第一讲PHREEQC软件简介_地下水污染与防治解析
- 格式:ppt
- 大小:139.00 KB
- 文档页数:5
quaveo GMS这是一个非常有名的地下水资源和地下水污染模拟软件。
是美国地质调查局和环保局批准的环境模拟软件。
GMS 是可利用的最复杂的和最包罗万象的地下水模型软件! 在美国政府机关,私人公司和超过90个国家以上的国际性组织,都已有用了成千上万的用户在使用GMS,它已经被证明是十分有效的和令人兴奋的模型系统。
GMS 每状态地下水模拟提供包括位置描述,模型发展,口径测定,后处理和可视化的工具。
GMS是目前最综合的地下水建模软件。
美国政府部门、私企和国际上超过90 个国家的用户都在使用GMS软件,GMS已经被证明是最有效的建模系统。
GMS为地下水模拟的每一阶段提供灵活的模拟工具,包括地点描述、模型开发、校准、后处理和模型显示。
GMS 支持二维和三维的有限元和有限差模型,包括MODFLOW 2000, MODPATH,
MT3DMS/RT3D, SEAM3D, ART3D, UTCHEM, FEMWATER, PEST, UCODE, MODAEM 和SEEP2D. 无论你需要什么模型,GMS都会提供相应工具!
安装说明:执行gms7.1.9full.exe进行软件的安装,完成之后先不要运行软件,复制crack 文件夹中的GMS71.exe到程序安装目录X:\Program Files\GMS 7.1\中,并覆盖原文件即可。
地下水污染的监测和修复技术地下水是人类生活中重要的水资源之一,然而,由于人类活动等原因,地下水面临着被污染的风险。
为了确保地下水资源的可持续利用,必须进行地下水污染的监测和修复。
下面将详细介绍地下水污染监测和修复的技术及步骤。
一、地下水污染监测技术1. 地下水采样与分析地下水采样是地下水污染监测的基础,可以通过井水采样、钻孔采样等方法获取地下水样本。
采样完成后,需对样本进行分析,包括测量水质指标如pH值、浑浊度、溶解氧等,以及测定污染物浓度如重金属、有机物等。
2. 地下水位监测地下水位监测主要通过设置水位观测井或水位监测点进行实时测量,可以了解地下水位的变化趋势。
这对于评估地下水流动特性及可能的污染扩散方向非常重要。
3. 地下水流动模拟地下水流动模拟是利用数学模型描述地下水流动规律,预测污染物传输和扩散的过程。
通过模拟计算,可以确定污染源的位置和范围,为后续的污染物修复提供依据。
二、地下水污染修复技术1. 地下水位管理地下水位管理是修复地下水污染的一项重要技术,可以通过调整地下水位达到污染物稀释、稀释增加氧化还原环境等作用。
常见的地下水位管理技术包括人工补给、减水排水等。
2. 生物修复生物修复是利用微生物和植物等生物体对地下水中的污染物进行降解和转化的过程。
生物修复技术包括自然生物修复和人工生物修复。
自然生物修复通过利用土壤和地下水系统中已有的微生物对污染物进行降解。
人工生物修复则是通过添加特定的微生物菌株等手段进行修复。
3. 土壤修复土壤修复是修复地下水污染的重要措施之一,因为地下水与土壤之间存在密切的物质交换。
土壤修复技术包括土壤通气、土壤养分调整、土壤微生物活性培养等。
4. 高级氧化技术高级氧化技术是利用强氧化剂对污染物进行氧化降解的过程。
常见的高级氧化技术包括臭氧氧化、高级氧化过程(Fenton、Fenton-like反应)等。
这些技术通过产生强氧化剂,将有机物氧化成更低毒性的产物。
三、地下水污染监测和修复步骤1. 初步调查与现场勘察:根据地下水周围环境和可能的污染源,进行调查和现场勘察,了解地下水污染的状况。
目录1. 软件介绍 (2)1.1 GMS简介 (2)1.2 Visual MODFLOW简介 (5)1.3 Visual Groundwater简介 (5)1.4 FEFLOW简介 (6)1.5 Processing MODFLOW简介 (7)2. 对比分析 (8)3. 结论 (8)1. 软件介绍1.1 GMS简介地下水模拟系统(Groundwater Modeling System),简称GMS,是美国Brigham Young University的环境模型研究实验室和美国军队排水工程试验工作站在综合已有地下水模型MODFLOW、MODPATH、MT3D、FEMWATER、RT3D、SEEP2D、SEAM3D、UTCHEM、PEST、UCODE、NUFT等地下水模型而开发的可视化三维地下水模拟软件包。
可进行水流模拟、溶质运移模拟、反应运移模拟;建立三维地层实体,进行钻孔数据管理、二维(三维)地质统计;可视化和打印二维(三维)模拟结果。
其图形界面用起来非常便捷。
由于GMS软件具有良好的使用界面,强大的前、后处理功能及优良的三维可视化效果,目前已成为国际上最受欢迎的地下水模拟软件。
(1) GMS各模块功能简介GMS由MODFLOW、MODPATH、MT3D、FEMWATER、SEEP2D、SEAM3D、RT3D、UTCHEM、PEST、UCODE、MAP、SUBSUR-FACECHARACTERIZATION、BoreholeData、TINs(Triangulated Irregular Nets)、Solid、GEO-STATISTICS等模块组成。
各模块的功能如下:MODFLOW是世界上使用最广泛的三维地下水水流模型。
专门用于孔隙介质中地下水流动的三维有限差分数值模拟,由于其程序结构的模块化、离散方法的简单化及求解方法的多样化等优点,已被广泛用来模拟井流、溪流、河流、排泄、蒸发和补给对非均质和复杂边界条件的水流系统的影响。
PHREEQC在不同化学条件下的地下水化学环境中的应用作者摘要:在高矿化度地下水分布地区实行地浸采矿是一项世界性难题, 因为当地下水矿化度超过5g/ L时就不适合进行地浸。
我国某砂岩型矿含矿含水层地下水的矿化度达到8~12 g/ L ,无论是采用酸法和碱法地浸,都发生堵塞现象。
为了解决这个难题,通过淡化,降低矿区地下水的矿化度,即降低水中Ca2 + 、Mg2 + 及SO42 - 的含量,从而避免了石膏的析出。
在充入CO2 气体的条件下,碳酸盐的饱和指数降为负值。
从而达到地浸顺利进行的目的。
应用PHREEQC模拟软件,对我国某高矿化度地下水的矿地浸溶浸剂进行模拟,通过计算饱和指数,确定溶质水解沉淀的水文地球化学条件的临界值。
研究在该地地浸工艺过程中溶质的存在形式,以及用常规地浸产生沉淀堵塞的原因,为解决地下水高矿化度的难题提供依据和办法。
关键字:高矿化度;地浸;淡化;PHREEQCAbstract:In high salinity groundwater distribution area of in-situ leaching mining is a worldwide problem, because the local water mineralization degree more than 5g/ L is not suitable for in-situ leaching. A sandstone type ore in China ore-bearing aquifer groundwater mineralization degree reached 8 ~ 12 g/ L, either by acid and alkali leaching, are blocked. In order to solve this problem, through desalination, reduce the degree of mineralization of groundwater in the lower water content, Ca2 +, Mg2 + and SO42 -, so as to avoid the precipitation of gypsum. In filling CO2 gas conditions, the saturation index of carbonate fall below zero. So as to achieve the purpose of in-situ leaching smoothly. Application of PHREEQC simulation software, to simulate the high salinity groundwater ore leaching infusion, by calculating the saturation index, the critical value to determine the hydrogeochemical conditions of solute precipitation. In the form of in-situ leaching of solutes in the process, as well as with conventional immersion precipitation blockage reason, provides the basis and the way to solve the problem of groundwater with high mineralization.Keywords:High salinity; leaching; desalination; PHREEQC1.PHREEQC模拟软件简介PHREEQC 是由美国地调所(USGS)在PHREEQE 的基础上开发的用于计算多种低温水文地球化学反应的计算机软件[1] ,是用 C 语言编写的进行低温水文地球化学计算的计算机程序,可进行正向模拟和反向模拟,几乎能解决水、气、岩土相互作用系统中所有平衡热力学和化学动力学问题,包括水溶物配合、吸附-解吸、离子交换、表面配合、溶解-沉淀、氧化-还原。
PHREEQC实例分析例1——物种形成分析这个例子计算了海水中矿物质的分布以及一组有关矿物在海水中的饱和程度。
为了证明如何在这个模型中应用新的元素,将元素铀添加入由phreeqc.dat定义的液相模型中[wateq.dat是包含于程序分类中的一个数据库文件,它来自于WATEQ4F(Ball and Nordstrom, 1991),并包含铀]。
物质形成计算所需要的数据包括温度、Ph、元素的浓度和/或其元素的化合价。
海水中的这些数据见表10。
这个例子计算中输入的数据组见表11。
在模拟中所运用的有关计算的注释包含在TITLE关键字中。
SOLUTION数据块定义了海水的成分。
注意:元素的化合价用元素化学符号后面圆括号中的数字表示[S(6), N(5), N(-3)和O(0)]。
表10—海水的成分[未指定浓度时,其浓度的单位为ppm]分析的组分PHREEQC符号浓度钙Ca 412.3镁Mg 1291.8钠Na 10768.0钾K 399.1铁Fe .002锰Mn .0002硅石,SiO2Si 4.28氯化物Cl 19353.0碱度,HCO3-Alkalinity 141.682硫酸盐,SO42-S(6) 2712.0硝酸盐,NO3-N(5) .29铵,NH4+N(-3) .03铀U .0033pH,标准单位pH 8.22pe,无单位pe 8.451温度,℃temperature 25.0密度,千克/升density 1.023用于分配氧化还原元素和计算饱和指数的pe由redox标识符所指定。
在这个例子中,用氧化还原电对O(-2)/O(0) 计算的pe值相对应于溶解氧/水,并且这个pe适用于需要pe值的所有的计算。
如果redox没有指定,那么缺省的值将会是所输入的pe。
缺省的氧化还原标识符可被任何氧化还原元素代替,如输入元素锰时,则输入的pe被用来表示各种化合价状态的锰;输入铀时,这里是氮/铵电对将会用来计算所形成各种价态铀的pe值。
摘要PHREEQC第二版是一个用C语言编写的计算机程序,对各种各样低温下的地球化学性质进行了演算。
PHREEQC是以离子联系的水化学模型为基础的,可以推算(1)生成物和饱和系数;(2)涉及到可逆反应以及不可逆反应的批反应和一维(1D)运移计算,可逆反应包括水、矿物/无机溶液、气体、固体溶液、表面络合、离子交换平衡;涉及到的不可逆反应包括指定成分摩尔转换、动态控制反应、溶液混合和温度变化;(3)逆向模拟实验,其中多组的无机物和气体摩尔转换以解释在特定成分不确定范围水体之间混合物的不同。
和第一版相比,PHREEQC 第二版的新特点如下:具有在一维运移计算中模拟弥散(或扩散)和滞流区的能力,用用户确定的速率表达式模拟分子反应,模拟标准的多种成分或非标准的两种成分的固体溶液的沉淀和溶解,模拟定体积气相和定压力气相,考虑表面系数或交换位置随着无机物的溶解和沉淀或者分子反应的变化而变化,自动采用多套收敛参数,打印用户指定量到原始输出文件和(或)适合输入到扩展表格的文件上,以一种与扩展表程序更兼容的形式确定溶解成分。
这个版本报告中说明了化学平衡、动态平衡、运移计算以及逆向模拟计算基础方程式,描述了程序输入,以及举例说明了许多程序功能目的和范围这个报告的目的是说明PHREEQC 程序的理论和操作,包括组成成分方程的确定,转换这些方程为数值计算方法的解释,补充数值方法计算机代码组织的描述,程序输入描述,以及一系列数据组输入和许多论证的程序功能的数据输入和模拟结果的说明。
生成方程和正向模拟在报告的这一部分,说明了用于确定水样热动力活动,离子交换物质、表面络合物质、气相成分、固体溶液和纯相的代数方程式。
首先,说明了水样、交换种类和表面性质的热动力活动和质量作用方程。
然后,定义一组函数,用f 表示,他们必须能同时求解以确定给定条件下的平衡,许多这样的方程是各种元素或元素的价电子状态、交换位置和表面位置的摩尔平衡方程,或来自于纯相和固体溶液的质量作用方程。
地下水污染地下水污染英文名称:groundwater pollution由于人类的活动产生的污染物渗入地下,使地下水水质恶化的现象。
工业“三废”排放以及其他途径使污染物进入地下水中并由此导致其水质下降的过程。
地下水受物理、化学、微生物作用,或有毒有害物质污染,使水质恶化,导致使用价值降低的现象。
地下水污染(ground water pollution)主要指人类活动引起地下水化学成分、物理性质和生物学特性发生改变而使质量下降的现象。
地表以下地层复杂,地下水流动极其缓慢,因此,地下水污染具有过程缓慢、不易发现和难以治理的特点。
地下水一旦受到污染,即使彻底消除其污染源,也得十几年,甚至几十年才能使水质复原。
至于要进行人工的地下含水层的更新,问题就更复杂了。
由于矿体、矿化地层及其他自然因素引起地下水某些组分富集或贫化的形象,称为“矿化”或“异常”,不应视为污染。
地表以下地层复杂,地下水流动极其缓慢,因此,地下水污染具有过程缓慢、不易发现和难以治理的特点。
地下水一旦受到污染,即使彻底消除其污染源,也得十几年,甚至几十年才能使水质复原。
至于要进行人工的地下含水层的更新,问题就更复杂了。
地下水污染地下水污染是由于人为因素造成地下水质恶化的现象。
地下水污染的原因主要有:工业废水向地下直接排放,受污染的地表水侵入到地下含水层中,人畜粪便或因过量使用农药而受污染的水渗入地下等。
污染的结果是使地下水中的有害成分如酚、铬、汞、砷、放射性物质、细菌、有机物等的含量增高。
污染的地下水对人体健康和工农业生产都有危害。
地下水污染与地表水污染有一些明显的不同:由于污染物进入含水层,以及在含水层中运动都比较缓慢,污染往往是逐渐发生的,若不进行专门监测,很难及时发觉;发现地下水污染后,确定污染源也不像地表水那么容易。
更重要的是地下水污染不易消除。
排除污染源之后,地表水可以在较短时期内达到净化;而地下水,即便排除了污染源,已经进入含水层的污染物仍将长期产生不良影响。