尺.23.设旗杆在离底部x m位置断裂,则根据题意,得(x+1)2-x2=64,解得x=6,即旗杆在离底部6m位置断裂.cb a cba ED CBACABcb a24.在Rt △ABO 中,梯子AB 2=AO 2+BO 2=22+72=53.在Rt △A ′B ′O 中,梯子A ′B ′2=53=A ′O 2+B ′O 2=32+B ′O 2,所以,B ′O>2×3=6.所以BB ′=OB -OB ′<1.25.因为a 2=n 4-2n 2+1,b 2=4n ,c 2=n 4+2n 2+1,a 2+b 2=c 2,所以△ABC 是直角三角形,∠C 为直角.北师大版八年级数学上册第一章 勾股定理 提高培优讲义:勾股定理、逆定理及应用 基础知识梳理模块一:勾股定理及证明 1.勾股定理:如果直角三角形的两直角边分别是a ,b ,斜边为c ,那么222a b c +=. 即直角三角形中两直角边的平方和等于斜边的平方. 注:勾——较短的边、股——较长的直角边、弦——斜边. 2.勾股定理的证明: (1)弦图证明DC BAGF E H内弦图 外弦图221()42ABCD S a b c ab =-=+⨯正方形 221()42EFGH S c a b ab ==-+⨯正方形∴222a b c += ∴222a b c += (2)“总统”法(半弦图)如图所示将两个直角三角形拼成直角梯形:2()()112222ABCD a b a b S ab c +-==⨯+梯形∴222a b c += 3.勾股数:满足222a b c +=的三个正整数,称为勾股数.(1)3、4、5;6、8、10;9、12、15;12、16、20;15、20、25等.(2)(,,)a b c 是组勾股数,则(,,)ka kb kc (k 为正整数)也是一组勾股数. (3)3、4、5;5、12、13;7、24、25;9、40、41;11、60、61等 (4)21a n =+,222b n n =+,2221c n n =++(n 为大于1的自然数) (5)22a m n =-,2b mn =,22c m n =+(m n >,且m 和n 均为正整数) 模块二:勾股定理逆定理及应用 1.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么前两边的夹角一定是直角.即在ABC △中,如果222AC BC AC +=,那么ABC △是直角三角形.2.勾股定理的常见题型. 模块三:例题精讲(1)勾股证明的方法成百上千种,其中《几何原本》中的证法非常经典,是在一个我们非常熟悉的几何图形中实现的(如图所示),如果直角三角形ABC 的三边长为a ,b ,c (c 为斜边),以这三边向外作三个正方形,试利用此图证明222a b c +=.cbaNMHFE DCBAABCEFHMNP(2)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为__________.【解析】(1)如上图可知:ACF ADB △△≌,2ACED ADB S S =正方形△,2AFGP ACF S S =矩形△,∴2AFGP b S =矩形,同理2GHBP a S =矩形,∴222a b c +=. (2)49cm 2.(1)若把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的( ). A .1倍 B .2倍 C .3倍 D .4倍(2)若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为________.(3)下面几组数:①7,8,9;②12,9,15;③22m n +,22m n -,2mn (m ,n 均为正整数,m n >);④2a ,21a +,22a +.其中能组成直角三角形的三边长的是( ).A .①②B .②③C .①③D .③④【解析】(1)B ;(2)可知三边为3,4,5,所以周长为12; (3)B ;容易知道①错误②正确,对于③,由2224224()2m n m m n n -=-+,222(2)4mn m n =,2224224()2m n m m n n +=++所以2222422422222()(2)(2)4()m n mn m m n n m n m n -+=-++=+. 所以,以这三条线段的长为边的三角形是直角三角形.答案选B .ABC △中,BC a =,AC b =,AB c =.若90C ∠=︒,如图3-1,根据勾股定理,则222a b c +=.若ABC △不是直角三角形,如图3-2,90C ∠<︒;如图3-3,90C ∠<︒.请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论.图1a b c a b c cb a A BCA B C C B Aa bca bcA ABC C Ba bcABC B图3-1 图3-2 图3-3【解析】图2猜想:222a b c +>.证明:过点A 作AD BC ⊥于D ,设CD x =,222AD b x =-, 22222222()()2c a x b x a ax x b x =-+-=-++-, 即22220a b c ax +-=>,故222a b c +>. 图3猜想:222a b c +<.证明:过B 作BD AC ⊥,交AC 的延长线于D . 设CD 为x ,则有222BD a x =-.根据勾股定理,得2222()b x a x c ++-=. 即2222a b bx c ++=,∵0b >,0x >,∴20bx >,∴222a b c +<.(1)如果直角三角形的两边长为4、5,则第三边长为________.(2)如果直角三角形的三边长为10、6、x ,则最短边上的高为________.(3)若|1|0a b --=,则以a 、b 为边的直角三角形的第三边为________.在ABC △中,15AB =,13AC =,高12AD =,则三角形的周长是_________.【解析】32或42.DabcACBDa bcABC【提示】题型:已知三角形的两边及第三边高求第三边,B 卷填空必考题,一般题目无图,为易错题,切记要分类讨论,分形内高和形外高.(1)如图6-1,四边形ABCD 中,AB BC ⊥,1AB =,2BC =,2CD =,3AD =,求四边形ABCD 的面积.(2)如图6-2,在四边形ABDC 中,BD CD ⊥,6BD =,8CD =,24AB =,26AC =,求该四边形面积.ABC DDCB A图6-1 图6-2(2)96.四边形ABDC 的面积为96. 连接BC ,根据勾股定理可得10BC =,因为222BC AB AC +=,所以ABC △为直角三角形,故四边形ABDC 的面积1202496ABC BCD S S S =-=-=△△.(1)如图,梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 位置,BD 长0.5米,则梯子顶端A 下落了________米.(2)梯子靠在墙上,梯子的底端A 到墙根O 的距离2米,梯子的顶端B 到地面的距离为7米,现将梯子的底端向外移动到C ,使梯子底端C 到墙根O 的距离等于3米,同时梯子的顶端B 下降至D ,那么BD ( )A .等于1米B .大于1米C .小于1米D .以上结果都不对(3)如图,梯子AB 斜靠在墙面上,AC BC ⊥,AC BC =,当梯子的顶端A 沿AC 方向下滑x 米时,梯子B 沿CB 方向滑动y 米,则x 与y 的大小关系是( ) A .x y = B .x y >C .x y <D .不确定【解析】(1)0.5;(2)C ;(3)选B ,设AC BC a==米,化简得222()0a x y x y -=+>,x y >.EAB CD(1)若直角三角形斜边长为4,周长为432+,则三角形面积等于________.(2)如图,ABC △中,90BAC ∠=︒,AD BC ⊥于点D ,若455AD =,25BC =,请求出ABC △的周长.【解析】(1)12; (2)222(25)45255AB AC AB AC ⎧+=⎪⎨⨯=⨯⎪⎩,解得6AB BC +=,625ABC C =+△.(1)已知9-1,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,如果8cm AB =,10cm BC =,求EC 的长.(2)如图9-2,已知矩形ABCD 沿着直线BD 折叠,使点C 落在'C 处,'BC 交AD 于E ,16AD =,8AB =,则DE 的长度为________.(3)如图9-3,矩形纸片ABCD 的长9cm AD =,宽3cm AB =,沿EF 将其折叠,使点D 与点B 重合,则折痕EF 的长为________cm .EDC'C BA图9-1 图9-2 图9-3【解析】(1)由题意得,10cm AF AD ==.在ABF △中,应用勾股定理得,6cm BF =. 所以1064FC BC BF cm =-=-=.在CEF △中,应用勾股定理,设cm EC x =, 得222(8)4x x -=+.解得3x =,即3cm EC =. (2)设ED x =,因为CBD EBD EDB ∠=∠=∠, 则EB ED x ==,16AE AD ED x =-=-, 在Rt E AB △中,由勾股定理可得:222(16)8x x +=-,∴10x =,即10DE =.(3)设AE x =,因为BEF DEF BFE ∠=∠=∠, 则9BE DE B x F ===-,根据勾股定理得:222AB AE BE +=,即222239(9)x x x +=+=-,解得:4x =;∴4AE =,∴5DE BF ==,∴4CF DM ==,∴1EM =,根据勾股定理得:EF ==;若0x >,0y >且12x y +=【解析】如下图,不妨设12AB =,AC AB ⊥,BD AB ⊥,2AC =,3BD =,y 2+9x 2+432y xPDC B AD CA P为线段AB 上的动点,AP x =,于是PB y =,PC,PD 问题转化为求点C ,D 之间距离的最小值.当P ,C ,D 三点不共线时,有PC PDCD +>;当P ,C ,D 共线时,PC PD CD +=. 于是点C ,D 13.【教提示】数形结合,几何构造,将军饮马.模块四:课后作业设计1、如图1-1,分别以直角三角形A 、B、C 三边为边向外作三个正方形,其面积分别用1S 、2S 、3S 表示,则不难证明123S S S =+.) (1)如图1-2,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用1S 、2S 、3S 表示,那么1S 、2S 、3S 之间有什么关系?(不必证明)(2)如图1-3,分别以直角三角形A 、B 、C 三边为边向外作三个正三角形,其面积分别用1S 、2S 、S 表示,请你确定S 、S 、S 之间的关系并加以证明.B C S 1S 2图图图1A B C S 1S 3S 2图图2A BCS 1S 3S 2图3图1-1图1-2图1-3【解析】(1)设BC 、CA 、AB 长分别为a 、b 、c ,则222c a b =+,123S S S =+;(2)123S S S =+.证明如下:显然,21S =,22S =,23S ,AB D C∴22223133()44S S a b c S +=+==. 【点评】分别以直角三角形ABC 三边为一边向外作“相似形”,其面积对应用1S 、2S 、3S 表示,则123S S S =+(设斜边所做图形面积为1S ).2、已知a ,b ,c 是三角形的三边长,222a n n =+,21b n =+,2221c n n =++(n 为大于1的自然数),试说明ABC △为直角三角形.【解析】因为222212221n n n n n ++>+>+,222222(221)(22)441(21)n n n n n n n ++-+=++=+.所以22222(21)(22)(221)n n n n n +++=++,所以ABC △为直角三角形.3、如图,四边形ABCD 中,6cm AB =,8cm BC =,24cm CD =,26cm DA =,且90ABC ∠=︒,则四边形ABCD 的面积是( )cm 2.A .336B .144C .102D .无法确定【解析】答案:B .连接AC ,运用勾股定理逆定理.4、如图,一根长5米的竹篙AB 斜靠在与地面垂直的墙上,顶端A 距离墙根4米,若竹篙顶端A 下滑1米,则底端B 向外滑行了多少米?【解析】设竹篙顶端下滑1米到1A 点,底端向外滑行到1B 点.由题意得AA 1=1m ,113m AC AC AA =-=, 在11Rt ACB △中:2211114m B C A B AC -, 在Rt ABC △中:223m BC AB AC =-=, 111BB B C BC m =-=,即竹篙顶端A 下滑1米,则底端B 向外滑行了1米.5、(1)(在ABC △中15AB =,13AC =,高12AD =,则ABC S =△_______.(2)如图,ABC △中,90BAC ∠=︒,AD BC ⊥于点D ,若3AD =,23BC =ABC △的周长为________.【解析】(1)24或84(分类讨论:行外高和行内高,对应例5)ABC(2)423+.(对应例8考查直角三角形与知二推二综合).6、(1)如图6-1,已知ABC △是直角边长为1的等腰直角三角形,以Rt ABC △的斜边AC 为直角边,画第二个等腰Rt ACD △,再以Rt ACD △的斜边AD 为直角边,画第三个等腰Rt ADE △,……,依此类推,第n 个等腰直角三角形的斜边长是________.(2)如图6-2,矩形ABCD 中,5cm AB =,3cm BC =,如图所示折叠矩形纸片ABCD ,使D 点落在边AB 上一点E 处,折痕端点G 、F 分别在边AD 、DC 上,则当折痕端点F 恰好与C 点重合时,AE 的长为________cm .GFED CB A图6-1 图6-2(3)若0x >,0y >且15x y +=2264144x y ++________.【解析】(1)由题意可得:第1个等腰直角三角形,ABC △中,斜边长1AB BC ==,22112AC+==; 第2个等腰直角三角形,ACD △中,斜边长2222(2)AD AC CD =+==; 第3个等腰直角三角形,ADE △中,斜边长22322(2)AE AD DE =+=; 依此类推,……第n 个等腰直角三角形中,斜边长为(2)n . (2)F 点与C 点重合时(如图),∵在矩形ABCD 中,5AB =,3BC =, ∴5CD AB ==,90B ∠=︒,由折叠的性质可得:5CE CD ==, ∴224CE BE BC -=, ∴1AE AB BE =-=.(3)答案:25(对应例题10,几何构造).北师大版八年级数学上册 第一章 勾股定理 章末培优卷一、选择题:(共30分)1、一个圆柱形铁桶的底面半径为12cm ,高为32cm ,则桶内所能容下的木棒最长为( )A .20cmB .50cmC .40cmD .45cm2、已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为A. 4B. 16C.D. 4或3、如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的平方为( )A 2524 B. 8 C. 25196 D.5 4、如图,一棵大树被大风刮断后,折断处离地面8m ,树的顶端离树根6m ,则这棵树在折断之前的高度是( ) A.18mB .10mC .14mD .24m5、如图,在4×4方格中作以AB 为一边的Rt △ABC ,要求点C 也在格点上,这样的Rt △ABC 能作出( ) A .2个 B .3个 C .4个D .6个二、填空题(共24分)11、ABC ∆的三边长c b a ,,满足:03018)602(2=-+-+-+c b b a ,则ABC ∆是 三角形;12、如图,在平行四边形A BCD 中,C A ⊥A B ,若A B=3,BC=5,则平行四边形A BCD 的面积为 。
第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、△ABC中,如果两条直角边分别为3,4,则斜边上的高线是()A. B. C.5 D.不能确定2、如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB 与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是()A.10cmB.30cmC.60cmD.50cm3、已知直角三角形两边长x、y满足,则第三边长为()A.5B.C.5或D. 或4、如图,将两个大小、形状完全相同的△ABC 和△A′B′C′拼在一起,其中点 A′与点A 重合,点 C′落在边 AB 上,连接 B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则 B′C 的长为( )A. B.6 C. D.5、已知圆锥的底面的半径为3cm,高为4cm,则它的侧面积为()A.15πcm 2B.16πcm 2C.19πcm 2D.24πcm 26、下列长度的三条线段能组成直角三角形的是( )A.2,3,4B.4,6,8C.6,8,10D.5,11,127、如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.808、如图,点E在正方形ABCD内,满足∠AEB=90°,AE=3,BE=4,则阴影部分的面积是()A.12B.15C.19D.209、下列各组线段中,能够组成直角三角形的是().A.6,7,8B.5,6,7C.4,5,6D.3,4,510、如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2米,则树高为()A. 米B. 米C.( 米D.3 米11、平面直角坐标系中,直线y=(2m-3)x-2m+5与以坐标原点为圆心的⊙O交于A、B两点,⊙O的半径为3,则AB最小值为()A. B.3 C.4 D.12、在Rt中,∠B=90°,AC=5,AB=3,则的值为().A. B. C. D.13、如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A. B.2 C.6 D.814、如图所示,四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH……,如此下去,则第2017个正方形的边长是()A. B. C. D.15、下列四组数据表示三角形的三边长,其中不能构成直角三角形的一组数据是( )A.1 cm, cm, 4cmB.5cm, 12cm, 13cm:C.3cm, 4cm,5cm: D.7cm, 24cm, 25 cm二、填空题(共10题,共计30分)16、如图,为正方形的对角线,延长到,使,以为一边作菱形,若菱形的面积为,则正方形边长________.17、⊙O的半径为1,弦AB= ,点C是圆上异于A、B的一动点,则∠ACB=________.18、如图为一个半径为5m的圆形广场,其中放有六个宽为m的长方形临时摊位,这些摊位均有两个顶点在广场边上,另两个顶点紧靠相邻摊位的顶点,则每个长方形摊位的长为________m.19、如图,等边△ABC的边长为8,D、E分别是BC、AC边的中点,过点D作DF⊥AB于F,连接EF,则EF的长为________.20、如图,已知两正方形的面积分别是25和169,则字母B所代表的正方形的边长是________。
第一章《勾股定理》单元测试卷班别:姓名:__________一、选择题(本题共10小题,每小题3分,满分30分)1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4 B.8 C.10 D.122.已知a=3,b=4,若a,b,c能组成直角三角形,则c=()A.5B.7C.5或7D.5或63.如图中字母A所代表的正方形的面积为()A.4 B.8 C.16 D.644.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形5.直角三角形的一直角边长是7cm,另一直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm6.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2个B.3个C.4个D.5个7.在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形8.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形有一个锐角是()A.15°B.30°C.45°D.60°9.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .3cm 2B .4cm 2C .6cm 2 D.12cm 210.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港 口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A .25海里B .30海里C .35海里D . 40海里二、填空题(本题共8小题,每小题3分,满分24分)11.一个三角形三边长度之比为1∶2∶3 ,则这个三角形的最大角为_______度.12.如图,等腰△ABC 的底边BC 为16,底边上的高AD 为6,则腰长AB 的长为 .13.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B200m ,结果他在水中实际游了520m ,求该河流的宽度为 m .14.小华和小红都从同一点O 出发,小华向北走了9米到A 点,小红向东走到B 点时,当两人相距为15米,则小红向东走了 米.15.一个三角形三边满足22()2a b c ab +-=,则这个三角形是 三角形.16.木工做一个长方形桌面,量得桌面的长为60cm ,宽为32cm ,对角线为68cm ,这个桌面 (填”合格”或”不合格”).17.直角三角形一直角边为12cm,斜边长为13cm,则它的面积为cm2.18.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.三、解答题(共46分)19.在RtΔABC中,∠A CB=90°,AB=5,AC=3,CD⊥AB于D,求CD的长.21.(7分)如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC 的值.22.(8分)如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?小河23.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?《勾股定理》单元测试卷答案一、选择题(共10小题,每小题3分,满分30分)1. C .2. C .3. D .4. C .5. D .6. A .7. D .8. C .9. C .10. D .二、填空题(共8小题,每小题3分,满分24分)11. 900 . 12. 10 . 13. 480 m . 14. 12 米.15. 直角 . 16. 合格 . 17. 30 cm 2. 18. 25 .三、解答题(共46分)19.略20.解:∵∠ACB=90°,AB=5,AC=3,∴BC 2 = AB 2 -AC 2 =42,∴BC=4,∵CD ⊥AB ,∴21AB·CD=21AC·BC,∴5CD=12,∴CD=512. .21.解:∵AD ⊥BC 于D ,∴∠ADB=∠ADC=90°∵AB=3,BD=2∴AD 2=AB 2﹣BD 2=5∵DC=1,∴AC 2=AD 2+DC 2=5+1=6.∴AC= 22.解:设矩形的长是a ,宽是b ,根据题意,得:, (2)+(1)×2,得(a+b )2=196,即a+b=14,所以矩形的周长是14×2=28m .23. 如图,作出A点关于MN的对称点A′,则A′A=8 km,连接A′B交MN 于点P,则A′B就是最短路线.在Rt△A′DB中,A′D=15 km,BD=8 km由勾股定理得A′B2= A′D 2+BD2=289∴A′D =17km24.解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,。
第一章勾股定理一、选择题1. 若a,b,c为△ABC的三边长,则下列条件中不能判定△ABC是直角三角形的是( )A.a=1.5,b=2,c=2.5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:52. 在Rt△ABC中,若∠C=90∘,AC=3,BC=4,则点C到直线AB的距离为( )A.3B.4C.5D.2.43. 如图,四边形ABCD中,∠B=90∘,且AB=BC=2,CD=3,DA=1,则∠DAB的度数为( )A.90∘B.120∘C.135∘D.150∘4. 如图,在高为5 m,坡面长为13 m的楼梯表面铺地毯,地毯的长度至少需要( )A.17 m B.18 m C.25 m D.26 m5. 如图是一株美丽的勾股树,其中所有四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为3,5,2,3,则最大正方形E的面积是( )A.47B.13C.11D.86. 如图,将一根长度为8 cm,自然伸直的弹性皮筋AB两端固定在水平的桌面上,然后把皮筋中点C竖直向上拉升3 cm到点D,则此时该弹性皮筋被拉长了( )A.6 cm B.5 cm C.4 cm D.2 cm7. 如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90∘,并测得BC长为16 m,若已知AC比AB长8 m,则A点和B点之间的距离为( )A.25 m B.12 m C.13 m D.43 m8. 如图,在三角形纸片ABC中,∠ACB=90∘,AC=4,BC=3,点D,E分别在AB,AC上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.207二、填空题9. 在△ABC中,∠C=90∘.(1)已知a=10,b=24,那么c=.(2)已知b:c=4:5,a=9,那么b=,c=.10. 如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB等于.11. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为.12. 如图,一个长方体长4 cm,宽3 cm,高12 cm,则它上下两底面的对角线MN的长为cm.13. 已知a,b,c为△ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,则可以判断△ABC的形状为.14. 如图所示的网格是正方形网格,则∠PAB+∠PBA=∘(点A,B,P是网格线的交点).15. 对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.三、解答题16. 在Rt△ABC中,∠C=90∘.(1) 已知a=8,c=17,求b.(2) 已知b=40,c=41,求a.17. 如图,在四边形ABCD中,∠DBC=90∘,AB=9,AD=12,BC=8,DC=17,求四边形ABCD的面积.18. 如图,滑竿在机械槽内运动,∠C=90∘,AB=2.5 m,BC=1.5 m,当底端B向右移动0.5 m时,顶端A下滑了多少米?19. 假期中,王强和同学到某海岛上去旅游.他们按照如图所示路线.在点A登陆后租借了自行车,骑车往东走8千米,又往北走2千米;遇到障碍后往西走3千米,再折向北走到6千米处往东拐,走了1千米到达景点B.登陆点A到景点B的直线距离是多少千米?20. 若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5),(5,12,13),(7,24,25),⋯⋯第二类(a是偶数):(6,8,10),(8,15,17),(10,24,26),⋯⋯(1) 请再写出两组勾股数,每类各写一组;(2) 分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.答案一、选择题1. D2. D3. C4. A5. B6. D7. B8. D二、填空题9. 26;12;1510. 1011. x2+62=(10−x)212. 1313. 直角三角形14. 4515. 20三、解答题16.(1) 15.(2) 9.17. ∵∠DBC=90∘,DC=17,BC=8,∴BD2=CD2−BC2=172−82=225=152,∴BD=15.∵AD2+AB2=122+92=144+81=225,BD 2=225, ∴AD 2+AB 2=BD 2,∴△ABD 是直角三角形,且 ∠A =90∘,∴ 四边形 ABCD 的面积 =△ABD 的面积 +∠CBD 的面积 =12×9×12+12×15×8=54+60=114.18. 依题意得 AB =DE =2.5 m ,BC =1.5 m ,∠C =90∘,∴AC 2+BC 2=AB 2,即 AC 2+1.52=2.52,解得 AC =2 m . ∵BD =0.5 m , ∴CD =2 m .在 Rt △ECD 中,CE 2+CD 2=DE 2, ∴CE =1.5 m , ∴AE =0.5 m .答:顶端 A 下滑了 0.5 m .19. 10 千米.20.(1) 第一组(a 是奇数):9,40,41(答案不唯一);第二组(a 是偶数):12,35,37(答案不唯一).(2) 当 a 为奇数时,b =a 2−12,c =a 2+12;当 a 为偶数时,b =a 24−1,c =a 24+1.证明:当 a 为奇数时,a 2+b 2=a 2+(a 2−12)2=(a 2+12)2=c 2,∴(a,b,c ) 是“勾股数”.当 a 为偶数时,a 2+b 2=a 2+(a 24−1)2=(a 24+1)2=c 2,∴(a,b,c ) 是“勾股数”.。
第一章勾股定理一、选择题(每题3分,共30分)1.下列由线段a,b,c组成的三角形是直角三角形的是()A.a=1,b=2,c=3B.a=2,b=3,c=4C.a=3,b=4,c=5D.a=4,b=5,c=62.如图1所示,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为()图1A.5B.6C.7D.83.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为a,b,c,若a2+b2=c2,则∠A=90°;③在△ABC中,若∠A∶∠B∶∠C=1∶5∶6,则△ABC是直角三角形;④若三角形的三边长之比为3∶4∶5,则该三角形是直角三角形.A.0个B.1个C.2个D.3个4.如图2,将长为8cm的橡皮筋放置在地面上,固定两端点A和B,然后把中点C向上拉升3cm至点D,则橡皮筋被拉长了()图2A.2cm B.3cm C.4cm D.5cm5.将面积为8π的半圆与两个正方形按图3所示的方式摆放,则这两个正方形面积的和为()图3A.16B.32C.8πD.646.若△ABC 的三边长a ,b ,c 满足(a -b )2+|b -2|+(c 2-8)2=0,则下列对此三角形的形状描述最确切的是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形7.如图4所示,AC ⊥BD ,O 为垂足,设m =AB 2+CD 2,n =AD 2+BC 2,则m ,n 的大小关系为()图4A.m <n B.m =n C.m >nD.不确定8.如图5,点D 在△ABC 的边AC 上,将△ABC 沿BD 翻折后,点A 恰好与点C 重合.若BC =5,CD =3,则BD 的长为()图5A.1B.2C.3D.49.如图6,设正方体ABCD -A 1B 1C 1D 1的棱长为1,黑甲壳虫从点A 出发,白甲壳虫从点C 1出发,它们以相同的速度分别沿棱向前爬行.黑甲壳虫爬行的路线是:AA 1→A 1D 1→D 1C 1→C 1C →CB →BA →AA 1→A 1D 1…,白甲壳虫爬行的路线是:C 1C →CB →BB 1→B 1C 1→C 1C →CB …,那么当黑、白两个甲壳虫各爬行完第2018条棱分别停止在所到的正方体顶点处时,它们之间的最短路程的平方是()图6A.2B.3C.4D.510.如图7所示,在长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC 重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()图7A.3B.4C.5D.6二、填空题(每题3分,共18分)11.在△ABC中,若AC2+BC2=AB2,∠A∶∠B=1∶2,则∠B的度数是________.12.古希腊的哲学家柏拉图曾指出:如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a,b,c为勾股数.请你利用这个结论得出一组勾股数是____________.13.木工师傅做了一个桌面,要求桌面为长方形,现量得桌面的长为60cm,宽为32cm,对角线的长为68cm,则这个桌面________.(填“合格”或“不合格”)14.一座垂直于两岸的桥长27米,一艘小船自桥北头出发,向正南方向驶去,因水流原因,到达南岸后,发现已偏离桥南头36米,则小船实际行驶了________米.15.如图8所示,把长方形纸片ABCD沿EF,GH同时折叠,B,C两点恰好都落在AD边上的点P处,若∠FPH=90°,PF=8,PH=6,则BC边的长为________.图816.我国数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图9,它是用八个全等的直角三角形拼接而成的,记图中正方形ABCD,正方形EFGH,正方形MNKT 的面积分别为S 1,S 2,S 3,若S 1+S 2+S 3=15,则S 2的值是________.图9三、解答题(共52分)17.(6分)如图10,△ABC 中,D 是BC 上的一点,AB=10,BD=6,AD=8,AC=17.(1)判断AD 与BC 的位置关系,并说明理由;(2)求△ABC 的面积.图1018.(6分)如图11所示,在长方形ABCD 中,AB=CD=24,AD=BC=50,E 是AD 上一点,且AE∶DE=9∶16,判断△BEC 的形状.图1119.(6分)如图12是某同学设计的机器人比赛时行走的路径,机器人从A处先往东走4 m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m 就到达了B处,则点A,B之间的距离是多少?图1220.(6分)如图13所示,有两根长杆隔河相对,一杆高3m,另一杆高2m,两杆相距5m.两根长杆都与地面垂直,现两杆顶部各有一只鱼鹰,它们同时看到两杆之间的河面上E处浮出一条小鱼,于是同时以同样的速度飞下来夺鱼,结果两只鱼鹰同时叼住小鱼.求两杆底部距小鱼的距离各是多少米.(假设小鱼在此过程中保持不动)图1321.(6分)如图14,河边有A,B两个村庄,A村距河边10m,B村距河边30m,两村平行于河边方向的水平距离为30m,现要在河边建一抽水站,需铺设管道抽水到A村和B 村.(1)求铺设管道的最短长度是多少,请画图说明;(2)若铺设管道每米需要500元,则最低费用为多少?图1422.(6分)有一个如图15所示的长方体的透明鱼缸,假设其长AD=80cm,高AB=60cm,水深AE=40cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60cm.一小虫想从鱼缸外的点A处沿缸壁爬到鱼缸内G处吃鱼饵.(1)小虫应该走怎样的路线才可使爬行的路程最短?请画出它的爬行路线,并用箭头标注;(2)试求小虫爬行的最短路程.图1523.(8分)如图16,在由6个大小相同的小正方形组成的方格中,设每个小正方形的边长均为1.(1)如图①,A,B,C是三个格点(即小正方形的顶点),判断AB与BC的位置关系,并说明理由;(2)如图②,连接三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图,并说明理由).图1624.(8分)八年级(3)班开展了手工制作竞赛,每名同学都需在规定时间内完成一件手工作品.陈莉同学在制作手工作品时的第一、二个步骤是:①如图17,先裁下一张长BC=20cm ,宽AB=16cm 的长方形纸片ABCD;②将纸片沿着直线AE 折叠,点D 恰好落在BC 边上的点F 处.请你根据步骤①②解答下列问题:(1)找出图中∠FEC 的余角;(2)求EC 的长.图17答案1.C2.B3.C4.A5.D6.C7.B8.D9.D10.D11.60°12.答案不唯一,如20,99,10113.合格14.4515.2416.517.解:(1)AD ⊥BC .理由如下:因为BD 2+AD 2=62+82=102=AB 2,所以△ABD 是直角三角形,且∠ADB =90°,所以AD ⊥BC .(2)在Rt△ACD 中,因为CD 2=AC 2-AD 2=172-82=152,所以CD =15,所以S △ABC =12BC ·AD =12(BD +CD )·AD =12×21×8=84.18.解:因为AD =50,AE ∶DE =9∶16,所以AE =18,DE =32.在Rt△ABE 中,由勾股定理,得BE 2=AB 2+AE 2=242+182=900.在Rt△CDE 中,由勾股定理,得CE 2=DE 2+CD 2=322+242=1600.在△BCE 中,因为BE 2+CE 2=900+1600=2500=502=BC 2,所以△BEC 是直角三角形.19.解:如图,过点B 作BC ⊥AD 于点C ,由图可知AC =4-2+0.5=2.5(m),BC =4.5+1.5=6(m).在Rt△ABC 中,AB 2=AC 2+BC 2=2.52+62=42.25,所以AB =6.5(m),即点A ,B 之间的距离是6.5m.20.解:由题意可知AB =2m,CD =3m,BC =5m,AE =DE .设BE=x m,则EC=(5-x)m.在Rt△ABE中,由勾股定理,得AE2=AB2+BE2.在Rt△DCE中,由勾股定理,得DE2=CD2+EC2.所以AB2+BE2=CD2+EC2,即22+x2=32+(5-x)2,解得x=3,则5-x=2.所以杆AB底部距小鱼3m,杆CD底部距小鱼2m.21.解:(1)如图,过点A作AC⊥CE于点C,延长AC至点D,使CD=AC,连接BD,交河边于点E,连接AE,则抽水站应建在点E处,可使铺设的管道最短,最短长度为AE+BE,即BD的长.过点B作BF⊥AC于点F,由题意得:AC=10m,CF=30m,BF=30m,所以CD=AC=10m,所以DF=10+30=40(m).在Rt△BDF中,BD2=302+402=502,所以BD=50(m).即铺设管道的最短长度是50m.(2)最低费用为50×500=25000(元).22.解:(1)如图所示,AQ→QG为最短路线.(2)因为AE=40cm,AA′=120cm,所以A′E=120-40=80(cm).因为EG=60cm,所以A′G2=A′E2+EG2=802+602=10000,所以A′G=100cm,所以AQ+QG=A′Q+QG=A′G=100cm,所以小虫爬行的最短路程为100cm.23.解:(1)AB⊥BC.理由:如图①,连接AC.由勾股定理可得AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,所以AB2+BC2=AC2,所以△ABC是直角三角形且∠ABC=90°,所以AB⊥BC.(2)∠α+∠β=45°.理由:如图②,由勾股定理得AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,所以AB2+BC2=AC2,所以△ABC是直角三角形且∠ABC=90°.又因为AB=BC,所以△ABC是等腰直角三角形,所以∠BAC=45°,即∠α+∠γ=45°.由图可知∠β=∠γ,所以∠α+∠β=45°.24.解:(1)∠CFE,∠BAF.(2)由折叠的性质,得AF=AD=20cm,EF=DE.设EC=x cm,则EF=DE=(16-x)cm.在Rt△ABF中,BF2=AF2-AB2=202-162=144,所以BF=12(cm),所以FC=BC-BF=20-12=8(cm).在Rt△EFC中,由勾股定理,得EF2=FC2+EC2,即(16-x)2=82+x2,解得x=6,所以EC的长为6cm.。
北师大版八年级上册《第一章勾股定理》单元测试(含答案)八年级数学勾股定理单元测试(时间:100分钟总分:120分)班级学号姓名得分一、相信你一定能选对!(每小题4分,共32分)1. 三角形的三边长分别为6,8,10,它的最短边上的高为( )A . 6B . 4.5C . 2.4D . 82. 下面几组数:①7,8,9;②12,9,15;③m 2 + n 2, m 2–n 2, 2mn (m ,n 均为正整数,m >n );④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( ) A . ①② B . ②③ C .①③ D . ③④3. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是()A .a :b :c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c)D .a :b :c =13∶5∶12 4. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A . 等边三角形B . 钝角三角形C . 直角三角形D . 锐角三角形. 5.已知一个直角三角形的两边长分别为3和4,则第三边长是() A .5 B .25 C .7 D .5或76.已知Rt △ABC 中,∠C =90°,若a +b =14cm ,c =10cm ,则Rt △ABC 的面积是()A. 24cm 2B. 36cm 2C. 48cm 2D. 60cm27.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A .121B .120C .90D .不能确定8. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A .600米B . 800米C . 1000米D. 不能确定二、你能填得又快又对吗?(每小题4分,共32分)9. 在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______.10. 如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于.11.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.12.直角三角形的三边长为连续偶数,则这三个数分别为__________.13.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______第10题图第13题图第14题图第15题图米.14.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为.15.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A’,使梯子的底端A’到墙根O的距离等于3米,同时梯子的顶端B下降至B’,那么BB’的值:①等于1米;②大于1米5;③小于1米.其中正确结论的序号是.16.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 .三、认真解答,一定要细心哟!(共72分)17.(5分)右图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段.18.(6分)已知a、b、c是三角形的三边长,a=2n2+2n,b =2n+1,c=2n2+2n+1(n为大于1的自然数),试说明△ABC为直角三角形.19.(6分)小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米?20.(6分)如图所示,某人到岛上去探宝,从A处登陆后先往东走4km,又往北走1.5km,遇到障碍后又往西走2km ,再折回向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏。
第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2 D.82、满足下列条件的三角形是直角三角形的有()个.⑴在△ABC中,∠A=15°,∠B=75°;⑵在△ABC中,AB=12,BC=16,AC=20;⑶一个三角形三边长之比为5:12:13;⑷一个三角形三边长a、b、c满足a2﹣b2=c2.A.1B.2C.3D.43、以下各组数为边长的三角形中,能组成直角三角形的是()A.1,2,3B.2,3,4C.4,5,6D.5,12,134、在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,满足下列条件的△ABC 不是直角三角形的是()A.∠A∶∠B∶∠C = 1∶1∶2B.a∶b∶c =1∶1∶C.D.∠A+∠B=2∠C5、如图,四边形是菱形,对角线,相交于点O,,,点E是上一点,连接,若,则的长是()A.2B.C.3D.46、如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6B.C.D.47、如图,将置于平面直角坐标系中的三角板AOB绕O点顺时针旋转90°得△A'OB'.已知∠AOB=30°,∠B=90°,AB=1,则B'点的坐标为 ( )A. B. C. D.8、如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cmB.7 cmC.8 cmD.9 cm9、如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=600, AB=5,则AD的长是()A.5B.5C.5D.1010、在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到斜边AB的距离是()A. B. C.9 D.611、如图,把矩形ABCD绕点A顺时针旋转,使点B的对应点B落在DA的延长线上,若AB =2,BC=4,则点C与其对应点C的距离为()A.6B.8C.2D.212、如图,根据图中的标注和作图痕迹可知,在数轴上的点所表示的数为()A. B. C. D.13、下列各组数中,能作为直角三角形的三边长的是()A.1,2,3B. ,,C.3,3,5D.6,8,914、如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E、F分别为AC和AB的中点,则EF=()A.3B.4C.5D.615、如图所示,已知在三角形纸片中,,,,在边上取一点,以为折痕,使的一部分与重合,与延长线上的点重合,则的长度为()A. B. C. D.二、填空题(共10题,共计30分)16、如图所示,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A 重合,则EF长为________cm.17、如图,在周长为16,面积为6的矩形纸片中,是的中点. 是上一动点,将沿直线折叠,点落在点处.在上任取一点,连接,,则的最小值为________.18、如图,过圆外一点P作⊙O的切线PC,切点为B,连结OP交圆于点A.若AP=0A=1,则该切线长为________.19、如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了________步路(假设2步为1米),却踩伤了花草.20、如图四边形中,,,,,则的长为________.21、如图,方格纸上有一个格点三角形和一条格点线段AB.在这个格点纸上找一点C,使得△ABC与这个格点三角形全等,这样的C点可以找到________个.22、如图,点A(2,a)在直线y=x上,AB⊥x轴于点B,若点C在△AOB的内部,到点O、B的距离相等且CA=AB,则点C的坐标为________.23、四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为2的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=4 EF,则正方形ABCD的面积为________24、如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是________.25、如图,矩形ABCD中,AB=12,AD=15,E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处,点P是线段CB延长线上的动点,连接PA,若△PAF是等腰三角形,则PB的长为________.三、解答题(共5题,共计25分)26、已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.27、如图,在梯形ABCD中, ,,求DC的长.28、如图在中,,点E,F分别在上,求证:.29、在右图的正方形网格中,每个小正方形的边长为1.请在图中画一个面积为10的正方形,并写出其边长.(要求:正方形的顶点都在格点上)30、生活表明,靠墙摆放梯子时,若梯子底端离墙距离为梯子长度的,则梯子比较稳定.现有一长度为6米的梯子,当梯子稳定摆放时,它的顶端能达到5.7米高的墙头吗?参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、D5、B6、B7、A8、A9、A11、D12、A13、B14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、30、。
第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,在中,于点D,且是的中点,若则的长等于()A.5B.6C.7D.82、如图,⊙M与x轴相交于点A(2,0)、B(8,0),与y轴相切于点C,则圆心M的坐标是()A.(3,5)B.(5,3)C.(4,5)D.(5,4)3、如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为b,则ab的值是()A.4B.6C.8D.104、如图,在4×3的长方形网格中,已知A,B两点为格点(网格线的交点称为格点),若C也为该网格中的格点,且△ABC为等腰直角三角形,则格点C的个数为()A.5B.6C.3D.45、如图,圆锥侧面展开得到扇形,此扇形半径,圆心角,则此圆锥高的长度是()A.2B.C.D.6、下列说法中正确的个数为()①如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形;②对角线相等的平行四边形是菱形;③如果一个一元二次方程有实数根,那么;④三个角相等的四边形是矩形.A.1个B.2个C.3个D.4个7、一根高9m的旗杆在离地4m高处折断,折断处仍相连,此时在3.9m远处耍的身高为1m 的小明()A.没有危险B.有危险C.可能有危险D.无法判断8、四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为49,大正方形面积为169,直角三角形中较小的锐角为θ,那么sinθ的值()A. B. C. D.9、如图,网格中每个小正方形的边长均为1,点,,都在格点上,以为圆心,为半径画弧,交最上方的网格线于点,则的长为()A. B.0.8 C. D.10、如图,在△ABC中,∠ACB=90º,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB= ;②AF+BE=EF;③当点E与点B重合时,MH= ;其中正确结论的个数是( )A.0B.1C.2D.311、如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B (0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8C.4D.212、如图所示,在正方形中,边长为2的等边三角形的顶点,分别在和上.下列结论:①;②;③;④.其中结论正确的序号是()A.①②③B.①②④C.①③④D.②③④13、已知:如图,菱形ABCD的两条对角线相交于O,若AC=8,BD=6,则菱形ABCD的周长是()A.20B.16C.12D.1014、如图,在矩形ABCD中,AB=6,AD=8,以BC为斜边在矩形所在平面作直角三角形BEC,F为CD的中点,则EF的最小值为()A. B. C. D.15、如图,A,B是直线l同侧的两点,作点A关于直线l的对称点A′,连结A′B.若点A,B到直线l的距离分别为2和3,则线段AB与A′B之间的数量关系是()A.A′B 2﹣AB 2=13B.A′B 2﹣AB 2=24C.A′B 2+AB2=25 D.A′B 2+AB 2=26二、填空题(共10题,共计30分)16、如图,点G是正方形ABCD的AB边的中点,点E、F在对角线AC上,并且AE=EF=FC,如果AB=2,则BF+GE=________.</p>17、如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,AC为一条对角线,若∠ABC=90°,则四边形ABCD的面积为________.18、读诗求解:“出水三尺一红莲,风吹花朵齐水面,水平移动有六尺,水深几何请你算?”请你写出水的深度为________尺.19、如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是________.20、已知|x﹣12|+(y﹣13)2与z2﹣10z+25互为相反数,则以x,y,z为边的三角形是________ 三角形.21、如图,已知四边形ABCD是平行四边形,BC=3AB,A、B两点的坐标分别是(1,0),(0,2),C、D两点在反比例函数y=(k>0,x>0)的图象上,则k的值等于________.22、如图,在矩形ABCD中,对角线AC, BD交于点O,已知∠AOD=120°, AB=1,则BC的长为________23、如图,在边长为的正方形中,点Q是边的中点,点P是边上的一点,连接,,且,则线段的长为________ .24、如图,将矩形ABCD沿对角线AC折叠,E是点D的对称点,CE交AB于点F.若AB=16,BC=8,则BF的长为________.25、如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为________.三、解答题(共5题,共计25分)26、在 Rt△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a、b、c.若a∶c=15∶17,b=24,求a.27、如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,DA=10km,CB=15km,DA ⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.求E应建在距A多远处?28、在由6个大小相同的小正方形组成的方格中;如图,A、B、C是三个格点(即小正方形的顶点).判断AB与BC的关系,并说明理由.29、如图,是等腰直角三角形,,D是斜边的中点,分别是边上的点,且,若,,求线段的长.30、如图,△ABC中,,且AD=AC.若∠ABC=45°,D是BC边上一点,BD-DC=1.求DC的长.参考答案一、单选题(共15题,共计45分)1、D2、D3、B5、C6、A7、B8、D9、A10、C11、D12、B13、A14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)28、。
第一章勾股定理数学八年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、一直角三角形的两直角边长为3和4,则第三边长为()A. B.5 C. 或5 D.72、如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.2B.4C.D.53、小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A.2.7 米B.2.5 米C.2.1 米D.1.5 米4、如图,在半径为4的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为()A. B. C. D.5、一艘轮船以16n mile/h的速度从港口A出发向东北方向航行,另一轮船以12n mile/h 的速度从港口A出发向东南方向航行,则3h后两船相距()A.36n mileB.48n mileC.60n mileD.54n mile6、已知⊙O的直径AB=8cm,点C在⊙O上,且∠B0C=60°,则AC的长为()A.4cmB.4 cmC.5cmD.2.5cm7、如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若 AC=3,BC=4.则BD的长是()A.2B.3C.4D.58、已知下列三角形的各边长:①3、4、5,②5、12、13,③3、4、6,④5、11、12其中直角三角形有()A.4个B.3个C.2个D.1个9、以下列各组数作为三角形的三边长,其中不能构成直角三角形的是()A.1,1,B.12,16,20C.1,,D.1,2,210、下列各组数,可以作为直角三角形的三边长的是()A.8,12,20B.2,3,4C.8,10,6D.5,13,1511、图1为一个长方体,AD=AB=10,AE=6,M,N为所在棱的中点,图2为图1的表面展开图,则图2中MN的长度为()A.11B.10C.10D.812、如图,正方形ABCD的边长为1,E、F分别是BC,CD上的点,且△AEF是等边三角形,则BE的长为()A. B. C. D.13、如图有两棵树,一棵高6米,另一棵高3米,两树相距4米。
第1章勾股定理一.选择题(共12小题)1.下列为勾股数的是()A.2,3,4 B.,,C.6,7,8 D.5,12,132.已知a,b,c是△ABC的三边,且满足(a﹣b)(a2﹣b2﹣c2)=0,则△ABC是()A.直角三角形B.等边三角形C.等腰直角三角形D.等腰三角形或直角三角形3.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或104.已知x、y为正数,且|x2﹣4|+(y2﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A.5 B.25 C.7 D.155.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:66.下列各组线段中的三个长度:①9,12,15;②7,24,25;③32,42,52;④3a,4a,5a (a>0);⑤m2﹣n2,2mn,m2+n2(m,n为正整数,且m>n)其中可以构成直角三角形的有()A.5组B.4组C.3组D.2组7.△ABC中,AB=7,BC=24,AC=25.在△ABC内有一点P到各边的距离相等,则这个距离为()A.1 B.2 C.3 D.48.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4 B.6 C.8 D.109.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6410.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2C.72cm2D.108cm211.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为()A.13cm B.12cm C.10cm D.8cm12.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤b≤13 B.12≤b≤15 C.13≤b≤16 D.15≤b≤16 二.填空题(共6小题)13.如图,BD为△ABC的中线,AB=10,AD=6,BD=8,△ABC的周长是.14.直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是cm.15.如图,点A、B、C分别是正方体展开图的小正方形的顶点,则∠BAC的大小为.16.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.17.已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.三.解答题(共10小题)18.如图为一个广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求图中△ABC的周长和面积.19.如图,一根竹子高10米,折断后竹子顶端C落在竹子底端A的4米处,折断处B离地面的高度AB是多少?20.如图,在△ABD中,∠D=90°,C是BD上一点,已知BC=9,AB=17,AC=10,求AD 的长.21.已知:如图,四边形ABCD,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.求四边形ABCD 的面积.22.长方形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,求DE的长.23.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,AB的垂直平分线DE交AB于点D,交AC于点E,连接BE.(1)求AD的长;(2)求AE的长.24.如图,一个放置在地面上的长方体,长为15cm,宽为10cm,高为20cm,点B与点C 的距离为5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?25.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是多少?26.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?参考答案一.选择题(共12小题)1.【解答】解:A、22+32≠42,不能构成勾股数,故错误;B、()2+()2≠()2,不能构成勾股数,故错误;C、62+72≠82,不能构成勾股数,故错误;D、52+122=132,能构成勾股数,故正确.故选:D.2.【解答】解:∵(a﹣b)(a2﹣b2﹣c2)=0,∴a﹣b=0,或a2﹣b2﹣c2=0,即a=b或a2=b2+c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.3.【解答】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD﹣CD=8﹣2=6,则BC的长为6或10.故选:C.4.【解答】解:依题意得:x2﹣4=0,y2﹣3=0,∴x=2,y=,斜边长==,所以正方形的面积=()2=7.故选:C.5.【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选:D.6.【解答】解:①中有92+122=152;②中有72+242=252;③(32)2+(42)2≠(52)2;④中有(3a)2+(4a)2=(5a)2;⑤中有(m2﹣n2)2+(2mn)2=(m2+n2)2,所以可以构成4组直角三角形.故选:B.7.【解答】解:∵△ABC中,AB=7,BC=24,AC=25,∴AB2+BC2=72+242=252=AC2,∴∠ABC=90°,连接AP,BP,CP.设PE=PF=PG=xS△ABC=×AB×CB=84,S△ABC=AB×x+AC×x+BC×x=(AB+BC+AC)•x=×56x=28x,则28x=84,x=3.故选:C.8.【解答】解:由题意得:大正方形的面积是9,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,即a2+b2=9,a﹣b=1,解得a=,b=,则ab=4.解法2,4个三角形的面积和为9﹣1=8;每个三角形的面积为2;则ab=2;所以ab=4故选:A.9.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.10.【解答】解:由图可得,A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.即A、B、C、D、E、F、G的面积之和为3个G的面积.∵G的面积是62=36cm2,∴A、B、C、D、E、F、G的面积之和为36×3=108cm2.故选:D.11.【解答】解:如下图所示:∵长方体的底面边长分别为2cm和4cm,高为5cm.∴PA=4+2+4+2=12(cm),QA=5cm,∴PQ==13cm.故选:A.12.【解答】解:如图,连接BO,AO,当吸管底部在O点时吸管在罐内部分a最短,此时a就是圆柱形的高,即a=12;当吸管底部在A点时吸管在罐内部分a最长,即线段AB的长,在Rt△ABO中,AB===13,故此时a=13,所以12≤a≤13,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是:15≤b≤16.故选:D.二.填空题(共6小题)13.【解答】解:∵AB=10,AD=6,BD=8,∴AB2=AD2+BD2=100,∴△ABD是直角三角形且AD⊥BD.又BD为△ABC的中线,∴AB=BC=10,AD=CD=6.∴,△ABC的周长=AB+BC+AD=2AB+2AD=20+12=32.故答案是:32.14.【解答】解:当这个直角三角形的两直角边分别为3cm,4cm时,则该三角形的斜边的长为:=5(cm).当这个直角三角形的一条直角边为3cm,斜边为4cm时,则该三角形的另一条直角边的长为:=(cm).故答案为:5或.15.【解答】解:连接BC.根据勾股定理可以得到:AB=BC=,AC=2,∵()2+()2=(2)2,即AB2+BC2=AC2,∴△ABC是等腰直角三角形.∴∠BAC=45°.故答案为:45°.16.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.17.【解答】解:∵a+b=10,ab=18,c=8,∴(a+b)2﹣2ab=100﹣36=64,c2=64,∴a2+b2=c2,∴此三角形是直角三角形.故答案为:直角.三.解答题(共10小题)18.【解答】解:在△ABD中,∵AB=13m,AD=12m,BD=5m,∴AB2=AD2+BD2,∴AD⊥BC,在Rt△ADC中,∵AD=12m,AC=15m,∴DC==9(m),∴△ABC的周长为42m,△ABC的面积为84m2.19.【解答】解:设竹子折断处离地面x米,则斜边为(10﹣x)米,根据勾股定理得:x2+42=(10﹣x)2解得:x=4.2.答:折断处离地面的高度是4.2米.20.【解答】解:设CD=x,则BD=BC+CD=9+x.在△ACD中,∵∠D=90°,∴AD2=AC2﹣CD2,在△ABD中,∵∠D=90°,∴AD2=AB2﹣BD2,∴AC2﹣CD2=AB2﹣BD2,即102﹣x2=172﹣(9+x)2,解得x=6,∴AD2=102﹣62=64,∴AD=8.故AD的长为8.21.【解答】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC=,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.22.【解答】解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x,△ADE中,DE2=AE2+AD2,即x2=(10﹣x)2+16.∴x=(cm).23.【解答】解:(1)如图所示:∵在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB=10,∵DE垂直平分AB,∴AD=BD=5.(2)∵DE垂直平分AB,∴BE=AE,设EC=x,则AE=BE=8﹣x,故62+x2=(8﹣x)2,解得:x=,∴AE=8﹣=.24.【解答】解:如图所示,根据勾股定理得,AB==25cm.答:需要爬行的最短距离是25cm.25.【解答】解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.答:蚂蚁沿着台阶面爬到B点的最短路程是25dm.26.【解答】解:(1)由题意得:该长方体中能放入木棒的最大长度是:(cm).(2)分三种情况可得:AG=cm>AG=cm >AG=cm,所以最短路程为cm;(3)∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B==13(Cm).。