2.1.1《参数方程的概念、圆的参数方程》 课件(人教A版选修4-4)
- 格式:ppt
- 大小:6.33 MB
- 文档页数:2
曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化X 围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。
)0,1()21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值X 围。
例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。
1. 参数方程的概念一)目标点击:1. 理解参数方程的概念,能识别参数方程给出的曲线或曲线上点的坐标;2. 熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则;3. 能掌握消去参数的一些常用技巧:代人消参法、三角消参等; 4. 能了解参数方程中参数的意义,运用参数思想解决有关问题; 二)概念理解: 1、例题回放:问题1:(请你翻开黄岗习题册P122,阅读例题)已知圆C 的方程为1)2(22=+-y x ,过点P 1(1,0) 作圆C 的任意弦,交圆C 于另一点P 2,求P 1P 2的中点M 的轨迹方程。
书中列举了六种解法,其中解法六运用了什么方法求得M 点的轨迹方程?此种方法是如何设置参数的,其几何意义是什么?设M(y x ,),由⎪⎪⎩⎪⎪⎨⎧+=++=222112k k y k k x,消去k,得41)23(22=+-y x ,因M 与P 1不重合,所以M 点的轨迹方程为41)23(22=+-y x (1≠x ) 解法六的关键是没有直接寻求中点M 的轨迹方程0),(=y x F ,而是通过引入第三个变量k(直线的斜率),间接地求出了x 与y 的关系式,从而求得M点的轨迹方程。
实际上方程⎪⎪⎩⎪⎪⎨⎧+=++=222112k k y k k x (1)和41)23(22=+-y x (1≠x )(2)都表示同一个曲线,都是M 点的轨迹方程.这两个方程是曲线方程的两种形式。
方程组(1)是曲线的参数方程,变数k 是参数,方程(2)是曲线的普通方程。
由此可以看出参数方程和普通方程是同一曲线的两种不同的表达形式.我们对参数方程并不陌生,在求轨迹方程的过程中,我们通过设参变量k ,先求得曲线的参数方程再化为普通方程,进而求得轨迹方程.参数法是求轨迹方程的一种比较简捷、有效的方法。
问题2:几何课本3.1曲线的参数方程一节中,从研究炮弹发射后的运动规律,得出弹道曲线的方程.在这个过程中,选择什么量为参数,其物理意义是什么?参数的取值范围?通过研究炮弹发射后弹道曲线的方程说明:【例1】 形如⎩⎨⎧==)()(t g y t f x 的方程组,描述了运动轨道上的每一个位置(y x ,) 和时间t 的对应关系.【例2】 我们利用“分解与合成”的方法研究和认识了形如⎩⎨⎧==)()(t g y t f x 的方程组表示质点的运动规律.3)参数t 的取值范围是由t 的物理意义限制的. 2、曲线的参数方程与曲线C 的关系在选定的直角坐标系中,曲线的参数方程⎩⎨⎧==)()(t g y t f x t D ∈(*)与曲线C 满足以下条件:(1) 对于集合D 中的每个t 0,通过方程组(*)所确定的点()(),(0t g t f )都在曲线C 上;(2) 对于曲线C 上任意点(00,y x ),都至少存在一个t 0,满足⎩⎨⎧==)()(0000t g y t f x则 曲线C ⇔ 参数方程⎩⎨⎧==)()(t g y t f x t D ∈3、曲线的普通方程与曲线的参数方程的区别与联系曲线的普通方程),(y x F =0是相对参数方程而言,它反映了坐标变量x 与y 之间的直接联系;而参数方程⎩⎨⎧==)()(t g y t f x t D ∈是通过参数t 反映坐标变量x 与y 之间的间接联系.曲线的普通方程中有两个变数,变数的个数比方程的个数多1;曲线的参数方程中,有三个变数两个方程,变数的个数比方程的个数多1个.从这个意义上讲,曲线的普通方程和参数方程是“一致”的.参数方程 普通方程 ; 普通方程 参数方程这时普通方程和参数方程是同一曲线的两种不同表达形式. 问题3:方程222a y x =+(0≠a );方程λ=-2222by a x (0≠λ)是参数方程吗?参数方程与含参数的方程一样吗?方程222a y x =+(0≠a )表示圆心在原点的圆系,方程λ=-2222by a x (0≠λ)表示共渐近线的双曲线系.曲线的参数方程⎩⎨⎧==)()(t g y t f x(t 为参数,t D ∈)是表示一条确定的曲线;含参数的方程),,(t y x F =0却表示具有某一共同属性的曲线系,两者是有原则区别的. 三)基础知识点拨:例1:已知参数方程⎩⎨⎧==θθsin 2cos 2y x ∈θ[0,2π)判断点A (1,3)和B (2,1)是否在方程的曲线上。