数列 解三角形
- 格式:docx
- 大小:37.42 KB
- 文档页数:3
第十二章 解三角形及数列一.重点知识1.解三角形重点知识:1、正弦定理:外接圆的半径)是ABC (2sin sin sin ∆===R R CcB b A a 2、余弦定理:Cab b a c B ac c a b Abc c b a cos 2cos 2cos 2222222222-+=-+=-+=3、三角形面积公式:B ac A bc C ab S ABC sin 21sin 21sin 21===∆2.数列重点知识1.在数列{a n }中,前n 项和S n 与通项a n 的关系为:⎩⎨⎧∈≥-===-)N n ,2( )1(111n S S n S a a n n n2.等差与等比数列的定义、通项公式、求和公式重要性质比较3.知识梳理(数列求和的方法)1.公式法:1)等差数列求和公式;2)等比数列求和公式;3)可转化为等差、等比的数列;2.分组求和法:把数列的每一项分成多个项或把数列的项重新组合,使其转化成等差数列或等比数列,然后由等差、等比数列求和公式求解。
3.裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。
如:1)111111()n n n na a d a a++=-⋅;21d=。
常见裂项公式:(1)111(1)1n n n n++=-;(2)1111()()n n k k n n k++=-;4.错位相减法:适用于差比数列(如果{}n a等差,{}n b等比,那么{}n na b叫做差比数列)即把每一项都乘以{}n b的公比q,向后错一项,再对应同次项相减,转化为等比数列求和.二.课前自测1.在△ABC中,角A,B,C的对边分别为a,b,c,已知1=a,1=b,︒=120C,则=c. 2.在ABC∆中,已知35513sin B,cos A==,则cosC=.3.已知锐角△ABC的面积为33,BC=4,CA=3,则角C的大小为________.4.在中,若,则最大角的余弦值等于_______________.5、已知数列{a n}的前n项和S n=n2+3n+1,求通项.6、数列{}n a适合:11a=,1na+22nnaa=+,写出前四项并写出其通项公式;7、在等差数列{a n}中,已知a15=10,a45=90,求a608、在等比数列{}n a中,若1232a a a=,23416a a a=, 则公比q=ABC∆6:2:1::=cba三.典例解析【例1】在∆ABC中,已知=ac 060=B ,求b 及A ;【变式训练1】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2=c ,6=b ,︒=120B 。
数列和解三角形大题专练1.(2023•济宁一模)已知数列{a n}的前n项和为S n,且满足:a1=1,na n+1=2S n+n(n∈N*).(1)求证:数列为常数列;(2)设,求T n.2.(2023•江宁区一模)设S n为数列{a n}的前n项和,a2=7,对任意的自然数n,恒有.(1)求数列{a n}的通项公式;(2)若集合A={x|x=a n,n∈N*},B={x|x=3n,n∈N*},将集合A∪B中的所有元素按从小到大的顺序排列构成数列{b n},计数列{b n}的前n项和为T n.求T102的值.3.(2023•汕头一模)已知T n为正项数列{a n}的前n项的乘积,且a1=3,=.(1)求数列{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为S n,求[S2023]([x]表示不超过x的最大整数).4.(2023•广州模拟)已知数列{a n}的前n项和为S n,且.(1)求a,并证明数列是等差数列;1(2)若,求正整数k的所有取值.5.(2023•广东模拟)已知数列{a n}的前n项和为S n,且.(1)求数列{a n}的通项公式;(2)若b n=na n,且数列{b n}的前n项和为T n,求证:当n≥3时,.6.(2023•宁波模拟)y=f(x)的图象为自原点出发的一条折线,当n-1≤y≤n(n∈N*)时,该函数图象是斜率为b n(b≠0)的一条线段.已知{a n}由定义.(1)用b表示a1,a2;(2)若b=2,记T n=a1+2a2+⋯+na n,求证:.7.(2023•邵阳二模)已知S n为数列{a n}的前n项和,a1=2,S n+1=S n+4a n-3,记b n=log2(a n-1)+3.(1)求数列{b n}的通项公式;(2)已知,记数列{c n}的前n项和为T n,求证:.8.(2022秋•慈溪市期末)记x i=x1+x2+x3+⋯+x n,,x i=x1×x2×x3×⋯×x n,n∈N*,已知数列{a n}和{b n}分别满足:a i=n2,b i=()n2+n.(1)求{a n},{b n}的通项公式;(2)求a i b i.9.(2023•南平模拟)已知数列{a n}的前n项和为S n,,a2=3.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求T n的取值范围.10.(2023•杭州一模)已知数列{a n}的前n项和为S n,且S n+2=2a n.(1)求a2及数列{a n}的通项公式;(2)在a n与a n+1之间插入n个数,使得这(n+2)个数依次组成公差为d的等差数列,求数列{}的前n项和T n.11.(2023•南通模拟)设数列{a n}的前n项和为S n,已知S n=2a n-n+1.(1)证明:数列{a n+1}是等比数列;(2)若数列{b n}满足b1=a2,,求数列{b n}的前14项的和.12.(2023•杭州一模)已知△ABC中角A、B、C所对的边分别为a、b、c,且满足2c sin A cos B+2b sin A cos C=a,c>a.(1)求角A;(2)若b=2,BC边上中线AD=,求△ABC的面积.13.(2023•宁波模拟)记锐角△ABC的内角为A,B,C,已知sin2A=sin B sin C.(1)求角A的最大值;(2)当角A取得最大值时,求2cos B+cos C的取值范围.14.(2022秋•温州期末)记△ABC的内角A,B,C的对边分别为a,b,c,已知=1.(1)求B;(2)若,△ABC内切圆的面积为π,求△ABC的面积.15.(2023•龙岩模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,.(1)求角B;(2)若D是AC边上的点,且AD=3DC=3,∠A=∠ABD=θ,求sinθ的值.16.(2023•湖北模拟)在△ABC中,记角A,B,C的对边分别为a,b,c,已知,且c= 2,点D在线段BC上.(1)若,求AD的长;(2)若的面积为,求的值.17.(2023•南通模拟)如图,在平面四边形ABCD中,AB=1,,CD=2,.(1)若BC⊥CD,求sin∠ADC;(2)记△ABD与△BCD的面积分别记为S和S2,求的最大值.118.(2023•广州模拟)记△ABC的内角A,B,C的对边分别为a,b,c.已知a.(1)证明:sin A+sin C=2sin B;(2)若,求△ABC的面积.19.(2023•平湖市模拟)已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足.(1)求角A的大小;(2)设AD是BC边上的高,且AD=2,求△ABC面积的最小值.20.(2023•烟台一模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且c-2b cos A=b.(1)求证:A=2B;(2)若A的角平分线交BC于D,且c=2,求△ABD面积的取值范围.参考答案与试题解析一.解答题(共20小题)1.(2023•济宁一模)已知数列{a n}的前n项和为S n,且满足:a1=1,na n+1=2S n+n(n∈N*).(1)求证:数列为常数列;(2)设,求T n.【解答】解:(1)证明:∵na n+1=2S n+n,+n-1,n≥2,∴(n-1)a n=2S n-1两式相减得:na n+1-(n-1)a n=2a n+1,∴na n+1=(n+1)a n+1,+1)=(n+1)(a n+1),∴n(a n+1∴,(n≥2),又a2=2S1+1=2a1+1=3,∴,上式也成立,∴数列为常数列;(2)由(1)得,∴a n=2n-1,∴=,∴,两式相减得=,∴.2.(2023•江宁区一模)设S n为数列{a n}的前n项和,a2=7,对任意的自然数n,恒有.(1)求数列{a n}的通项公式;(2)若集合A={x|x=a n,n∈N*},B={x|x=3n,n∈N*},将集合A∪B中的所有元素按从小到大的顺序排列构成数列{b n},计数列{b n}的前n项和为T n.求T102的值.【解答】解:(1)a2=7,对任意的自然数n,恒有,可得n=1时,a1=2a1-3,解得a1=3;n=2时,2a2=2S2-6=2(a1+a2)-6,解得a1=3;n=3时,3a3=2S3-9=2(a1+a2+a3)-9,解得a3=11.当n≥2时,na n=2S n-3n变为(n-1)a n-1=2S n-1-3(n-1),两式相减可得(n-2)a n=(n-1)a n-1-3,当n≥3时,上式变为(n-3)a n-1=(n-2)a n-2-3,上面两式相减可得a n+a n-2=2a n-1,且a1+a3=2a2,所以数列{a n}是首项为3,公差为4的等差数列,可得a n=3+4(n-1)=4n-1;(2)集合A={x|x=4n-1,n∈N*},B={x|x=3n,n∈N*},集合A∪B中的所有元素的最小值为3,且3,27,243三个元素是{b n}中前102项中的元素,且是A∩B中的元素,所以T102=(a1+a2+a3+...+a100)+9+81=×100×(3+400-1)+90=20190.3.(2023•汕头一模)已知T n为正项数列{a n}的前n项的乘积,且a1=3,=.(1)求数列{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为S n,求[S2023]([x]表示不超过x的最大整数).【解答】解:(1)T n为正项数列{a n}的前n项的乘积,且a1=3,=,可得n≥2时,==,即为=,两边取3为底的对数,可得(n-1)log3a n=n log3a n-1,即为==...==1,所以log3a n=n,则a n=3n,对n=1也成立,所以a n=3n,n∈N*;(2)b n===1-,数列{b n}的前n项和为S n=n-(++...+)>n-2(++...+)=n-1+,所以S2023>2023-1+=2022+>2022,又S2023=2023-(+...+)<2023,所以[S2023]=2022.4.(2023•广州模拟)已知数列{a n}的前n项和为S n,且.(1)求a1,并证明数列是等差数列;(2)若,求正整数k的所有取值.【解答】解:(1)证明:∵①,∴当n=1时,S1+2=2a1+1,解得a1=1,当n≥2时,S n-1+2n-1=2a n-1+1②,由①-②得a n+2n-1=2a n-2a n-1,即a n-2a n-1=2n-1,∴-=,又,∴数列{}是首项为,公差为的等差数列;(2)由(1)得=+(n-1)=n,即a n=n•2n-1,∴S n=1+2×2+3×22+...+n•2n-1③,2S n=2+2×22+3×23+...+n•2n④,由③-④得-S n=1+2+22+...+2n-1-n•2n=-n•2n=(1-n)2n-1,∴S n=(n-1)•2n+1,则S2k=(2k-1)•22k+1,2=k2•22k-1,∵,∴k2•22k-1<(2k-1)•22k+1,即k2-4k+2-<0,令f(x)=x2-4x+2-,∵y=x2-4x+2=(x-2)2-2在(2,+∞)上单调递减,y=-在(2,+∞)上单调递减,∴f(x)=x2-4x+2-在(2,+∞)上单调递减,又f(1)=1-4+2-=-<0,f(2)=4-8+2-=-<0,f(3)=9-12+2-=-<0,f(4)=2->0,要使,即f(x)<0,故正整数k的所有取值为1,2,3.5.(2023•广东模拟)已知数列{a n}的前n项和为S n,且.(1)求数列{a n}的通项公式;(2)若b n=na n,且数列{b n}的前n项和为T n,求证:当n≥3时,.【解答】解:(1)∵,∴n≥2时,S1+2S2+⋯+(n-1)S n-1=(n-1)3,相减可得:nS n=n3-(n-1)3,可得S n=3n-3+,n=1时,a1=S1=1.n≥2时,a n=S n-S n-1=3n-3+-[3(n-1)-3+]=3+-,n=1时,上式不满足,∴a n=.(2)证明:n=1时,b1=1,n≥2时,b n=na n=3n+1-=3n-,当n≥3时,数列{b n}的前n项和为T n=1+6-1+3×(3+4+⋯+n)-(++⋯+)=6+3×-(++⋯+)=-3-(++⋯+),要证明当n≥3时,,即证明当n≥3时,1≤++⋯++,令f(n)=++⋯++-1,n=3时,f(3)=0成立,而f(n)单调递增,因此当n≥3时,1≤++⋯++成立,即当n≥3时,.6.(2023•宁波模拟)函数y=f(x)的图象为自原点出发的一条折线,当n-1≤y≤n(n∈N*)时,该函数图象是斜率为b n (b ≠0)的一条线段.已知数列{a n }由定义.(1)用b 表示a 1,a 2;(2)若b =2,记T n =a 1+2a 2+⋯+na n ,求证:.【解答】解:(1)由题意可得,,,解得:,;证明:(2)当b =2时,由,得,∴,则,∴T n =a 1+2a 2+⋯+na n =(1+2+...+n )-()=(),令P n =,则,∴==,∴,则>.7.(2023•邵阳二模)已知S n 为数列{a n }的前n 项和,a 1=2,S n +1=S n +4a n -3,记b n =log 2(a n -1)+3.(1)求数列{b n }的通项公式;(2)已知,记数列{c n }的前n 项和为T n ,求证:.【解答】解:(1)由S n +1=S n +4a n -3,可得S n +1-S n =4a n -3,即a n +1=4a n -3,即有a n +1-1=4(a n -1),可得a n -1=(a 1-1)•4n -1=4n -1,则b n =log 2(a n -1)+3=log 24n -1,+3=2n +1;(2)证明:=(-1)n +1•=(-1)n +1•(+),当n为偶数时,T n=(+)-(+)+...-(+)=(-),由{-}在n∈N*上递增,可得T n≥T2=(-)=;当nn为奇数时,T n=(+)-(+)+...+(+)=(+),由>0,可得T n>>.所以.8.(2022秋•慈溪市期末)记x i=x1+x2+x3+⋯+x n,,x i=x1×x2×x3×⋯×x n,n∈N*,已知数列{a n}和{b n}分别满足:a i=n2,b i=()n2+n.(1)求{a n},{b n}的通项公式;(2)求a i b i.【解答】解:(1)∵a i=n2,b i=()n2+n,∴n≥2时,a n=n2-(n-1)2=2n-1,b n===3n.n=1时,a1=1,b1=3,满足上式,∴a n=2n-1,b n=3n.(2)a n b n=(2n-1)3n.∴a i b i=T n=3+3×32+5×33+⋯+(2n-1)3n,3T n=32+3×33+⋯+(2n-3)3n+(2n-1)3n+1,相减可得:-2T n=3+2(32+33+⋯+3n)-(2n-1)3n+1=3+2×-(2n-1)3n+1,化为:T n=(n-1)3n+1+3,即a i b i=(n-1)3n+1+3.9.(2023•南平模拟)已知数列{a n}的前n项和为S n,,a2=3.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求T n的取值范围.【解答】解:(1)因为a n+1=S n+1-S n,所以由,得,所以,所以,即.在中,令n=1,得,所以a1=1.所以数列是首项为1,公差为1的等差数列,所以,即:.当n≥2时,,a1=1也适合上式,所以数列{a n}的通项公式为a n=2n-1.(2)由(1)知,,所以,因为b n>0,所以T n随着n的增大而增大,所以,又显然,所以,即T n的取值范围为.10.(2023•杭州一模)已知数列{a n}的前n项和为S n,且S n+2=2a n.(1)求a及数列{a n}的通项公式;2(2)在a n与a n+1之间插入n个数,使得这(n+2)个数依次组成公差为d的等差数列,求数列{}的前n项和T n.【解答】解:(1)由题意,当n=1时,S1+2=a1+2=2a1,解得a1=2,当n=2时,S2+2=2a2,即a1+a2+2=2a2,解得a2=4,当n≥2时,由S n+2=2a n,可得S n-1+2=2a n-1,两式相减,可得a n=2a n-2a n-1,整理,得a n=2a n-1,∴数列{a n}是以2为首项,2为公比的等比数列,∴a n=2•2n-1=2n,n∈N*.(2)由(1)可得,,,在a n与a n+1之间插入n个数,使得这(n+2)个数依次组成公差为d的等差数列,则有a n+1-a n=(n+1)d n,∴,∴,∴T n=++•••+=+++•••+,,两式相减,可得T n=+++•••+-=1+-=-,∴T n=3-.11.(2023•南通模拟)设数列{a n}的前n项和为S n,已知S n=2a n-n+1.(1)证明:数列{a n+1}是等比数列;(2)若数列{b n}满足b1=a2,,求数列{b n}的前14项的和.【解答】解:(1)S n=2a n-n+1⋯①,则S n+1=2a n+1-(n+1)+1⋯②,②-①,得a n+1=2a n+1-2a n-1,即a n+1=2a n+1,∴a n+1+1=2(a n+1),即,令S n=2a n-n+1中n=1,得S1=a1=2a1-1+1,解得a1=0,则a1+1=1,∴{a n+1}是首项为1,公比为2的等比数列.(2)由(1)知,则,∴,且,∴当n为偶数时,,即,∴b1+b2+⋯+b14=b1+(b2+b3)+(b4+b5)+⋯+(b12+b13)+b14=1+21-1+23-1+⋯+211-1+212-1=.12.(2023•杭州一模)已知△ABC中角A、B、C所对的边分别为a、b、c,且满足2c sin A cos B+2b sin A cos C=a,c>a.(1)求角A;(2)若b=2,BC边上中线AD=,求△ABC的面积.【解答】解:(1)∵2c sin A cos B+2b sin A cos C=a,∴由正弦定理得2sin C sin A cos B+2sin B sin A cos C=3sin A,∵sin A>0,∴sin C cos B+sin B cos C=,∴sin(B+C)=,∵A+B+C=π,∴sin A=,∵c>a,∴;(2)∵,则,b=2,BC边上中线AD=,故,解得,∴.13.(2023•宁波模拟)记锐角△ABC的内角为A,B,C,已知sin2A=sin B sin C.(1)求角A的最大值;(2)当角A取得最大值时,求2cos B+cos C的取值范围.【解答】解:(1)∵sin2A=sin B sin C,∴在锐角△ABC中,由正弦定理得a2=bc,∴,∵0<A≤,故角A的最大值为;(2)由(1)得,则C=-B,则=,在锐角△ABC中,<B<,∴B+∈(,),∴sin(B+)∈(,),故2cos B+cos C的取值范围为(,).14.(2022秋•温州期末)记△ABC的内角A,B,C的对边分别为a,b,c,已知=1.(1)求B;(2)若,△ABC内切圆的面积为π,求△ABC的面积.【解答】解:(1)因为=1,∴b cos C+b sin C-a-c=0,根据正弦定理可得:sin B cos C+sin B sin C-sin A-sin C=0又A+B+C=π,∴sin B cos C+sin B sin C-sin(B+C)-sin C=0,∴sin B sin C-cos B sin C-sin C=0,又C∈(0,π),∴sin C>0,∴,∴,又B∈(0,π),∴,∴,∴;(2)∵△ABC内切圆的面积为π,所以内切圆半径r=1.由于,∴,①由余弦定理得,b2=(a+c)2-3ac,∴b2=48-3ac,②联立①②可得,即,解得或(舍去),∴.15.(2023•龙岩模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,.(1)求角B;(2)若D是AC边上的点,且AD=3DC=3,∠A=∠ABD=θ,求sinθ的值.【解答】解:(1)△ABC中,,所以+=,由正弦定理得,=,因为sin(A+B)=sin(π-C)=sin C,所以=;又因为C∈(0,π),所以sin C≠0,所以sin B=cos B,即tan B=,又因为B∈(0,π),所以B=.(2)因为D是AC边上的点,且AD=3DC=3,∠A=∠ABD=θ,所以∠BDC=2θ,AD=BD=3,DC=1,AC=4,在△ABC中,由正弦定理得,=,所以BC==8sinθ,在△BDC中,由余弦定理得,BC2=BD2+CD2-2BD•CD cos2θ=10-6cos2θ,所以64sin2θ=10-6cos2θ,所以52sin2θ=4,解得sin2θ=,又因为θ∈(0,),所以sinθ=.16.(2023•湖北模拟)在△ABC中,记角A,B,C的对边分别为a,b,c,已知,且c= 2,点D在线段BC上.(1)若,求AD的长;(2)若的面积为,求的值.【解答】解:(1)由,得2sin B sin(A+)=sin A+sin C=sin A+sin A cos B+ cos A sin B,∴sin A sin B+sin B cos A=sin A+sin A cos B+cos A sin B,∴sin B-cos B=2sin(B-)=1,又B∈(0,π),∴B-=,∴B=,∵,∴∠ADB=,在△ABD中,由正弦定理得=,∴=,解得AD=;(2)设CD=t,则BD=2t,又S△ABC=3,∴×2×3t×=3,解得t=2,∴BC=3t=6,又AC===2,在△ABD中,由正弦定理可得=,∴sin∠BAD=2sin∠ADB,在△ACD中,由正弦定理可得=,∴sin∠CAD=sin∠ADC,∵sin∠ADB=sin(π-∠ADC)=sin∠ADC,∴==2.17.(2023•南通模拟)如图,在平面四边形ABCD中,AB=1,,CD=2,.(1)若BC⊥CD,求sin∠ADC;(2)记△ABD与△BCD的面积分别记为S和S2,求的最大值.1【解答】解:(1)∵BC⊥CD,∴,,,,,∴sin∠ADC=sin(∠BDC+∠ADB)=sin∠BDC cos∠ADB+cos∠BDC sin∠ADB=;(2)设∠BAD=α,∠BCD=β,∴,∴,∴①,==,当且仅当,时取最大值,综上,,的最大值是.18.(2023•广州模拟)记△ABC的内角A,B,C的对边分别为a,b,c.已知a.(1)证明:sin A+sin C=2sin B;(2)若,求△ABC的面积.【解答】证明:(1)∵a,∴,∴a(1+cos C)+c(1+cos A)=3b,∴由正弦定理可得,sin A(1+cos C)+sin C(1+cos A)=3sin B,∴sin A+sin A cos C+sin C+sin C cos A=3sin B,∴sin A+sin C+sin(A+C)=3sin B,∵A+B+C=π,∴sin A+sin C+sin B=3sin B,∴sin A+sin C=2sin B;(2)∵sin A+sin C=2sin B,∴a+c=2b,∵b=2,∴a+c=4①,∵,∴bc cos A=3,∴a2=b2+c2-2bc•cos A,即a2=4+c2-6,∴c2-a2=2,即(c-a)(c+a)=2,∴c-a=②,联立①②解得,a=,c=,∴,∴sin A=,∴S△ABC===.19.(2023•平湖市模拟)已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足.(1)求角A的大小;(2)设AD是BC边上的高,且AD=2,求△ABC面积的最小值.【解答】解:(1)左边=,右边=,由题意得⇒sin(B+C)+cos(B +C)=0⇒tan(B+C)=-1,即tan A=1,又因为0<A<π,所以;(2)由,由余弦定理得,,,当且仅当b=c 时取“等号”,而,故.20.(2023•烟台一模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且c-2b cos A=b.(1)求证:A=2B;(2)若A的角平分线交BC于D,且c=2,求△ABD面积的取值范围.【解答】证明:(1)∵c-2b cos A=b,∴由正弦定理可得,sin C-2sin B cos A=sin B,∵A+B+C=π,∴sin(A+B)=sin C,∴sin(A+B)-2sin B cos A=sin A cos B+cos A sin B-2sin B cos A=sin B,∴sin(A-B)=sin B,∵△ABC为锐角三角形,∴A∈(0,),B∈(0,),∴A-B∈,∵y=sin x在(-,)上单调递增,∴A-B=B,即A=2B;(2)解:∵A=2B,∴在△ABD中,∠ABC=∠BAD,由正弦定理可得,=,∴AD=BD=,∴=,∵△ABC为锐角三角形,∴,解得,∴,∴△ABD面积的取值范围为().。
必修5第一章《解三角形》知识点归纳1. 高线定理:△ABC 中,a 边上的高B c C b h a sin sin ==2. 正弦定理:△ABC 中,A a sin =B b sin =Ccsin =2R ,推论c b a C B A ::sin :sin :sin = 3. 余弦定理:△ABC 中,a 2=b 2+c 2-2bc cos A ,推论 cos A =bcac b 2222-+4. 三角形的面积公式:△ABC 的面积C ab B ac A bc S sin 21sin 21sin 21===5. 解三角形的四种基本类型:(1)已知三边(SSS 型)----用余弦定理推论求三角(2)已知两边和它们的夹角(SAS 型)----用余弦定理求第三边(3)已知两角和任一边(AAS 型)----用内角和定理求第三角,用正弦定理求另两边 (4)已知两边和其中一边的对角(SSA 型)----用正弦定理求另一边的对角 注1:SSS 型,SAS 型,AAS 型至多有一解. 注2:SSA 型解情况复杂:若正弦值小于1,则用大边对大角判定角范围,可能一解或两解;若正弦值大于1,则无解.若已知角为锐角,则可能一解或两解;若已知角为钝角,则至多一解.注3:SSA 型也可以用余弦定理求第三边,通过一元二次方程解的情况判断三角形解的情况!!! 6. 应用举例:(1)求河两岸两点的水平距离(一点可达,另一点不可达). (2)求河对岸两点的水平距离(两点均不可达).(3)求底部不可达的建筑物的竖直高度(即两点的垂直距离)(注意取测量点的两种方法). (4)求航行距离与航向(方向角或方位角). 7. 常用方法:(1)边角混合式的处理方法!!!(2)韦达定理、降次公式、二倍角公式、和差角公式、辅助角公式的运用方法!!! (3)平面向量的数量积定义与坐标运算公式、两个向量夹角公式的运用方法!!!8. 其他有关结论:在△ABC 中, 下列结论也应熟记:B A B A <⇔<sin sinπ=+=⇔=B A B A B A 22222sin 2sin 或sin(A+B)=sinCcos(A+B) -cosCtan(A+B) -tanC ==2cos 2sinC B A =+ 2sin 2cos CB A =+ 12tan 2tan =+C B A tan tan tan tan tan tan A B C A B C ++=⋅⋅【典型题目】(学案)必修5第二章《数列》知识点归纳1. 等差数列与等比数列知识点类比:2. 等差数列与等比数列有关公式的推导方法:等差数列通项公式推导方法----累差法,等比数列通项公式推导方法----累商法;等差数列前n项和公式推导方法----倒序相加法,等比数列前n项和公式推导方法----乘公比错位相减法.3. 等差数列与等比数列的函数特征:等差数列通项公式是关于n的一次函数,等比数列通项公式是关于n的指数型函数;等差数列前n项和公式是关于n的二次函数,且常数项为零;等比数列前n 项和公式形如)1(nqA -,其中1,0≠≠q A .4. 证明一个数列是等差数列或等比数列的方法!!!5. 求等差数列前n 项和S n 最值的方法------对称轴法与变号项法!!!6. 形如}{n nb a +的数列求前n 项和S n 的方法-----拆项重组法!!!(其中}{n a }{n b 为等差或等比数列)7. 形如}1{1+⋅n n a a 的数列求前n 项和S n 的方法-----裂项相消法!!!(其中}{n a 为等差数列)8. 形如}{n nb a ⋅的数列求前n 项和S n 的方法-----乘公比错位相减法!!!(其中}{n a 为等差,}{n b 等比)9. 由S n 求a n 的方法!!!10. 处理S n 与a n 混合式的方法!!!11. 求等差数列的绝对值数列的前n 项和S n 的方法. 12. 判断一个数列单调性的方法.13. 等差数列的单调性与什么量有关?有什么关系?!!! 14. 等比数列的单调性与什么量有关?有什么关系?!!! **15. 求两个等差数列的公共项的方法.**16. 求一个等差数列与一个等比数列的公共项的方法.【典型题目】(学案)。
选择题1.在△ABC 中,a =80,b =100,∠A =45°,则此三角形解的情况是( )A .一解B .两解C .一解或两解D .无解2.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( ) A.2π3 B.5π6C.3π4D.π3 3.在△ABC 中,∠B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( )A .45°B .60°C .75°D .90°4.在△ABC 中,a 2+b 2-ab =c 2=23S △ABC ,则△ABC 一定是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形5.如图所示为起重机装置示意图.支杆BC =10 m ,吊杆AC =15 m ,吊索AB =519 m ,起吊的货物与岸的距离AD 为( ) A .30 mB.152 3 m C .15 3 m D .45 m6.在△ABC 中,b 2-bc -2c 2=0,a =6,cos A =78,则△ABC 的面积S 为( ) A.152B.15 C .2 D .37.锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( )A .1<a <3B .1<a < 5 C.3<a < 5 D .不确定8.△ABC 中,a ,b ,c 分别是A 、B 、C 的对边,且满足2b =a +c ,B =30°,△ABC 的面积为0.5,那么b 为( )A .1+ 3B .3+ 3C.3+33D .2+ 3 9.在△ABC 中,下列结论:①a 2>b 2+c 2,则△ABC 为钝角三角形;②a 2=b 2+c 2+bc ,则A 为60°;③a 2+b 2>c 2,则△ABC 为锐角三角形;④若A ∶B ∶C =1∶2∶3,则a ∶b ∶c =1∶2∶3.其中正确的个数为( )A .1B .2C .3D .410.锐角三角形ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对边,设B =2A ,则b a的取值范围是( )A .(-2,2)B .(0,2)C .(2,2)D .(2,3)11.已知数列{a n }满足a 1=3,a n -a n +1+1=0(n ∈N +),则此数列中a 10等于( )A .-7B .11C .12D .-612.已知等差数列{a n }的首项a 1=125,第10项是第一个比1大的项,则公差d 的取值范围是( ) A .d >875 B .d <825C.875<d <325D.875<d ≤325填空题13.在△ABC 中,若A =120°,AB =5,BC =7,则AC =________.14.△ABC 中,2a sin A -b sin B -c sin C=________. 15.已知平面上有四点O ,A ,B ,C ,满足OA →+OB →+OC →=0,OA →·OB →=OB →·OC →=OC →·OA →=-1,则△ABC的周长是________.16______行,第______列.解答题17.已知△ABC 的三个内角∠A 、∠B 、∠C 的对边分别为a 、b 、c ,满足a +c =2b 且2cos2B -8cos B +5=0,求∠B 的大小并判断△ABC 的形状.18.在锐角△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 所对的边,且3a =2c sin A .(1)确定∠C 的大小;(2)若c =3,求△ABC 周长的取值范围.19.△ABC 的周长为20,BC 边的长为7,∠A =60°,求它的内切圆半径.20.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且满足b 2=ac ,cos B =34. (1)求1tan A +1tan C的值; (2)设BA →·BC →=32,求三边a 、b 、c 的长度. 21.已知函数f (x )=3x x +3,数列{x n }的通项由x n =f (x n -1)(n ≥2,且n ∈N +)确定. (1)求证:{1x n}是等差数列; (2)当x 1=12时,求x 100.。
本讲主要复习了必修(5)数列、解三角形、不等式等三部分知识要点和考点。
在利用这些知识点解决问题时注重函数的思想、数与形结合的思想、方程的数学思想、分类讨论的数学思想、等价转化的数学思想及配方法、特值法、分离参数法等数学思想方法的应用。
考点一:数列、不等式、解三角形等基础知识的考查例1、在下列命题中,把正确命题的序号填在题后的横线上。
(1)当三角形的各角的余切成等差数列时,各角所对边的平方成等差数列(2)已知不等式①②x2-6x+8<0 ③2x2-9x+m<0若同时满足①②的x值也满足③,则m9.(3)一个等差数列和一个等比数列,其首项是相等的正数,若其第(2n+1)项是相等的,则这两个数列的第(n+1)项也是相等的。
(4)方程有解时a的取值范围是在上述命题中正确命题的序号是。
分析:(1)设三个角A,B,C所对的边分别是a,b,c.由已知条件得:2cotB=cotA+cotC然后化为正、余弦。
通分再利用正、余弦定理可证:2b2=a2+c2.(2)可用特值法:先求不等式①②解集的交集。
再对m取特值验证。
也可利用二次函数的图像解决。
(3)利用等差、等比数列的通项公式表示这两个数列的第(n+1)项,然后比较大小。
或取特值验证。
(4)分离参数法:把a分离出来,用表示a,再用均值不等式求解。
解析:(1)由已知得:2cotB=cotA+cotC.利用正、余弦定理可证:2b2=a2+c2.故命题(1)是正确的。
(2)不等式①②的交集是(2,3),取m=0时,不等式化为:显然当2<x<3时,不等式成立。
故命题(2)错误另解:利用二次函数图像求解:设f(x)=2x2-9x+m,如图由已知得:(3)设数列分别是等差数列、等比数列。
首项分别是>0公差和公比分别是d、q,取n=2,q=2,由已知:即:,故==-=故,故命题(3)错误。
(4)由方程得:-(4+a)=.故此命题错误。
考点二:不等式与数列的综合应用的考查例2、已知数列{a}是首项a1>0,q>-1且q≠1的等比数列,设数列{b}的通项为b=a-ka(n∈N),数列{a}、{b}的前n项和分别为S,T.如果T>kS对一切自然数n都成立,求实数k的取值范围.分析:由探寻T和S的关系入手谋求解题思路。
解三角形数列不等式考点分析。
必修五所学三章都为高考考察重点,且是与高考数学联络严密的知识点,温习中应惹起大家注重,本文经过对考点停止剖析来指点温习。
一、解三角形考点剖析〔1〕判别三角形的外形;〔2〕正余弦定理的复杂运用;〔3〕测量效果。
这些标题难度 不大,题型是中档题与复杂题,主要考察考生运用正余弦定理及三角公式停止恒等变形的才干;化简、求值或判别三角形外形为主,也能够与其他知识相结合,重点与三角恒等或平面向量交汇。
例1、台风中心此A 地以每小时20千米的速度向正南方向移动,离台风中心30千米内 的地域为风险区,城市B 在A 的正西方40千米处,城市B 处于风险区内的时间为多长? 解:如图,设台风中心从A 地到C 地用时为t ,|AC|=20t ,在▲ABC 中,由余弦定理得:t t A AC AB AC AB BC 280024001600cos ||||2||||||22-+=-+=, 依题意,只需30||≤BC ,城市B 就处于风险区内,由此得: 121222122min max =--+=-t t 〔小时〕, 所以城市B 处于风险区内的时间为1小时。
点评:正确了解方位角,画出契合实践状况的图形,普通是以时间为变量表达出图形中的线段,然后应用正、余弦定理,结合详细效果情境列式处置,这是应用正、余弦定理处置实践效果的重要思绪之一。
例2、▲ABC 的内角A 、B 、C 所对的边区分为a ,b ,c ,它的外接圆半径为6,三边a ,b ,c ,角A 、C 和▲ABC 的面积S 满足以下条件:22)(a c b S --=和〔1〕求B sin 的值;〔2〕求▲ABC 的面积的最大值。
剖析:此题从所给条件▲ABC 的面积S 满足以下条件:22)(a c b S --=能获取的信息是应用面积公式B ac S sin 21=与的关系式树立起等量关系,结合余弦定理第一问可求得;由条件外接圆半径为6应联想正弦定理以及条件34sin sin =+C A 可得a +c =16为定值,应与基本不等式联络解第二问。
太多的事物不仅与表示它的量的大小有关,而且也与方向有关.三角恒等变换左图为世界著名的艺术殿堂——法国卢浮宫,它的正门入口处有一个金字塔建筑,它的设计者就是著名的美籍华人建筑师贝聿铭.那么在测量这类建筑物的高度时(如右图),我们需要来解复合角∠DAC =α-β的正、余弦值,这就需要对两角差的正、余弦进行变换.事实上,变换是数学的重要工具,同时也是高中数学学习的主要对象之一.其中代数变换我们已经在初中学习过,而且在必修4的第一章也涉及同角三角函数的变换.与代数变换一样,三角变换也是一种只变其形,不改变其本质的一种变换.两角差的余弦公式我们知道cos45°=22,cos30°=32.请同学们思考这样一个问题:cos15°=cos(45°-30°)=cos45°-cos30°成立吗?答案当然是不成立,因为cos15°的值应该是一个正值,而cos45°-cos30°是一个负值,那么cos15°的值与cos45°和cos30°之间到底存在什么关系呢?两角和与差的正弦、余弦变脸是川剧艺术中塑造人物的一种特技,演员在熟练的动作之间,奇妙地变换着不同的脸谱,用以表现剧中人物的情绪、心理状态的突然变化,达到“相随心变”的艺术效果,那么在三角函数中,两角和与差的正弦余弦之间又有怎样的变换呢?两角和与差的正切坐在教室里,需要一个合适视角才能看清楚黑板;在足球比赛中,若你从所守球门附近带球过人沿直线推进,要想把球准确地踢进大门去,需要确定一个最佳位置,这些实际生活中的问题可不是仅仅一个角度就可以解决的,其中涉及到至少两个角度的因素,只有把问题分析全面,才能稳操胜券.怎样确定两角之间的关系呢?二倍角的正弦、余弦、正切公式在我们接触到的事物中,带有一般性的事物总是大开大合,纵横驰骋,往往包含一切,而特殊的事物则是小巧玲珑,温婉和融,往往显出简洁,奇峻之美.三角函数的和(差)角的正弦、余弦、正切公式中的角都是带有一般性的,一般性中又蕴含着特殊性,即两角相等的情形,那么这些二倍角又有什么简洁,奇峻之美呢?三角恒等变换变换是生活中的常态,换一个环境,换一种心情,换一个角度,或许就柳暗花明又一村了,我们经常看到的魔术更是如此.可见,变换已深入到我们生活中的每一个角落.在前面几节的学习中,我们已经领略了三角变换的风采,那么,对于前面学习的和角公式,通过对各公式做加减运算,又能得到什么样的变换呢?解三角形在本章“解三角形”的引言中,我们遇到这么一个问题,“遥不可及的月亮离地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,那么,他们是用什么神奇的方法探索到这个奥秘的呢?1992年9月21日,中国政府决定实施载人航天工程,并确定了三步走的发展战略。
一、解三角形1.正弦定理:_________________________________.(其中R 为△ABC 的外接圆的半径,下同)变式:(1) ______,_______,________a b c ===.(2) sin _____,sin _____,sin _____A B C ===.(3)::________________a b c =.(4)____________sin sin sin a b cA B C++=++.2.余弦定理:2_______________,a =2_______________,b =2_______________c =.变式:c o s __________A =c o s __________B =c o s _________C =.3.利用正弦定理,可以解决以下两类解三角形的问题:(1)____________________________________________(2)____________________________________________4.利用余弦定理,可以解决以下两类解三角形的问题:(1)____________________________________________(2)____________________________________________5.已知,a b 和A ,用正弦定理求B 时解的情况如下:(1)若A 为锐角,则(2)若A 为直角或钝角,则,_______,_______a b a b ≤⎧⎨>⎩解解6.由正弦定理,可得三角形的面积公式:________________________ABC S ===7.判断三角形的形状一般都有两种思路: ___或____ _____.二、数列的概念1、按_____叫数列,数列中的每一个数叫做这个数列中的___ __,数列的一般形式可以写成 ,,,,21n a a a ,简记为,其中n a 是数列的第项.2.数列的分类:⑴按照数列的项数可以分为:、;⑵按项与项的大小关系可以分为:⇔1n a +n a ;⇔1n a +n a ;⇔1n a +n a .3.数列的通项公式:一般地,如果数列的___与____之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,但并非每个数列都有通项公式,也并非都是唯一的.4.数列的常用表示方法,,.5.记数列{}n a 的前n 项和为n S ,即n n a a a a S ++++= 321;已知n S ,则=n a .三、等差数列1、一般地,如果一个数列从第项起,每一项与它的前一项的等于同一个常数,则该数列就叫做等差数列.符号表示为,这个常数叫做等差数列的,记作.2、数列,,a A b 成等差数列的充要条件是,其中A 叫做,a b 的.3、等差数列的有关公式设等差数列{}n a 的公差为d ,⑴通项公式:+=1a a n ;⑵通项公式推广:+=m n a a .4、等差数列通项公式与函数的关系()d a dn a n -+=1,数列{}n a 是等差数列的充要条件是其通项公式=n a .5、等差数列的常用性质⑴若{}n a 为等差数列,且q p n m +=+()*∈N q p n m ,,,,则,,,,q p n m a a a a 之间的等量关系为.特别地,当时,2m n p a a a +=.⑵当0d >时,{}n a 单调;当0d =时,{}n a 为常数列;当0d <时,{}n a 单调.6.证明数列{}n a 是等差数列的常用方法方法一:_________________________________方法二:_________________________________7、等差数列的前n 项和公式n S ===8.等差数列的前n 项和公式与函数的关系21()22n d dS n a n =+-,数列{}n a 是等差数列的充要条件是其前n 项和公式n S =.9.设n S 是等差数列{}n a 的前n 项和(1)数列n S n ⎧⎫⎨⎬⎩⎭是数列;(2)数列232,,,m m m m m S S S S S -- 是___数列;(3)若n 为偶数,则S S -=奇偶(用n 与d 表示)S S =奇偶(用n 表示).【必须知道推导过程】若n 为奇数,则=-偶奇S S ;S S =奇偶(用n 表示).【必须知道推导过程】四、等比数列1、一般地,如果一个数列从第项起,每一项与它的前一项的等于同一个常数,则该数列就叫做等比数列.符号表示为,这个常数叫做等比数列的,记作.2、如果在a 与b 中间插入一个数G ,使,,a G b 成等比数列,那么G 叫做a 与b 的.3.等比数列的有关公式,设等比数列{}n a 的公比为q ,⑴通项公式:⨯=1a a n ;⑵通项公式推广:⨯=m n a a .4.等比数列的常用性质⑴若{}n a 为等比数列,且t s n m +=+()*∈N t s n m ,,,,则,,,,t s n m a a a a 之间的等量关系为.特别地,当s n m 2=+时,. ⑵若{}{},n n a b (项数相同)是等比数列,则{}n a λ{}{}21(0),,,,n n n n n n a a a b a b λ⎧⎫⎧⎫≠⋅⎨⎬⎨⎬⎩⎭⎩⎭仍是等比数列. 5.等比数列的前n 项和公式当1q =时,n S =;当1q ≠时n S ==.6.等比数列的前n 项和的性质(1)公比不为1-的等比数列{}n a 的前n 项和为n S ,则232,,m m m m m S S S S S --,…仍成比数列.(2)若数列{}n a 为等差数列,公差为d ,则数列{}na a 是等比数列,公比为da ,()1,0≠>a a .7、等比与等差数列结合性质(1)若数列{}n a 为等比数列,公比为()0≠q q ,且0>n a ,则数列{}n a a lg 是等差数列,公差为q a log ,()1,0≠>a a .(2)若{}n a 既是等差数列,又是等比数列,则{}n a 是非零常数列.五、数列中和与项的关系1.数列中通项n a 与前n 项和n S 的关系是2.含有通项n a 与前n 项和n S 的混合表达式时一般处理方法有:①利用⎩⎨⎧≥-==-2,1,11n S S n S a n n n 消去,求解关于通项n a 的递推关系式,(减一复制作差法)②利用⎩⎨⎧≥-==-2,1,11n S S n S a n n n 消去,求解关于前n 项和n S 的递推关系式3.注意公式⎩⎨⎧≥-==-2,1,11n S S n S a n n n 是分段函数,特别不要忘了时的情况六、数列的求和,求通项的方法1.求数列前n 项和n S 主要方法:2.等差数列求和公式:或推导方法:等比数列求和公式:推导方法:3.常见的裂项公式有:(1)=+)1(1n n (2)=+)2(1n n(3)=++11n n求数列通项方法有:1.定义法:①等差数列通项公式;②等比数列通项公式2.累加法:若1()n n a a f n +-=求n a :3.累乘法:已知1()n na f n a +=求n a :4构造法:(构造等差、等比数列)常见有:①一阶递推关系q pa a n n +=-1:原递推公式转化为:)(1t a p t a n n -=-+,其中②用倒数法求通项:形如11n n n a a ka b--=+的递推数列都可以用倒数法求通项。
行测三角形数字推理题题目:行测三角形数字推理题正文:在行测考试中,有一类常见的题目是三角形数字推理题。
这类题目要求考生通过观察给出的数字三角形,推理出其中的规律,并填入合适的数字。
下面将介绍几种常见的三角形数字推理题类型,并通过例题详细说明解题思路。
一、等差数列型在等差数列型的三角形数字推理题中,数字之间存在相等的差值。
通过观察这个差值的规律,可以推理出缺失的数字。
例如,给出以下的数字三角形:13 69 12 ?观察第一行数字,可以发现第二个数字是第一个数字加2,第三个数字是第一个数字加5。
同样地,观察第二行数字,可以得出第三行数字的规律:第一个数字是第二行数字的第一个数字加6,第二个数字是第二行数字的第一个数字加9。
因此,答案是15。
二、等比数列型在等比数列型的三角形数字推理题中,数字之间存在相等的比值。
通过观察这个比值的规律,可以推理出缺失的数字。
例如,给出以下的数字三角形:12 43 ? 24观察第一行数字,可以发现第二个数字是第一个数字乘以2,第三个数字是第二个数字乘以2。
同样地,观察第二行数字,可以得出第三行数字的规律:第一个数字是第二行数字的第一个数字乘以3,第三个数字是第二行数字的第二个数字乘以3。
因此,答案是9。
三、二项式系数型在二项式系数型的三角形数字推理题中,数字之间存在二项式系数的规律。
通过观察这个规律,可以推理出缺失的数字。
例如,给出以下的数字三角形:11 11 ? 1观察第一行数字,可以发现第二个数字是由第一个数字通过二项式系数的规律得出。
同样地,观察第二行数字,可以得出第三行数字的规律:第一个数字仍然是1,第二个数字是由第二行数字的第一个数字通过二项式系数的规律得出。
因此,答案是2。
四、规律递推型在规律递推型的三角形数字推理题中,数字之间存在一种递推的规律。
通过观察这个递推的规律,可以推理出缺失的数字。
例如,给出以下的数字三角形:25 916 ? 25观察第一行数字,可以发现第二个数字是第一个数字的平方加1,第三个数字是第二个数字的平方加1。
分析23年高考数学乙卷解答题型2023全国乙卷理科高考数学真题理科数学的考点1.【数列】【解三角形】数列与解三角形的学问点在解答题的第一题中,是非此即彼的状态,近些年的特征是大题第一题两年数列两年解三角形轮番来,2023、大题第一题考查的是数列,大题第一题考查的是解三角形,故估计大题第一题较大可能仍旧考查解三角形。
数列主要考察数列的定义,等差数列、等比数列的性质,数列的通项公式及数列的求和。
解三角形在解答题中主要考查正、余弦定理在解三角形中的应用。
2.【立体几何】高考在解答题的其次或第三题位置考查一道立体几何题,主要考查空间线面平行、垂直的证明,求二面角等,出题比较稳定,其次问需合理建立空间直角坐标系,并正确计算。
3.【概率】高考在解答题的其次或第三题位置考查一道概率题,主要考查古典概型,几何概型,二项分布,超几何分布,回来分析与统计,近年来概率题每年考查的角度都不一样,并且题干长,是同学感到困难的一题,需正确理解题意。
4.【解析几何】高考在第20题的位置考查一道解析几何题。
主要考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。
5.【导数】高考在第21题的位置考查一道导数题。
主要考查含参数的函数的切线、单调性、最值、零点、不等式证明等问题,并且含参问题一般较难,处于必做题的最终一题。
6.【选做题】今年高考几何证明选讲已经删除,选考题只剩两道,一道是坐标系与参数方程问题,另一道是不等式选讲问题。
坐标系与参数方程题主要考查曲线的极坐标方程、参数方程、直线参数方程的几何意义的应用以及范围的最值问题;不等式选讲题主要考查肯定值不等式的化简,求参数的范围及不等式的证明。
数学解题技巧1、首先是精选题目,做到少而精。
只有解决质量高的、有代表性的题目才能到达事半功倍的效果。
然而绝大多数的同学还没有区分、分析题目好坏的力量,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
解三角形、数列两章知识点查漏补缺知识点1:正、余弦定理综合应用例1:在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cosC 2c-a=cos B b. (I )求sin sin CA的值; (II )若cosB=14,b=2,ABC ∆的面积S 。
总结:解题中利用ABC ∆中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算.如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sin cos ,cos sin ,tan cot 222222A B C A B C A B C+++===. 练习:在ABC ∆中,若cos cos 2B bC a c -=+ (1)求角B 的大小(2)若b =4a c +=,求ABC ∆的面积 知识点2:正、余弦定理实际应用 求解三角形应用题的一般步骤:(1)分析:分析题意,弄清已知和所求;(2)建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图; (3)求解:正确运用正、余弦定理求解;(4)检验:检验上述所求是否符合实际意义。
1、距离问题:为了测量河对岸两个建筑物C ,D 两点之间的距离,在河岸这边选取点A ,B ,测得∠BAC=45°,∠DAC=75°,∠ABD=30°,∠DBC=45°,又知AB=3,试求CD 的长.2、高度问题:航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的高度为海拔10000m,速度为180km (千米)/h (小时)飞机先看到山顶的俯角为150,经过420s (秒)后又看到山顶的俯角为450,求山顶的海拔高度(取2=1.4,3=1.7).图1 图23、角度问题:在海岸A 处,发现北偏东45︒方向,距A1海里的B 处有一艘走私船,在A 处北偏西75︒方向,距A 为2海里的C处的缉私船奉命以海里/小时的速度追截走私船.此时走私船正以10海里/小时的速度从B 处向北偏东30︒方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间?知识点3:数列提高题例1:若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,求这个数列的项数n .练习:等差数列{a n }中, 前4项和为26, 后4项之和为110, 且n 项和为187, 则n 的值为____________.例2:设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S n n ,则=55b a .n n b a =例3:设{a n }是公差为-2的等差数列,如果a 1+ a 4+ a 7+……+ a 97=50,则a 3+ a 6+a 9……+ a 99= ( )(A)182 (B)-80 (C)-82 (D)-84 练习:等比数列{a n }中, 公比为2, 前99项之和为56, 则a 3+a 6+a 9+…a 99等于________. 例4:等差数列{a n } 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ) (A)130 (B)170 (C)210 (D)160 练习:1、已知n S 为等比数列{}n a 前n 项和,54=n S ,602=n S ,则=n S 3 . 2、已知等比数列前10项的和为10,前20项的和为30,那么前30项的和为 3、等差数列{a n }中,a 1+a 2+……a 10=15,a 11+a 12+……a 20=20,则a 21+a 22+……a 30=( ) (A)15 (B)25 (C)35 (D)45 知识点4:三个或四个数成等差、等比数列,如何设元 例题:1、三个正数成等差数列,它们的和为15,分别加上1,3,9就成为等比数列,则这三个数为________.2、已知5个数成等差数列,它们的和为5,平方和为985,求这5个数. 3、三个数成等比数列,它们的积为512,如果中间一个数加上2,则成等差数列, 这三个是总结:已知三个或四个数成等差、等比数列一类问题时,要善于设元,目的在于减少运算量,如三个数成等差数列时,除了设a,a+d,a+2d 外,还可设a-d,a,a+d;四个数成等差数列时,可设为a-3d,a-d,a+d,a+3d.;如三个数成等比数列时,45︒75︒ 30︒ ACB除了设a,aq,aq2,还可以设aq a qa,,,四个数成等比数列时,可设为33,,,aq aq qaq a 。
解三角形与数列-CAL-FENGHAI.-(YICAI)-Company One1解三角形及其数列专练1.(2016·吉林)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m =(cosA ,3sinA),n =(2cosA ,-2cosA),m ·n =-1. (1)若a =23,c =2,求△ABC 的面积; (2)求b -2c acos (π3+C )的值.解析 (1)因为m ·n =2cos 2A -3sin2A =cos2A -3sin2A +1=2cos(2A +π3)+1=-1,所以cos(2A +π3)=-1.又π3<2A +π3<2π+π3,所以2A +π3=π,A =π3.由12=4+b 2-2×2×b×cos π3,得b =4(舍负值).所以△ABC 的面积为12×2×4×sin π3=2 3. (2)b -2c acos (π3+C )=sinB -2sinC sinAcos (π3+C )=sin (A +C )-2sinC32cos (π3+C )=32cosC -32sinC 32cos (π3+C )=3cos (π3+C )32cos (π3+C )=2.2.(2016·福建)在△ABC 中,B =π3,点D 在边AB 上,BD =1,且DA =DC.(1)若△BCD 的面积为3,求CD ; (2)若AC =3,求∠DCA.解析 (1)因为S △BCD =3,即12BC ·BD · sinB =3,又B =π3,BD =1,所以BC =4. 在△BDC 中,由余弦定理得,CD 2=BC 2+BD 2-2BC·BD·cosB , 即CD 2=16+1-2×4×1×12=13,解得CD =13.(2)在△ACD 中,DA =DC ,可设∠A =∠DCA =θ,则∠ADC =π-2θ,又AC =3,由正弦定理,有AC sin2θ=CD sin θ,所以CD =32cos θ.在△BDC 中,∠BDC =2θ,∠BCD =2π3-2θ,由正弦定理得,CD sinB =BD sin ∠BCD ,即32cos θsin π3=1sin (2π3-2θ),化简得cos θ=sin(2π3-2θ),于是sin(π2-θ)=sin(2π3-2θ). 因为0<θ<π2,所以0<π2-θ<π2,-π3<2π3-2θ<2π3, 所以π2-θ=2π3-2θ或π2-θ+2π3-2θ=π, 解得θ=π6或θ=π18,故∠DCA =π6或∠DCA =π18.3.(2017·河北)设△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2-c 2)sinA =ab(sinC +2sinB),a =1. (1)求角A 的大小;(2)求△ABC 的周长的取值范围.解析 (1)由(a 2+b 2-c 2)sinA =ab(sinC +2sinB),结合余弦定理可得2abcosCsinA =ab(sinC +2sinB),即2cosCsinA =sinC +2sin(A +C),化简得sinC(1+2cosA)=0. 因为sinC ≠0,所以cosA =-12,又A ∈(0,π),所以A =2π3.(2)因为A =2π3,a =1,由正弦定理可得b =asinB sinA =233sinB ,c =233sinC ,所以△ABC 的周长l =a +b +c =1+233sinB +233sinC =1+233[sinB +sin(π3-B)]=1+233(12sinB +32cosB)=1+233sin(B +π3).因为B ∈(0,π3),所以(B +π3)∈(π3,2π3),则sin(B +π3)∈(32,1], 则l =a +b +c =1+233sin(B +π3)∈(2,1+233].4.已知函数f(x)=(3sin ωx -cos ωx)·cos ωx +12(其中ω>0),若f(x)的一条对称轴离最近的对称中心的距离为π4.(1)求y =f(x)的单调递增区间;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足(2b -a)cosC =c·cosA ,且f(B)恰是f(x)的最大值,试判断△ABC 的形状.解析 (1)f(x)=3sin ωx ·cos ωx -cos 2ωx +12=32sin2ωx -12(2cos 2ωx -1) =32sin2ωx -12cos2ωx =sin(2ωx -π6).因为函数f(x)的一条对称轴离最近的对称中心的距离为π4, 所以T =π,所以2π2ω=π,所以ω=1. 所以f(x)=sin(2x -π6).由-π2+2k π≤2x -π6≤π2+2k π(k ∈Z),得-π6+k π≤x ≤π3+k π(k ∈Z). 所以函数f(x)的单调递增区间为[-π6+k π,π3+k π](k ∈Z). (2)因为(2b -a)cosC =c·cosA ,由正弦定理,得(2sinB -sinA)cosC =sinC ·cosA , 即2sinBcosC =sinAcosC +sinCcosA =sin(A +C)=sinB , 因为sinB ≠0,所以cosC =12,所以C =π3. 所以0<B<2π3,0<2B<4π3,-π6<2B -π6<7π6.根据正弦函数的图像,可以看出f(x)的最大值为f(B)=1,此时2B -π6=π2,即B =π3,所以A =π3,所以△ABC 为等边三角形. 5.(2017·山西)已知f(x)=cosx (λsinx -cosx)+cos 2(π2-x)+1(λ>0)的最大值为3.(1)求函数f(x)的对称轴;(2)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cosA cosB =a2c -b ,若不等式f(B)<m 恒成立,求实数m 的取值范围.解析(1)f(x)=cosx (λsinx -cosx)+cos 2(π2-x)+1=λsinxcosx -cos 2x +sin 2x +1=12λsin2x -cos2x +1.≤λ24+1+1,由题意知:λ24+1+1=3,λ2=12,∵λ>0,∴λ=2 3. ∴f(x)=3sin2x -cos2x +1=2sin(2x -π6)+1. 令2x -π6=π2+k π,解得x =k π2+π3,(k ∈Z). ∴函数f(x)的对称轴为x =k π2+π3(k ∈Z). (2)∵cosA cosB =a 2c -b ,由正弦定理,cosA cosB =sinA2sinC -sinB可变形得,sin(A +B)=2cosAsinC ,即sinC =2cosAsinC ,∵sinC ≠0,∴cosA =12,又0<A<π,所以A =π3.∴f(B)=2sin(2B -π6)+1,只需f(B)max <m ,∵0<B<2π3,∴-π6<2B -π6<7π6, ∴-12<sin(2B -π6)≤1,即0<f(B)≤3. ∴m>3.数列小题专练一、选择题1.等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( ) A .18 B .12 C .9 D .6 答案 D解析 由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d)=6,故选D.2古代数学着作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为( )A .7B .8C .9D .10 答案 B解析 设该女子第一天织布x 尺,则x (1-25)1-2=5,得x =531,∴前n 天所织布的尺数为531(2n -1).由531(2n -1)≥30,得2n ≥187,则n 的最小值为8.3各项均为正数的等差数列{a n }中,a 4a 9=36,则前12项和S 12的最小值为( ) A .78 B .48 C .60 D .72 答案 D解析 S 12=6(a 1+a 12)=6(a 4+a 9)≥6×2a 4a 9=72,当且仅当a 4=a 9=6时等号成立. 5已知a n =log n +1(n +2)(n ∈N *),观察下列算式:a 1·a 2=log 23·log 34=lg3lg2·lg4lg3=2;a 1·a 2·a 3·a 4·a 5·a 6=log 23·log 34·…·log 78=lg3lg2·lg 4lg3·…·lg8lg7=3,…;若a 1·a 2·a 3·…·a m =2 016(m ∈N *).则m 的值为( ) A .22 016+2 B .22 016 C .22 016-2 D .22 016-4 答案 C解析 由于a 1·a 2·a 3·…·a m =lg3lg2·lg4lg3·lg5lg4·…·lg (m +2)lg (m +1)=lg (m +2)lg2=2 016,可得lg(m +2)=2 016lg2=lg22 016,可得m +2=22 016,解得m =22 016-2.7.(2016·福建质检)已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T n >1的n 的最小值为( ) A .4 B .5 C .6 D .7 答案 C解析 通解:设等比数列{a n }的公比为q(q>1),因为a 2a 4=a 3,所以a 32=a 3,又a n >0,所以a 3=1,所以等比数列{a n }的前n 项积T n =a 1·a 2·a 3·a 4·…·a n =a 3q 2·a 3q ·a 3·a 3q ·…·a 3q n -3=q n (-2+n -3)2=qn (n -5)2,则使得T n >1的n 的最小值为6,故选C.优解:设等比数列{a n }的公比为q(q>1),因为a 2a 4=a 3,所以a 32=a 3,又a n >0,所以a 3=1,所以T 4=a 1·a 2·a 3·a 4=a 3q 2·a 3q ·a 3·a 3q =1q 2<1,排除A ;T 5=1q 2·a 3q 2=1,排除B ;T 6=T 5·a 3q 3=q 3>1,故选C.8.(2016·长沙调研)已知数列{a n }的前n 项和为S n (S n ≠0),a 1=12,且对任意正整数n ,都有a n+1+S n S n +1=0,则a 1+a 20=( )答案 A解析 由条件可得a n +1=-S n S n +1,即S n +1-S n =-S n S n +1,所以1S n +1-1S n =1,则数列{1S n}是公差为1的等差数列,故1S n=1S 1+(n -1)×1=2+n -1=n +1,故S n =1n +1,则a 20=S 20-S 19=121-120=-1420,故a 1+a 20=12-1420=209420.9.(2016·郑州预测)正项等比数列{a n }中的a 1、a 4 031是函数f(x)=13x 3-4x 2+6x -3的极值点,则log6a 2 016=()A .1B .2 D .-1 答案 A解析 因为f ′(x)=x 2-8x +6,且a 1、a 4 031是方程x 2-8x +6=0的两根,所以a 1·a 4 031=a 20162=6,即a 2 016=6,所以log 6a 2 016=1,故选A.10.(2015·洛阳调研)已知等差数列{a n }的前n 项和S n 满足S 3=6,S 5=252,则数列{a n 2n }的前n 项和为( )A .1-n +22n +1B .2-n +42n +1C .2-n +42nD .2-n +22n +1 答案 B解析 设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2d ,因为S 3=6,S 5=252,所以⎩⎪⎨⎪⎧3a 1+3d =6,5a 1+10d =252,解得⎩⎪⎨⎪⎧a 1=32,d =12,所以a n =12n +1,a n 2n =n +22n +1,设数列{a n2n }的前n 项和为T n ,则T n =322+423+524+…+n +12n +n +22n +1,12T n =323+424+525+…+n +12n +1+n +22n +2,两式相减得12T n =34+(123+124+…+12n +1)-n +22n +2=34+14(1-12n -1)-n +22n +2,所以T n =2-n +42n +1.11.在等差数列{a n }中,a 1=-2 017,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 017的值等于( )A .-2 016B .-2 017C .-2 015D .-2 018 答案 B解析 ∵S 1212-S 1010=2,∴12(a 1+a 12)212-10(a 1+a 10)210=2,故a 12-a 10=4. ∴2d =4,d =2,∴S 2 017=2 017a 1+2 017×2 0162×d =2 017×(-2 017)+2 017×2 016=-2 017.12.(2016·长沙四校)已知函数f(x +12)为奇函数,g(x)=f(x)+1,即a n =g(n2 014),则数列{a n }的前2 013项和为( )A .2 014B .2 013C .2 012D .2 011 答案 B解析 因为f(x +12)为奇函数,所以函数y =f(x)的图像关于点(12,0)对称,则函数y =g(x)的图像关于点(12,1)对称,故函数g(x)满足g(x)+g(1-x)=2.设S =g(12 014)+g(22 014)+…+g(2 0132 014),倒序后得S =g(2 0132 014)+g(2 0122 014)+…+g(12 014), 两式相加后得2S =[g(12 014)+g(2 0132 014)]+[g(22 014)+g(2 0122 014)]+…+[g(2 0132 014)+g(12 014)]=2 013×2,所以S =2 013. 二、填空题15.设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=2S n +3,则S 4=________.答案 66 解析 依题a n =2S n -1+3(n≥2),与原式作差得,a n +1-a n =2a n ,n ≥2,即a n +1=3a n ,n ≥2,可见,数列{a n }从第二项起是公比为3的等比数列,a 2=5,所以S 4=1+5×(1-33)1-3=66.16.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.答案 2 2n +1-2解析 由等比数列的性质,得a 3+a 5=(a 2+a 4)q ,解得q =a 3+a 5a 2+a 4=2,又∵a 2+a 4=a 1(q +q 3)=20,∴a 1=2. ∴S n =a 1(1-q n )1-q=2n +1-2.17.设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.则a 2=_______,a n =________.答案 4 n 2解析 依题意,2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4. 当n≥2时,2S n =na n +1-13n 3-n 2-23n , 2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),两式相减得2a n =na n +1-(n -1)a n -13(3n 2-3n +1)-(2n -1)-23,整理得(n +1)a n =na n +1-n(n +1),即a n +1n +1-a n n=1.又a 22-a 11=1,故数列{a n n }是首项为a 11=1,公差为1的等差数列.所以a nn =1+(n -1)×1=n.所以a n =n 2. 18.等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为_____. -49 解析 由S n =na 1+n (n -1)2d ,得⎩⎨⎧10a 1+45d =0,15a 1+105d =25,解得a 1=-3,d =23. 则S n =-3n +n (n -1)2·23=13(n 2-10n),所以nS n =13(n 3-10n 2). 令f(x)=13(x 3-10x 2),则f ′(x)=x 2-203x =x(x -203),当x ∈(1,203)时,f(x)递减; 当x ∈(203,+∞)时,f(x)递增,又6<203<7,f(6)=-48,f(7)=-49,19.已知奇函数f(x)是定义在R 上的增函数,数列{x n }是一个公差为2的等差数列,满足f(x 8)+f(x 9)+f(x 10)+f(x 11)=0,则x 2 017=________. 答案 4 015解析 因为f(x)是奇函数,在R 上是增函数,且数列{x n }是递增数列,所以由f(x 8)+f(x 9)+f(x 10)+f(x 11)=0可得x 8+x 11=x 9+x 10=0.由数列{a n }的公差为2,得x 1=-17,所以x n =x 1+(n -1)d =2n -19.所以x 2 017=2×2 017-19=4 015.20.已知{a n }是等差数列,设T n =|a 1|+|a 2|+…+|a n |(n ∈N *).某同学设计了一个求T n 的部分算法流程图(如图),图中空白处理框中是用n 的表达式对T n 赋值,则空白处理框中应填入:T n =________. 答案 n 2-9n +40解析 由流程图可知该等差数列的通项公式是a n =2n -10或a n =-2n +10.不妨令a n =2n -10,则当n≥6时,T n =|a 1|+|a 2|+…+|a n |=-a 1-a 2-…-a 5+a 6+a 7+…+a n =20+(n -5)(2+2n -10)2=n 2-9n +40.1.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________.答案 20解析 方法一:设等差数列的公差为d ,则a 3+a 8=2a 1+9d =10,3a 5+a 7=4a 1+18d =2(2a 1+9d)=20.方法二:∵{a n }为等差数列,∴3a 5+a 7=2a 5+(a 5+a 7)=2a 5+2a 6=2(a 5+a 6)=2(a 3+a 8)=20.2.已知等差数列{a n }的公差和等比数列{b n }的公比都是d(d≠1),且a 1=b 1, a 4=b 4,a 10=b 10,则a 1和d 的值分别为( ),32 B .-32,32 C .-32,-32 ,-32 答案 D3.设数列{a n }是公差不为0的等差数列,S n 是数列{a n }的前n 项和,若S 1,S 2,S 4成等比数列,则a 4a 1=( )A .3B .4C .6D .7 答案 D解析 由S 1,S 2,S 4成等比数列,得S 22=S 1S 4,即为(2a 1+d)2=a 1(4a 1+6d).又d≠0,故可化简为d =2a 1,所以a 4a 1=a 1+3×2a 1a 1=7. 4.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-7 答案 D 解析 ∵{a n }为等比数列,∴a 5a 6=a 4a 7=-8.联立⎩⎨⎧a 4+a 7=2,a 4a 7=-8,可解得⎩⎨⎧a 4=4,a 7=-2或⎩⎨⎧a 4=-2,a 7=4.当⎩⎨⎧a 4=4,a 7=-2时,q 3=-12,故a 1+a 10=a 4q 3+a 7q 3=-7;当⎩⎨⎧a 4=-2,a 7=4时,q 3=-2,同理,有a 1+a 10=-7. 数列大题专练1.(2016·湖北)已知数列{a n }的前n 项和为S n ,且满足a n =2-3S n (n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =log 2a n ,求数列{a n +b n }的前n 项和T n . 解析 (1)当n≥2时,由a n =2-3S n ①, 得a n -1=2-3S n -1②,①-②即得4a n =a n -1,而当n =1时,a 1=2-3a 1,故a 1=12.因而数列{a n }是首项为12,公比为14的等比数列,其通项公式为a n =12·(14)n -1=(12)2n -1(n ∈N *). (2)由(1)得b n =log 2a n =1-2n(n ∈N *).数列{a n +b n }的前n 项和T n =a 1+b 1+a 2+b 2+…+a n +b n =(a 1+…+a n )+(b 1+…+b n ) =12[1-(14)n ]1-14+(-1+1-2n )n 2=23-n 2-23×(14)n,(n ∈N *). 2.设S n 为数列{a n }的前n 项和,已知a 1=2,对任意n ∈N *,都有2S n =(n +1)a n . (1)求数列{a n }的通项公式; (2)若数列{4a n (a n +2)}的前n 项和为T n ,求证:12≤T n <1.解析 (1)因为2S n =(n +1)a n ,当n≥2时,2S n -1=na n -1, 两式相减,得2a n =(n +1)a n -na n -1,即(n -1)a n =na n -1, 所以当n≥2时,a n n =a n -1n -1,所以a n n =a 11. 因为a 1=2,所以a n =2n.(2)因为a n =2n ,令b n =4a n (a n +2),n ∈N *,所以b n =42n (2n +2)=1n (n +1)=1n -1n +1.所以T n =b 1+b 2+…+b n =(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1=nn +1.因为1n +1>0,所以1-1n +1<1. 因为f(n)=1n +1在n ∈N *上是递减函数,所以1-1n +1在n ∈N *上是递增的, 所以当n =1时,T n 取最小值12. 所以12≤T n <1.3.(2016·长沙调研)已知数列{a n }与{b n }满足a n +1-a n =2(b n +1-b n )(n ∈N *). (1)若a 1=1,b n =3n +5,求数列{a n }的通项公式;(2)若a 1=6,b n =2n (n ∈N *),且λa n >2n +n +2λ对一切n ∈N *恒成立,求实数λ的取值范围. 解析 (1)因为a n +1-a n =2(b n +1-b n ),b n =3n +5, 所以a n +1-a n =2(b n +1-b n )=2(3n +8-3n -5)=6,所以{a n }是首项为a 1=1,公差为6的等差数列.所以a n =6n -5(n ∈N *). (2)因为b n =2n ,所以a n +1-a n =2(2n +1-2n )=2n +1,当n≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n +2n -1+…+22+6=2n +1+2,当n =1时,a 1=6,符合上式,所以a n =2n +1+2(n ∈N *), 由λa n >2n +n +2λ得λ>2n +n 2n +1=12+n 2n +1,所以当n =1,2时,2n +n 2n +1取最大值34,故λ的取值范围为(34,+∞).4.(2016·衡中一调)已知数列{a n }满足a n +2=qa n (q 为实数,且q≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列. (1)求q 的值和{a n }的通项公式;(2)设b n =log 2a 2n a 2n -1,n ∈N *,求数列{b n }的前n 项和.解析 (1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4), 即a 4-a 2=a 5-a 3,所以a 2(q -1)=a 3(q -1), 又因为q≠1,所以a 2=a 3. 由a 3=qa 1,得q =2. 当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12;当n =2k(k ∈N *)时,a n =a 2k =2k =2n 2,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧2n -12,n 为奇数,2n 2,n 为偶数.(2)由(1)得b n =log 2a 2n a 2n -1=n2n -1,n ∈N *. 设数列{b n }的前n 项和为S n ,则S n =1×120+2×121+3×122+…+(n -1)×12n -2+n×12n -1,12S n =1×121+2×122+3×123+…+(n -1)×12n -1+n×12n ,上述两式相减,得12S n =120+12+122+…+12n -1-n 2n =1-12n1-12-n 2n =2-22n -n2n , 整理,得S n =4-n +22n -1,n ∈N *.5.已知数列{a n }的前n 项的和为S n ,且a 1=12,a n +1=n +12n a n .(1)证明:数列{a nn }是等比数列; (2)求通项公式a n 与前n 项的和S n ;(3)设b n =n(2-S n ),n ∈N *,若集合M ={n|b n ≥λ,n ∈N *}恰有4个元素,求实数λ的取值范围.解析 (1)因为a 1=12,a n +1=n +12n a n ,当n ∈N *时,a n n ≠0.又因为a 11=12,a n +1n +1∶a n n =12(n ∈N *)为常数,所以{a n n }是以12为首项,12为公比的等比数列.(2)由{a n n }是以12为首项,12为公比的等比数列,得a n n =12×(12)n -1=(12)n . 所以a n =n×(12)n . 由错位相减法得S n =2-(12)n -1-n(12)n. (3)因为b n =n(2-S n )(n ∈N *),所以b n =n(12)n -1+n 2(12)n.因为b n +1-b n =(3-n 2)(12)n +1,所以b 2>b 1,b 2>b 3>b 4>….因为集合M ={n|b n ≥λ,n ∈N *}恰有4个元素,且b 1=b 4=32,b 2=2,b 3=158,b 5=3532,所以3532<λ≤32.数列专练(二)·1.(2017·长沙模拟)已知数列{a n }满足a 1+a 22+…+a nn =2n +1, (1)求{a n }的通项公式; (2)求{a n }的前n 项和.解析 (1)当n =1时,由题设知a 1=4;当n≥2时,由题设a 1+a 22+…+a n n =2n +1知a 1+a 22+…+a n -1n -1=2n ,两式相减得a nn =2n +1-2n , 即a n =n×2n (n≥2), 故{a n }的通项公式为a n =⎩⎨⎧4,n =1,n ×2n (n≥2,n ∈N *).(2)设{a n }的前n 项和为S n , 则S n =1×22+2×22+…+n×2n ,2S n =1×23+2×23+…+(n -1)×2n +n×2n +1,两式相减得S n =n×2n +1-(22+23+…+2n )=n×2n +1-4×(2n -1-1)=(n -1)×2n +1+4.2.(2016·四川)已知等比数列{a n }的首项a 1=13,前n 项和S n 满足S 1,2S 2,3S 3成等差数列. (1)求{a n }的通项公式;(2)设b n =2-(11+a n +11-a n +1),数列{b n }的前n 项和为T n ,求证:T n <13.解析 (1)因为S 1,2S 2,3S 3成等差数列,所以4S 2=S 1+3S 3,当q =1时,不符合;当q≠1时,得4a 1(1-q 2)1-q =a 1+3a 1(1-q 3)1-q ,故q =13或q =0(舍去).综上可知,a n =(13)n.(2)由(1)知a n =(13)n ,所以b n =2-[11+(13)n +11-(13)n +1]=2-11+(13)n -11-(13)n +1=1-11+(13)n +1-11-(13)n +1=(1-3n 3n +1)+(1-3n +13n +1-1)=13n +1-13n +1-1, 由13n +1<13n ,13n +1-1>13n +1得13n +1-13n +1-1<13n -13n +1,所以b n <13n-13n +1, 从而T n =b 1+b 2+…+b n <(13-132)+(132-133)+…+(13n -13n +1)=13-13n +1<13,因此T n <13.3.(2016·湖南)已知△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,其面积S =43,B =60°,且a 2+c 2=2b 2;等差数列{a n }中,a 1=a ,公差d =b.数列{b n }的前n 项和为T n ,且T n -2b n +3=0,n ∈N *.(1)求数列{a n }、{b n }的通项公式;(2)设c n =⎩⎨⎧a n ,n 为奇数,b n ,n 为偶数,求数列{c n }的前2n +1项和P 2n +1.解析 (1)∵S =12acsinB =43,∴ac =16,又a 2+c 2=2b 2,b 2=a 2+c 2-2accosB ,∴b 2=ac =16,∴b =4, 从而(a +c)2=a 2+c 2+2ac =64,a +c =8,∴a =c =4. 故可得⎩⎨⎧a 1=4,d =4,∴a n =4n.∵T n -2b n +3=0,∴当n =1时,b 1=3, 当n≥2时,T n -1-2b n -1+3=0, 两式相减,得b n =2b n -1(n≥2),∴数列{b n }为等比数列,∴b n =3·2n -1. (2)依题意,c n =⎩⎨⎧4n ,n 为奇数,3·2n -1,n 为偶数. P 2n +1=(a 1+a 3+…+a 2n +1)+(b 2+b 4+…+b 2n )=[4+4(2n +1)]·(n +1)2+6(1-4n )1-4=22n +1+4n 2+8n +2. 4.(2017·保定调研)已知数列{a n }中,a 1=1,a 2=3,其前n 项和为S n ,且当n≥2时,a n +1S n -1-a n S n =0.(1)求证:数列{S n }是等比数列,并求数列{a n }的通项公式;(2)令b n =9a n (a n +3)(a n +1+3),记数列{b n }的前n 项和为T n ,求T n .解析 (1)当n≥2时,a n +1S n -1-a n S n =(S n +1-S n )S n -1-(S n -S n -1)S n =S n +1S n -1-S n 2=0, ∴S n 2=S n -1S n +1(n≥2),又由S 1=1≠0,S 2=4≠0,可推知对一切正整数n 均有S n ≠0,则数列{S n }是等比数列,S n =4n -1. 当n≥2时,a n =S n -S n -1=3×4n -2,又a 1=S 1=1,∴a n =⎩⎨⎧1,(n =1),3×4n -2,(n≥2). (2)当n≥2时,b n=9a n(a n +3)(a n +1+3)=9×3×4n -2(3×4n -2+3)(3×4n -1+3)=3×4n -2(4n -2+1)(4n -1+1),又b 1=38, ∴b n =⎩⎪⎨⎪⎧38,(n =1),3×4n -2(4n -2+1)(4n-1+1),(n≥2),则T 1=b 1=38 当n≥2时,b n =3×4n -2(4n -2+1)(4n -1+1)=14n -2+1-14n -1+1,则T n =38+(142-2+1-142-1+1)+…+(14n -2+1-14n -1+1)=78-14n -1+1.综上:T n =78-14n -1+1.5.(2016·河南联考)已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n项和为T n ,设c n =T 2n +1-T n . (1)求数列{b n }的通项公式; (2)判断数列{c n }的单调性;(3)当n≥2时,T 2n +1-T n <15-712log a (a -1)恒成立,求a 的取值范围. 解析 (1)当n =1时,a 1=S 1=2,当n≥2时,a n =S n -S n -1=2n -1. ∴数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧23,n =1,1n ,n ≥2.(2)∵c n =T 2n +1-T n ,∴c n =b n +1+b n +2+…+b 2n +1=1n +1+1n +2+…+12n +1.∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0. ∴数列{c n }是递减数列.(3)由(2)知,当n≥2时,c 2=13+14+15为最大, ∴13+14+15<15-712log a (a -1)恒成立,即log a (a -1)<-1.由真数a -1>0,得a>1,∴a -1<1a . 整理为a 2-a -1<0,解得1<a<5+12.∴a 的取值范围是(1,5+12).。
数列——命题规律——数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要地位,高考对本部分的考查比较全面,对等差数列、等比数列的考查每年都不会遗漏,且多以一个选择题或填空题、一个解答题的形式进行考查,小题难度一般为中等偏下,大题难度一般为中等偏上。
有关数列的大题大多是综合题,经常把数列和指数函数、对数函数或者不等式的知识综合起来。
——知识总结——等差数列等比数列定义数列从第2项起,每一项与它前一项的差都是同一个常数数列从第2项起,每一项与它前一项的比都是同一个常数限定条件首项、公差没有任何限定首项、公差都不能为0通项公式dnaan)1(1-+=11-=nnqaa图像特点直线dxay)1(1-+=上孤立的点函数11-=x qay图像上孤立的点性质①dmnaamn)(-+=②若kqpnm2=+=+,则kqpnmaaaaa2=+=+①mnmnqaa-=②若kqpnm2=+=+,则2kqpnmaaaaa==等差/等比中项2baA+=abG=2abG±=前n 项和公式①2)(1naaS nn+=②dnnnaSn2)1(1-+=③ndandSn)2(212-+=⎪⎩⎪⎨⎧≠--=--==).1(11)1()1(111qqqaaqqaqnaSnnn前n 项和性质①“片段和”性质:kkkkkSSSSS232,,--,…构成等差数列;②⎭⎬⎫⎩⎨⎧nSn也为等差数列;③项数“奇偶”性质:(Ⅰ)项数为偶数n2项:naaSnnn)(12++=ndSS=-奇偶①“片段和”性质:kkkkkSSSSS232,,--,…构成等比数列;②若某数列的前n项和AAqS nn+-=),1,0(+∈≠≠NnqAq,则该数列为等比数列;③在等比数列中,若项数为偶数n2项:S偶(Ⅱ)项数为奇数12-n项:nnanS)12(12-=-naSS=-偶奇1偶奇-=nnSS——题型方法总结——类型一等差、等比数列性质考查:例1.已知等差数列{}na中,(1)若11,395=-=aa,则=7a_____;(2)若48262532=+++aaaa,则=14a_____;(3)若1,16497==+aaa,则=12a_____;(4)若52,34525432==+++aaaaaa,则=d_____。
数列解三角形
数列是数学中一个重要的概念,它是由一系列按照一定规律排列的数字组成的。
解三角形则是指根据已知条件推导出三角形中各边长和角度的过程。
本文将以数列和解三角形为主题,讨论它们的相关性和应用。
一、数列的定义与性质
数列是由一系列按照一定规律排列的数字组成的序列。
数列中的每个数字被称为数列的项,用a_n表示第n个项。
数列可以是有限的,也可以是无限的。
数列有许多重要性质和特征,其中包括等差数列和等比数列。
等差数列是指数列中相邻两项之差始终相等的数列,通常用a, a+d, a+2d, ...来表示,其中a为首项,d为公差。
等比数列是指数列中相邻两项的比值始终相等的数列,通常用a, ar, ar^2, ...来表示,其中a为首项,r为公比。
二、数列的应用领域
数列在许多领域中都有重要的应用。
在数学中,数列是数学归纳法的研究对象,通过研究数列的性质和规律,可以推导出各种数学定理和公式。
在物理学中,数列可以用来描述许多自然现象的规律。
比如,等差数列可以用来描述自由落体运动的位移变化,等比数列可以用来描述指数增长或衰减的现象。
在计算机科学中,数列被广泛应用于算法设计和数据结构的研究中。
比如,斐波那契数列是一种经典的数列,它在递归和动态规划算法中
有着重要的应用。
三、解三角形的方法和技巧
解三角形是根据已知条件确定三角形的各边长和角度的过程。
常见
的解三角形方法包括正弦定理、余弦定理和正切定理。
正弦定理是指在任意三角形中,三条边的比值等于相应的正弦比,
即a/sinA = b/sinB = c/sinC,其中a、b、c分别为三角形的边长,A、B、C分别为相应的角度。
余弦定理是指在任意三角形中,三条边的平方和等于另外两边的平
方和减去它们的二倍乘积和相应的余弦值的乘积,即a^2 = b^2 + c^2 -
2bc*cosA,其中a、b、c分别为三角形的边长,A为对应的夹角。
正切定理是指在任意三角形中,两条边的比值等于相应的正切比,
即tanA = b/c,其中A为夹角,b、c分别为相应边长。
解三角形的方法需要根据已知条件灵活选择,并配合运用数列的性
质和特点进行求解。
四、数列和解三角形的关系
数列和解三角形之间有着密切的联系和应用。
数列的规律性和变化
规律可以反映出三角形的形状和特性。
通过观察数列的规律,可以推
测出三角形的角度以及边长的比例关系。
同时,在解三角形的过程中,也可以运用数列的性质和公式进行计
算和推导。
比如,在使用正弦定理或余弦定理解三角形时,可以将三
角形的边长和角度表示为数列的形式,通过求解数列中的等差或等比
关系,求得三角形的具体数值。
总结:
数列和解三角形是数学中的两个重要概念,它们在数学和其他学科
中都有广泛的应用。
数列的性质和规律可以推导出各种数学定理和公式,解三角形则是根据已知条件确定三角形的各边长和角度的过程。
在应用数列和解三角形时,需要掌握数列和三角形的基本概念与性质,并灵活运用相关的定理和公式进行推导和计算。
通过深入研究数
列和解三角形的规律和特性,可以更好地理解数学和其他学科的知识,并且应用于实际问题的解决中。