基础埋深计算公式
- 格式:docx
- 大小:3.13 KB
- 文档页数:2
条形基础垫层工程量计算公式
1.计算基础的长度:基础的长度可以根据设计图纸上的标注来确定,
常用单位是米(m)。
2.计算基础的宽度:基础的宽度也可以通过设计图纸上的标注来确定,常用单位是米(m)。
3.计算基础的深度:基础的深度是根据设计要求和土层的承载力来确
定的。
常用单位是米(m)。
4.计算基础的体积:基础的体积可以通过长度、宽度和深度的乘积来
计算,常用单位是立方米(m³)。
基础的体积=长度×宽度×深度
5.计算混凝土的用量:混凝土的用量可以通过基础的体积和混凝土的
密度来计算,常用单位是立方米(m³)。
混凝土的用量=基础的体积×混凝土的密度
6. 计算混凝土的密度:混凝土的密度是指单位体积下混凝土的质量,常用单位是千克/立方米(kg/m³)。
混凝土的密度可以根据施工要求或者
混凝土类型来确定。
7.计算备料量:在计算混凝土用量时,需要考虑到混凝土的浪费率和
混凝土的材料比例。
浪费率一般为5-10%。
材料比例根据混凝土的配方来
确定,如水泥、碎石、沙子的比例。
实际用量=混凝土的用量/(1-浪费率)
实际备料量=实际用量×材料比例
这些公式可以根据具体的工程要求和设计图纸来进行计算,确保工程的质量和施工进度。
同时,还需要考虑到施工中的实际情况和施工现场的要求,以便进行相应的调整和修正。
地基基础方案评价1、天然地基上的浅基础设计为六层住宅楼,砖混结构,拟采用天然地基上的浅基础,最大线荷载F K=300kN/m。
根椐场地地质条件对浅基础进行评价:①、属先确定持力层,根椐场地地质条件,第②层可做为基础的持力层,其承载力特征值f ak=150kPa。
基础埋深d=2.0m。
②、求持力层修正后的承载力特征值f a(深度修正):根椐5.2.4公式: f a=f ak+εdγm(d-0.5)式中:f ak---持力层承载力特征值 =150kPaεd=1.6, (根椐基底下土的类别,查表5.2.4:e=0.821, I L=0.35)若为湿陷性黄土或新近堆积黄土(Q42)应按GBJ25-90规范表3.0.4确定。
γm-----基础底面以上土的加权平均重度=16.5kN/m3,d----基础埋深=2.0m代入计算为:f a=150+1.6×16.5×(2-0.5)=189.6kPa。
③、计算基础宽度b:根椐基础面积计算公式代入计算:A=Lb≥ = m取2.2m式中: F K---基础顶面的竖向力=300kN/mf a----修正后的地基承载力特征值=189.6kPaL、b---基础的长度和宽度(条基时,L取1.0米)γ---基础及上伏土的平均重度=20.0kN/m3④、求基底压力P K:根椐5.2.2-1 公式式中:F k=300kN/mG k=L b dγ=1×2.2×2.0×20=88kNA=1×2.2m将参数代入计算后得p k=176.4kN/m2(kPa)⑤、根椐5.2.1-1式:f a≥p k判定地基强度是否滿足要求。
以上计算的f a=189.6kPa,p k=176.4kPa,滿足5.2.1-1式f a≥p k ,地基强度滿足要求。
⑥、验算下卧层的承载力⒈已知下卧层的f ak=100kPa⒉下卧层顶面以上地基土的加权平均重度为:γm = = 18.3kN/m3⒊求下卧层(第③层粉土)修正后的地基承载力特征值f a:f a=f ak+εdγm(d-0.5)式中:f ak=100kPaεd=1.5 (第③层粉土I p=8.1 ρw>10%)查表5.2.4。
浅析基础埋置深度计算摘要:在基坑开挖前,受土体自重应力的作用,土样处于三向应力状态,基坑开挖和土样采集过程中,土体受到扰动,改变了其实际的受力状态,为弥补土工试验及现场浅层平板载荷试验与土样实际受力情况的差异,应考虑基础埋置深度对地基承载力的影响。
基础埋深的根本目的是满足地基础稳定和变形,区分不同情况下的基础埋深,正确的对地基承载力特征值进行修正。
关键词:基础基础埋深房屋高度独立基础筏板基础独立基础加防水板基础桩基础地基基础是结构抗震设计中的重要内容之一。
它直接关系到结构设计基本数据的正确选取。
对各类构筑物的地基基础进行施工,地基与基础是根本,施工不好将会导致严重问题,比如:构建筑物下沉、倾斜甚至倒塌等。
从结构设计出发,不仅要考虑建筑地基是否处于安全状态,同时还应考虑是否发生过大的沉降和不均匀沉降,在确保地基稳定性的前提下同时满足建筑物实际所以承受的变形能力,此时的承载力称为承载力特征值。
根据《地基规范》第5.2.4条当基础宽度大于3m或埋置深度大于0.5m时,从载荷试验或其他原位测试、经验值等方法确定的地基承载力特值,应按下式修正:-修正后的地基承载力特征值;-地基承载力特征值,由勘察报告提供;、-基础宽度和埋深的地基承载力修正系数,按基底下土的类别查表取值;- 基础埋置深度(m),一般自室外地面标高算起。
在填方整平地区,可自填土地面标高算起,但填土在上部结构施工后完成时,基础埋置深度自天然地面标高算起。
对于地下室,如采用箱形基础或筏基时,基础埋置深度自室外地面标高算起;当采用独立基础时,应从室内地面标高算起。
由上式可知基础埋置深度的取值决定了修正后的地基承载力特征值的准确性,也决定了基础设计是否正确。
基础埋置深度的计算问题,其本质是对地基承载力特征值的修正提高问题。
对填方整平地区基础埋深的计算,规范依据填土的时机确定填方对地基承载力特征值的影响,先期填土(在结构施工前完成)对地基土承载力有一定的压密提高作用(长期压密对地基土承载力的提高,与填土年限及地基土类别有关),而后填土(在上部结构施工后)则不考虑其对地基土承载力的压密提高作用,仅作为地面超载考虑。
柱下独立基础计算写个手算的(柱下独立基础计算)1.PK计算结果(标准组合) N,M,V2.倒算墙体及基础梁荷载,计算最终基础底的,M1,N13.基底尺寸计算估算 A=N/(P-20*基础埋深)1.2bl=A得b l4.验算基础尺寸轴力产生p=(N+G)/A<fPmax/Pmin=(N+G)/A±6M/(b*l*l)<1.2f5.冲切验算(基本组合)最终M,N按4倒算出基底净反力按规范公式验算冲切6.基底配筋计算(基本组合)采用基本组合计算基底反力,计算出柱边,基础变阶处的基地反力利用地基规范公式求MⅠMⅡ利用混凝土规范求AsⅠAaⅡ底板配筋AsⅠ1=AsⅠ/lAsⅡ1=AsⅡ/b最小配筋率验算中文词条名:柱下条形基础的计算规定英文词条名:1. 在比较均匀的地基上,上部结构刚度较好,荷载分布较均匀,且条形基础梁的高度不小于1/6柱距时,地基反力可按直线分布,条形基础梁的内力可按连续梁计算,此时边跨跨中弯矩及第一内支座的弯矩值宜乘以1.2的系数;2 .当不满足本条第一款的要求时,宜按弹性地基梁计算;3 .对交叉条形基础,交点上的柱荷载,可按交叉梁的刚度或变形协调的要求,进行分配。
其内力可按本条上述规定,分别进行计算;4. 验算柱边缘处基础梁的受剪承载力;5 .当存在扭矩时,尚应作抗扭计算;6. 当条形基础的混凝土强度等级小于柱的混凝土强度等级时,尚应验算柱下条形基础梁顶面的局部受压承载力。
柱下独立基础设计上部结构计算后就呵以进行地基基础的设计了。
建筑物坐落在地层上,建筑物的全部荷载都是通过建筑结构的基础传到其下面的地基来承担。
地基基础是保证建筑物安全和满足使用要求的关键之一。
地基基础本身也是很复杂的一门学科,本文仅就本书工程实例所要用到的天然地基上的浅基础——柱下独立基础进行说明,同时对PKPM中进行基础设计的JCCAD的使用进行介绍。
5.1 地基基础设计要点5.1.1 地基基础设计的内容和原则地基基础设计设计包括基础设计和地基设计两部分。
塔吊天然基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。
一. 参数信息本计算书参考塔吊说明书荷载参数进行验算。
二. 荷载计算1. 塔机基础竖向荷载1) 塔机工作状态竖向荷载标准值F k=24kN2) 塔机非工作状态竖向荷载标准值F k=148.2kN3) 基础以及覆土自重标准值G k=7.4×7.4×1.35×25=1848.15kN承台受浮力:F lk=7.4×7.4×0.65×10=355.94kN2. 塔机基础水平荷载1) 工作状态下塔机基础水平荷载标准值F vk = 516.00kN2) 非工作状态下塔机基础水平荷载标准值F vk = 456.00kN3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k = 1554.00kN.m非工作状态下,标准组合的倾覆力矩标准值M k = 2366.00kN.m三. 地基承载力计算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)第4.1.3条承载力计算。
塔机工作状态下:当轴心荷载作用时:=(24+1492.21)/(7.4×7.4)=27.69kN/m2当偏心荷载作用时:=(24+1492.21)/(7.4×7.4)-2×(1554.00×1.414/2)/67.54=-4.85kN/m2由于 P kmin<0 所以按下式计算P kmax:=(1554.00+516.00×1.35)/(24+1492.21)=1.48m≤0.25b=1.85m工作状态地基承载力满足要求!=3.7-1.05=2.65m=(24+1492.21)/(3×2.65×2.65)=71.94kN/m2塔机非工作状态下:当轴心荷载作用时:=(148.2+1492.21)/(7.4×7.4)=36.46kN/m2当偏心荷载作用时:=(148.2+1492.21)/(7.4×7.4)-2×(2366.00×1.414/2)/67.54=-19.58kN/m2由于 P kmin<0 所以按下式计算P kmax:=(2366.00+456.00×1.35)/(148.20+1492.21)=1.82m≤0.25b=1.85m非工作状态地基承载力满足要求!=3.7-1.29=2.41m=(148.2+1492.21)/(3×2.41×2.41)=93.76kN/m2四. 地基基础承载力验算地基基础承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2011第5.2.3条。
挖土深度计算公式
1.挖土深度计算公式:
挖土深度(h) = 基坑底板高程(zb) - 设计底标高程(zd)
其中,基坑底板高程为地面或原地基面标高,设计底标高程为设计要求的基坑底板高程。
2.根据工程用途计算挖土深度:
不同类型的基坑工程有不同的挖土深度计算公式。
以下为一些常用的例子:
a.地下管线埋设工程:
h=设计埋深(d)+表层填方高度(f)
其中,设计埋深为管线埋设设计要求的深度,表层填方高度为土方工程中需要填方的部分。
b.地下室工程:
h = 设计地下室总高度(H) - 地下室底板标高(zh)
其中,设计地下室总高度为地下室设计要求的总高度,地下室底板标高为地下室底板的标高。
c.地铁盾构施工:
h=盾构隧道埋深(d)+盾构顶板厚度(t)
其中,盾构隧道埋深为隧道埋设深度,盾构顶板厚度为盾构顶部的覆土厚度。
3.基于土力与结构平衡计算挖土深度:
土力与结构平衡法是一种基于土壤力学和结构平衡的计算方法,用于
确定挖土深度。
具体的计算公式和方法较为复杂,通常需要综合考虑土壤
类型、地下水位、地震设计要求等多个因素,并结合土壤力学参数进行计算。
这种方法需要借助计算机软件进行模拟和计算。
综上所述,挖土深度计算主要根据工程要求和土壤条件等因素来确定。
不同类型的基坑工程有不同的计算方法和公式。
在实际应用中,工程师需
要结合具体情况选择合适的方法,并参考相关规范和标准进行计算。
此外,为了确保工程的安全和稳定性,通常还需要进行现场勘察、地质勘探和土
壤力学试验等工作,以获取准确的参数数据进行计算。
8米路灯基础计算书关于路灯基础设计依据《架空送电线路基础设计技术规定》DLT5219-2005、《架空绝缘配电线路设计技术规程》DL/T601—1996、《混凝土结构工程施工质量验收规范》GB50204-2002、《建筑电气工程施工质量验收规范》GB50303-2002、《城市道路照明工程施工及验收规程》CJJ89-2001、《电气装置安装工程电气照明装置施工及验收规范》GB50259——96以及相关规范要求。
目前,一般路灯基础的深度满足灯杆高度的1/6~1/8要求,基础的长与宽根据路灯的灯型而定一般是600mm-800mm之间。
华为项目8米太阳能基础规格900*900*1200mm,其预埋螺杆4-M18X850。
灯杆上口径Ø100,下口径Ø200。
1、基本数据1)、基本数据:灯杆上口径D1=0.1m,下口径D2=0.2m,平均0.15m,面积8*0.15=1.2m2,预埋螺栓N=4根,其分布直径d1=0.44m。
2)、灯具迎风面积:0.55*0.35*2个灯=0.39m23)、灯臂迎风面积:3.2*0.06+2.5*0.048=0.32m24)、灯杆迎风面积:8*0.15=1.2m25)、太阳能板迎风面积:1.63*1.59*Sin25=1.09m22、风压计算1)、按风速40m/s计算,风压为Wk=402/1600=1.0kPa3、风荷载计算1)、灯具:0.39*1.0*8=3.12kN.m2)、灯臂:0.32*1.0*8=2.56kN.m3)、灯杆:1.2*1.0*8/2=4.8kN.m4)、太阳能板:1.09*1.0*8=8.72kN.m小计:19.20kN.m4、预埋螺栓验算灯杆预埋螺栓应用砼包封填实,验算时不考虑安装过程中,杆根砝兰仅靠螺栓支撑的状态。
即取旋转轴为杆根外接圆的切线。
杆根外接圆半径r1=D2÷2=0.2÷2=0.1m;螺栓分布半径r2=d1÷2=0.44÷2=0.22m螺栓的间隔θ=360÷4=90度第1个螺栓在旋转轴的另一侧。
铁塔独立基础配筋及地基承载力验算计算书1、1 地基承载力特征值1、1、1 计算公式: 《建筑地基基础设计规范》(GB 50007-2002)fa =fak + ηb * γ* (b - 3) + ηd * γm * (d - 0、5) (基础规范式5、2、4)地基承载力特征值fak =190kPa; 基础宽度的地基承载力修正系数ηb =0、3;基础埋深的地基承载力修正系数ηd=1、6; 基础底面以下土的重度γ=18kN/m, 基础底面以上土的加权平均重度γm =18、0kN/m;基础底面宽度b =4、3m;基础埋置深度d =4、0m当b <3m 时,取b =3m1、1、2 fa =190+0、3*18*(4、3-3)+1、6*18、0*(4-0、5) =297、8kPa修正后的地基承载力特征值fa =297、8kPa1、2 基本资料1、2、1 基础短柱顶承受的轴向压力设计值F=87、4kN1、2、2 基础底板承受的对角线方向弯矩设计值M=1685、6kN·m1、2、3 基础底面宽度(长度) b =l=4300mm基础根部高度H =600mm1、2、4 柱截面高度(宽度) hc =bc =800mm1、2、5 基础宽高比柱与基础交接处宽高比: (b - hc) / 2H =2、91、2、6 混凝土强度等级为C25, fc =11、9N/mm, ft =1、27N/mm1、2、7 钢筋抗拉强度设计值fy=300N/mm; 纵筋合力点至截面近边边缘的距离as=35mm1、2、8 纵筋的最小配筋率ρmin =0、15%1、2、9 荷载效应的综合分项系数γz =1、31、2、10 基础自重及基础上的土重基础混凝土的容重γc =25kN/m;基础顶面以上土的重度γs =18、0kN/m, Gk =Vc * γc + (A - bc * hc) * ds * γs =1427、4kN基础自重及其上的土重的基本组合值G =γG * Gk =1926、9 kN1、3 基础底面控制内力Fk --------- 相应于荷载效应标准组合时,柱底轴向力值(kN);Mxk、Myk --- 相应于荷载效应标准组合时,作用于基础底面的弯矩值(kN·m);F、Mx、My -- 相应于荷载效应基本组合时,竖向力、弯矩设计值(kN、kN·m);F =γz * Fk、Mx =γz * Mxk、My =γz * Myk1、3、1 Fk =67、2kN; Mxk'=Myk'=916、8kN·m;1、4 相应于荷载效应标准组合时,轴心荷载作用下基础底面处的平均压力值pk =(Fk + Gk) / A (基础规范式5、2、2-1)pk =(67、2+1427、4)/18、5 =80、8kPa <fa =297、8kPa,满足要求!1、5 相应于荷载效应标准组合时,偏心荷载作用下基础底面边缘处的最大、最小压力值pkmax =(Fk + Gk) / A + Mk / W (基础规范式5、2、2-2)pkmin =(Fk + Gk) / A - Mk / W (基础规范式5、2、2-3)双向偏心荷载作用下pkmax =(Fk + Gk) / A + Mxk / Wx + Myk / Wy (高耸规范式7、2、2-4)pkmin =(Fk + Gk) / A - Mxk / Wx - Myk / Wy (高耸规范式7、2、2-5)基础底面抵抗矩Wx =Wy =b * l * l / 6 =4、3*4、3*4、3/6 =13、251mpkmax =(67、2+1427、4)/18、49+ 2*916、8/13、3 =219、2kPapkmin =(67、2+1427、4)/18、49- 2*916、8/13、3 =-57、5kPa1、5、1 由于pkmin< 0,基础底面已经部分脱开地基土。
基础埋置深度
一、计算公式
涵洞基础设置在季节性冻土地基上时,出入口和自两端洞口向内各2~6m范围内(或可采用不小于2m的一段涵节长度)涵身基底的埋置深度可按式:dmin=Zd-hmax
Zd=ΨzsΨzwΨzeΨzgΨzfzo
dmin——基底最小埋置深度(m);
Zd——设计冻深(m);
zo——标准冻深(m);无实测资料时,可按本规范附录H.0.1条采用;
Ψzs——土的类别对冻深的影响系数,按表4.1.1-1查取;
Ψzw——土的冻胀性对冻深的影响系数,按表4.1.1-2查取;
Ψze——环境对冻深的影响系数,按表4.1.1-3查取;
Ψzg——地形坡向对冻深的影响系数,按表4.1.1-4查取;
Ψzf——基础对冻深的影响,取Ψzf=1.1;
hmax——基础底下容许最大冻层厚度(m),按表4.1.1-5查取;
二、基底埋置深度计算:
参数按规范查取得:
Zo=1.50
Ψzs=1.30
Ψzw=0.95
Ψze=1.00
Ψzg=1.10
Ψzf=1.10
设计冻深:Zd=ΨzsΨzwΨzeΨzgΨzfzo=1.3×0.95×1×1.1×1.1×1.5=2.24 基础底下容许最大冻层厚度:Hmax=0.38Zo=0.38×1.5=0.57
基底最小埋置深度:dmin=Zd-hmax=2.24-0.57=1.67。
桥涵水文Hydrology of Bridge and Culvert桥梁墩台冲刷计算及基础埋深第六章(桥涵水力计算)第一节桥下一般冲刷计算第二节桥墩局部冲刷计算第三节桥台冲刷计算第四节基础埋深计算为了使设计洪水在桥下安全通过,不但要有足够的桥孔长度和桥梁高度,而且桥梁墩台基础还必须有足够的埋置深度。
桥下冲刷直接影响着桥墩台的基础埋置深度,要保证桥梁安全,就必须将墩台基础放置在可靠的地基上。
进行冲刷计算的目的是要找最大冲刷深度,决定不被冲走的地基面的标高。
一、桥下冲刷的组成1.自然演变冲刷z定义:河床在水力作用及泥沙运动等因素的影响下,自然发育过程造成的冲刷现象,称为河床自然冲刷。
z常见自然演变冲刷现象:河床逐年下切、淤积、边滩下移、河湾发展变形及截弯取直、河段深泓线摆动及一个水文周期内,河床随水位、流量变化而发生的周期性变形,以及人类活动(如河道整治、兴修水利等)都会引起河床的显著变形,桥位设计时都应予考虑。
z计算方法:关于河床自然演变冲刷深度,目前尚无成熟的计算方法,一般多通过调查或利用桥位上、下游水文站历年实测断面资料统计分析确定。
对于各种河床的自然演变冲刷,在河流动力学和河道整治的有关书籍中,有一些计算方法可供参考。
但由于影响河床演变的因素很多,又极其错综复杂,难以得到可靠的计算结果。
目前在实际的工作中,主要是通过实地调查或参考类似河流的观测资料,结合河段的特点和整治规划,估计建桥后可能发生的河床变形,作为桥梁墩台的自然(演变)冲刷,进行设计。
具体做法,可以参阅《公路工程桥涵水文勘测设计规范》。
2.一般冲刷建桥后,由于桥孔压缩河床,桥下过水面积减小,从而引起桥下流速的增大,水流携沙能力也随之增大,造成整个桥下断面的河床冲刷。
这一冲刷过程,称为桥下断面的一般冲刷。
3.局部冲刷水流因受墩台阻挡,在墩台附近发生的冲刷现象叫局部冲刷。
在桥墩的前缘与两侧形成冲刷坑。
三种冲刷交织在一起,同时进行。
计算时假定它们独立地相继进行,可分别计算,最后叠加。
一、 土的不均匀程度: C U =1060d d 式中 d 60——小于某粒径颗粒含量占总土质量的60%时的粒径,该粒径称为限定粒径d 10——小于某粒径颗粒含量占总土质量的10%时的粒径,该粒径称为有效粒径。
C U 小于5时表示颗粒级配不良,大于10时表示颗粒级配良好二 1、土的密度ρ和土的重力密度γρ=v m(t/m 3或g/cm 3)γ=ρg(KN/m 3) 一般g=10m/s 2ρ 表示土的天然密度称为土的湿密度γ 表示天然重度。
天然状态下土的密度和重度的变化范围较大,一般ρ=1.6——2.2(t/m 3),γ=16——22(KN/m 3)2、土粒比重ds (相对密度)d s =w s sv m ρρw ——水的密度,可取1t/m 3 3 土的含水量=ωsm m ω×100%换算指标4、土的孔隙比e e=svv v 5、土的孔隙率n n=%100⨯vv v6、土的饱和度SrSr=vwV V7、土的干密度ρdρd =vm s(t/m 3)γd =ρd g(KN/m 3)8、土的饱和密度ρsatρsat =vv m wv s ρ+ ( t/m 3)饱和重度 9、土的有效密度ρ,和有效重度γ,ρ,=vv m wv s ρ- ( t/m 3) =ρsat –ρwγ,= ρ,g=γsat-γw10 Dr=minmax max e e ee --11、塑性指数I PI P =ωL -ωP (不要百分号)液性指数I LI L =PL Pωωωω--ωL ——液限 ωP ——塑限 12、灵敏度: S t =,uuq q q u ——原状土的无侧限抗压强度,kpa q u ,——重塑土的无侧限抗压强度,kpa 13、湿陷性土δzs =ozz h h h ,-δzs ——自重湿陷系数; h 0——试样原始高度;h z ——在饱和自重压力下试样变形稳定后的高度;h z ,——在饱和自重压力作用下试样浸水湿陷变形稳定后的高度; 14、达西定律Q=k L hh 21-A=kiAi=L h h 21-v=k Lhh 21-=kiv ——渗透速度;m/d(cm/s)k ——渗透系数,与土的渗透性能有关的系数,m/d(cm/s) i ——水力坡度水头梯度,或称水头梯度;m 3/d(cm 3/s) Q ——单位时间内的渗流量, L ——渗流距离,mh 1,h 2——两测压管水头m A ——渗流过水截面积,m 2V=k(i- i 0,) i 0,——初始水力坡降15、渗透系数的测定 常水头渗透试验Q=t V =kiA=k Lh AK=tAh vL 变水头试验K=122122lg )(3.2r rh h Q -πh1, h2——抽水稳定后观测井内的地下水位,m r 1,r 2——观测井至抽水井的距离,m Q ——井的涌水量 m 3/d K ——渗透系数,m/d 16、渗透力J=P 1-P 2=γω(h 1-h 2)A单位渗透力j=LA J =γωL h h 21-=γωLh =γωi临界水力坡降:i cr =1-wsat γγ=e ds +-1117、土中应力(1)均质土的自重应力Q cz =z AzA A W γγ== γ——土的重度,KN/m 3A ——土柱体的底面积 W ——土柱体的重量KN; (2)成层土的自重应力不同性质的土,各层土的自重不同,设第i 层土的厚度为h i ,重度为γi ,则第i 层底面处土的自重应力计算公式为:Q cz =γ1h 1+γ2h 2+γ3h 3+···+γn h n =∑=ni i i h 1γ地下水对自重应力的影响:水的浮重度:Q w =γw h w此时土的自重应力为:Q cz - Q w注:不透水层对自重应力的影响:若在地下水以下埋藏有不透水层(完整的岩层或密实黏土层等),因不透水层中不存在浮力,其重度要以天然重度计,而且透水层中的范围内的水重也要作用在不透水层上,即透水层与不透水层的临界面处,自重应力发生突变,增加一个地下水的水压力。
基础埋深计算公式
基础埋深计算公式包括以下几种:
1.计算筏板基础埋深的公式。
筏板基础埋深=(荷载/(地基强度系数×筏板面积)+网格基础深度)/γ。
其中,荷载为承受荷载,地基强度系数为土壤的承载力系数,筏板面积为筏板的面积,网格基础深度为基础下面的深度,γ为土壤重度。
2.计算桩基础埋深的公式。
桩基础埋深=荷载/(桩身截面积×承载力系数)+桩长。
其中,荷载为承载荷载,桩身截面积为桩的截面积,承载力系数为土壤的承载能力系数,桩长为桩的长度。
3.计算地挖基础埋深的公式。
地挖基础埋深=(荷载/(土壤容重×可用地面积))+地基深度。
其中,荷载为承载荷载,土壤容重为土壤的密度,可用地面积为基础的面积,地基深度为基础下面的深度。
基础埋深计算公式
基础埋深是指建筑物基础下面的土层深度,是建筑物基础设计的重要参数之一。
基础埋深的计算需要考虑多种因素,如土壤的承载力、建筑物的重量、地下水位等。
下面介绍一种常用的基础埋深计算公式。
基础埋深计算公式为:
h = (P + W) / q
其中,h为基础埋深,P为建筑物的设计荷载,W为建筑物自重,q为土壤的承载力。
建筑物的设计荷载P包括永久荷载和活荷载两部分。
永久荷载是指建筑物自身的重量和固定在建筑物上的设备、管道等的重量,一般按建筑物自重的 1.2倍计算。
活荷载是指人员、家具、设备等在建筑物内活动时产生的荷载,一般按建筑物自重的0.5倍计算。
建筑物自重W可以通过建筑物的结构设计计算得出。
土壤的承载力q是指土壤能够承受的最大荷载,是基础埋深计算中最重要的参数之一。
土壤的承载力与土壤类型、密度、含水量等因素有关。
一般情况下,土壤的承载力可以通过现场勘探和试验得出。
基础埋深计算公式的应用可以帮助建筑师和工程师确定建筑物的基
础设计参数,从而保证建筑物的安全性和稳定性。
在实际工程中,还需要考虑其他因素,如地下水位、地震等,以确保建筑物的基础设计符合实际情况。
基础埋深计算公式是建筑物基础设计中的重要工具,可以帮助工程师和建筑师确定建筑物的基础设计参数,从而保证建筑物的安全性和稳定性。