新北师大版数学七年级下册第三章三角形
- 格式:docx
- 大小:78.52 KB
- 文档页数:3
第三章三角形3.1 认识三角形第一课时三角形的概念与内角和【学习目标】1.能说出三角形的概念,能正确表示三角形的三顶点、三边、三角.2.能说明三角形的内角和为什么是︒180,并能应用这个规律解决问题.3.会对三角形按角进行分类.4.能正确表示直角三角形,能解释直角三角形为什么两锐角互余,并能应用这个规律解决问题.【课前导学温故与预习】课前热身1.在小学我们学习了三角形的哪些知识?答案不惟一,例如三角形有三条边、三个角,面积等于底乘高的一半,内角和等于180度等.2.请举出两个生活中的三角形的例子.例如自行车的三角杠、路边的警示标志等.自主学习自学教材62页—64页,初步感知后回答下面的问题:1.图1中的三角形记作ABC∆,三个角是CBA∠∠、、,三条边是CABCAB、、.AC B AC B图1 图22.一个三角形有两个角分别是︒40和︒70,那么第三个角的度数是︒70.3.三角形按角分类,可分为钝角三角形、直角三角形、锐角三角形.4.如图2,直角三角形ABC中,︒=∠90C,则=∠+∠BA︒90.【互动课堂探究与合作】探究点一:三角形的概念1.观察下面生活中的三角形。
我们发现它们都是由不在同一条直线上的三条线段首尾顺次相接所组成的图形,我们将这样的图形叫做三角形.2.三角形的表示:B如图,组成三角形的三条线段AB、BC、CA叫做三角形的边,相邻两边组在的角叫做三角形的内角,简称三角形的角;相邻两边的公共端点是三角形的顶点,三角形通常用表示顶点的三个大写字母来表示,如上面的三角形就表示为△ABC ;某个角的对边通常也可以用这个角的顶点对应的小写字母来表示,如:AB也可以表示为c.3.与同桌一起找一找,填一填。
ABCD(1)图中有三个三角形,分别是ABD∆、ADC∆、ABC∆;.(2)ABD∆的三边为:AB、BD、DA;(3)ADC∆的三角为:ADC∠、ACD∠、DAC∠;(4)在ABD∆中,ABD∠的对边是AD、BD的对角是BAD∠.探究点二:三角形的内角和1.做一做(1)如图1,做一个三角形纸片,它的三个内角分别为1∠,2∠和3∠图1 图2(2)如图2,将1∠撕下摆放,1∠的顶点与2∠的顶点重合.(3)请观察图2,撕下前的1∠与撕下后摆放的1∠恰好构成一组相等的内错角,由此可以推断直线a 与直线b 的位置关系是 平行 ,这说明1∠,2∠和3∠的和是 180°.归纳:三角形内角和 等于180° . 2.想一想:在撕纸的过程中,我们发现了三角形内角和是︒180,受撕纸的启发,我们用下面这种推理的方法来证明三角形内角和是︒180: 已知:ABC ∆ 求证:︒=∠+∠+∠180ACB B A 证明:过点C 作AB 的平行线CE∵AB ∥CE (辅助线的作法)∴ A ∠ =ACE ∠(两直线平行,内错角相等)又∵ AB ∥CE∴ B ∠+BCE ∠=180°(两直线平行,同旁内角互补) ∴︒=∠+∠+∠180ACB B A .3.议一议,与同伴一起完成下面的推理过程。
七年级数学周周清一、填空题1、若△ABC ≌△DEF ,△DEF 的周长为32 cm ,DE =9 cm ,EF =12 cm ,则AB =_____ cm ,BC =_____ cm,AC =_____ cm.2、若△ABC ≌△DEF ,AB =DE ,AC =DF ,∠A =80°,BC =9 cm,则∠D =_____,∠D 的对边是_____=_____ cm.3、已知如图1,在△ABF 和△DEC 中,∠A =∠D ,AB =DE ,若再添加条件_____=_____,则可根据边角边公理证得△ABF ≌△DEC .4、如图2,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CE=_____cm 。
图1图2 图35、如图3,△ABC ≌△ADE ,延长BC 交DA 于F ,交DE 于G ,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=____________。
6、为了使一扇旧木门不变形,木工师傅在木门的背面 加钉了一根木条,这样做的道理是 。
二、选择题1、有下列长度的三条线段,能组成三角形的是( )A 、 2cm ,3cm ,4cmB 、 1cm ,4cm ,2cmC 、1cm ,2cm ,3cmD 、 6cm ,2cm ,3cm 2、下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
A .4个 B 、3个 C 、2个 D 、1个3、已知△ABC ≌△DEF ,∠A=70°,∠E=30°,则∠F 的度数为 ( )(A ) 80° (B ) 70° (C ) 30° (D ) 100°4、如图4,△ABD 和△ACE 都是等边三角形,那么△ADC ≌△ABE 的根据是( )图4A.SSSB.SASC.ASAD.AAS 5、如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )F EDC BAA.带①去B. 带②去C. 带③去D. 带①和②去 6、下列说法:①所有的等边三角形都全等 ②斜边相等的直角三角形全等③顶角和腰长对应相等的等腰三角形全等 ④有两个锐角相等的直角三角形全等其中正确的个数是( )A .1个B .2个C .3个D .4个第7题 第8题 第9题7、如图,AB 平分∠CAD ,E 为AB 上一点,若AC=AD ,则下列结论错误的是( )A.BC=BDB.CE=DEC.BA 平分∠CBDD.图中有两对全等三角形8、如图,D 在AB 上,E 在AC 上,且∠B=∠C ,则在下列条件中,无法判定△ABE ≌△ACD 的是( ) (A )AD=AE (B )AB=AC(C )BE=CD (D )∠AEB=∠ADC9、如图,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,则①△ABE ≌△ACF ;②△BOF ≌△COE ;③点O 在∠BAC 的角平分线上,其中正确的结论有( ) A .3个 B .2个 C .1个 D .0个10、下列条件中能确定两个三角形全等的是( )A.一边及这条边上的高相等B.一边及这条边上的中线对应相等C.两角及第三个角平分线对应相等D.两条边及夹角的平分线对应相等11、下列各组图形中,一定全等的是( )A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长都为3 cm 的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形 三、解答题1、已知,如图,∠1=∠2,BD=CD,求证:AD 是∠BAC 的平分线.2、如图,点E 在△ABC 外部,点D 在BC 边上,DE 交AC 于点F ,若∠1=∠2=∠3,AC=AE ,求证:△ABC ≌△ADEA B C D EC B A E F O3、已知线段a 和∠1,作一个△ABC ,使得AB=a ,AC=2a ,∠A=∠ 1.4、如图,已知AB =DC ,AC =DB ,E 是BC 的中点,求证:AE =DE5、如图,在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 。
北师大版七年级数学下册第三章三角形单元测试卷(一)班级姓名学号得分一、选择题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有() A.4对 B.5对 C.6对 D.7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0) B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个 A.4 B.6 C.8 D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是()A.0°<α<90°; B.60°<α<180°; C.60°<α<90°; D.60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为()A.锐角或直角三角形; B.钝角或锐角三角形;C.直角三角形; D.钝角或直角三角形13.已知△ABC中,∠ABC与∠ACB的平分线交于点O,则∠BOC一定()A .小于直角;B .等于直角;C .大于直角;D .大于或等于直角 二、填空题1.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________,∠________=∠________=21∠________,AH 叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线. 2.如图,∠ABC =∠ADC =∠FEC =90°. (1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________; (3)在△FEC 中,EC 边上的高是________; (4)若AB =CD =3,AE =5,则△AEC 的面积为________. 3.在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________. 4.五段线段长分别为1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边长共可以组成________个三角形. 5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________. 6.一个等腰三角形的周长为5cm ,如果它的三边长都是整数,那么它的腰长为________cm . 7.在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3,则∠A =______;∠B =______;∠C =______. 8.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I . (1)若∠ABC =70°,∠ACB =50°,则∠BIC =________; (2)若∠ABC +∠ACB =120°,则∠BIC =________; (3)若∠A =60°,则∠BIC =________; (4)若∠A =100°,则∠BIC =________; (5)若∠A =n °,则∠BIC =________. 三、解答题1.在△ABC 中,∠BAC 是钝角. 画出:(1)∠ABC 的平分线; (2)边AC 上的中线; (3)边AC 上的高.2.△ABC 的周长为16cm ,AB =AC ,BC 边上的中线AD 把△ABC 分成周长相等的两个三角形.若BD =3cm ,求AB 的长.3.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,212cm =∆ABC S ,求△ABD 中AB 边上的高.4.学校有一块菜地,如下图.现计划从点D 表示的位置(BD ∶DC =2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D 是BC 的中点的话,由此点D 笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC 中,∠BAC =90°,如下图所示.作BC 边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD 中AB 边上的高1DD ,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作21D D 、32D D 、……、k k D D 1-.当作出k k D D 1-时,图中共有多少个不同的直角三角形?6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.8.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.9.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.10.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm和6cm 两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.12.如图,△ABC中,D是AB上一点.求证:(1)AB+BC+CA>2CD;(2)AB+2CD>AC+BC.13.如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,(1)完成下面的证明:∵ MG平分∠BMN(),1∠BMN(),∴∠GMN=21∠DNM.同理∠GNM=2∵ AB∥CD(),∴∠BMN+∠DNM=________().∴∠GMN+∠GNM=________.∵∠GMN+∠GNM+∠G=________(),∴∠G= ________.∴ MG与NG的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.14.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.15.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.16.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD 是△ABC 的外角∠EAC 的平分线,且AD ∥BC . 求证:∠B =∠C .单元测试卷(一)参考答案:一、1.A ; 2.D ; 3.A ; 4.C ;5.B ; 6.C ; 7.B ; 8.D ; 9.C (提示:边长分别为3、4、5;2、4、5;2、3、4.)10.C ; 11.D ; 12.D ; 13.C ; 二、1.(1)BC 边上,ADB ,ADC ;(2)∠BAC 的角平分线,BAE ,CAE ,BAC ,∠BAF 的角平分线; (3)BF ;(4)△ABH ,△AGF ; 2.(1)AB ; (2)CD ; (3)EF ; (4)7.5; 3.22cm 或26cm ; 4.3; 5.11; 6.2;7.90°,36°,54°;8.(1)120°; (2)120°; (3)120°; (4)140°; (5)290︒+︒n ;三、21.略;2.解法1:AB +BD +DA =DA +AC +CD ,∴ BD =CD ,∵ BD =3cm ,∴ CD =3cm ,BC =6cm ,∵ AB =AC ,∴ AB =5cm . 解法2:△ABD 与△ACD 的周长相等,而AB =AC ,∴ BD =CD , ∴ BC =2BD =6cm ,∴ AB =(16-6)÷2=5cm . 3.212cm =∆ABC S ,∴ 21AB ·BC =12,AB =4,∴ BC =6,∵ AB ∥CD ,∴ △ABD 中AB 边上的高=BC =6cm .4.后一种意见正确.5.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出k k D D 1 时,图中共有2×k +1,即2k +1个直角三角形.6.第一种方案:在BC 上取E 、D 、F ,使BE =ED =DF =FC ,连结AE 、AD 、AF ,则△ABE 、△AED 、△ADF 、△AFC 面积相等;第二种方案:取AB 、BC 、CA 的中点D 、E 、F ,连结DE 、EF 、FD ,则△ADF 、△BDE 、△CEF 、△DEF 面积相等.7.设三边长a =2k ,b =3k ,c =4k ,∵ 三角形周长为36,∴ 2k +3k +4k =36,k =4, ∴ a =8cm ,b =12cm ,c =16cm .8.设三角形中最大边为a ,最小边为c ,由已知,a -c =14,b +c =25,a +b +c =48, ∴ a =23cm ,b =16cm ,c =9cm .9.10-5<a -2<10+5,∴ 7<a <17. 10.设AB =AC =2x ,则AD =CD =x ,(1)当AB +AD =15,BC +CD =6时,2x +x =15,∴ x =5,2x =10,∴ BC =6-5=1cm ;(2)当AB +AD =6,BC +CD =15时,2x +x =6,∴ x =2,2x =4,∴ BC =13cm ;经检验,第二种情况不符合三角形的条件,故舍去. 11.AD -AB =AC +CD -AB =CD ,∵ BD -BC <CD , ∴ BD -BC <AD -AB . 12.(1)AC +AD >CD ,BC +BD >CD , 两式相加:AB +BC +CA >2CD . (2)AD +CD >AC ,BD +CD >BC , 两式相加:AB +2CD >AC +BC . 13.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直. 14.94°; 35.120°; 36.10°;17.∠EBC <∠DCE ,而∠DCE =∠ACE ,∴ ∠EBC <∠ACE . 18.略.北师大版七年级数学下册第三章三角形单元测试卷(二)班级姓名学号得分一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( ) A.10 B.12 C.14 D.162.在△ABC中,AB=4a,BC=14,AC=3a.则a的取值范围是 ( )A.a>2 B.2<a<14 C.7<a<14 D.a<143.一个三角形的三个内角中,锐角的个数最少为 ( )[A.0 B.1 C.2 D.34.下面说法错误的是 ( )A.三角形的三条角平分线交于一点 B.三角形的三条中线交于一点C.三角形的三条高交于一点 D.三角形的三条高所在的直线交于一点5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( )A.中线B.角平分线 C.高线D.三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是 ( )A.∠ 1 B.∠ 2 C.∠ B D.∠ 1、∠ 2和∠ B 7.点P是△ABC内任意一点,则∠APC与∠B的大小关系是( ) A.∠APC>∠B B.∠APC=∠B C.∠APC<∠B D.不能确定8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( ) A .M >0 B . M =0 C .M <0 D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤<D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________.3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形. 4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________.5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c ≥b ≥a >0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.在△ABC 中,∠A -∠B =30°、∠C =4∠B ,则∠C =________.8.如图5—13,在△ABC 中,AD ⊥BC ,GC ⊥BC ,CF ⊥AB ,BE ⊥AC ,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是 △ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.[来9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A =50°,那么∠D =_____. 10.如图5—15,△ABC 中,∠A =60°,∠ABC 、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC =_____.11.如图5—16,该五角星中,∠A +∠B +∠C +∠D +∠E =________度. 12.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值范围是________. 三、解答题1.如图5—17,点B 、C 、D 、E 共线,试问图中A 、B 、C 、D 、E 五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC 的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P 是△ABC 内任一点,求证:AB +AC >BP +PC .10.如图5—25,豫东有四个村庄A 、B 、C 、D .现在要建造一个水塔P .请回答水塔P 应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.单元测试卷(二)参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C 二、1.3; 2.32周长20,164<<<<BC ; 3.锐角(等腰锐角); 4.cm 37;5.10; 6.︒65和︒25; 7.︒100;8.GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,;9.︒65; 10.︒120; 11.︒180; 12.126<<x . 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是BAC ∠的平分线3.假设此零件合格,连接BD ,则︒=︒-︒=∠+∠37143180CBD CDB ;可知()︒=︒+︒-︒=∠+∠40203090CBD CDB .这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线,∴ D 为BC 的中点,BD CD =.∵ ADC ∆的周长-ABD ∆的周长=5cm ∴ cm AB AC 5=-. 又∵ cm AB AC 11=+, ∴ cm AC 8=.5.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC . 又∵ AE 平分∠BAC . ∴ ︒=︒⨯=∠=∠21422121BAC BAE .∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE . 6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BCAC S ABC =⨯⨯=⋅=∴∆[ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21.即CD ⨯⨯=132130.∴ ()cm CD 1360=.7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠ 8.∵ A C ∠=∠74,∴ C A ∠=∠74,∴ C B C ∠<∠<∠74.又∵ ︒=∠+∠+∠180C B A ,∴ ︒=∠+∠+∠18074C B C .∴ C B ∠-︒=∠711180,∵ C C C ∠<∠-︒<∠71118074,∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数,∴ ∠C 的度数为7的倍数.∴ ︒=∠77C ,∴ ︒=∠=∠4474C A .9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+. ①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA , ∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ② ①+②得DP CP BP AP P D P C P B P A +++>'+'+'+'. ∵ 点P '是任意的,代表一般性,∴ 线段AC 和BD 的交点处P 到4个村的距离之和最小.北师大版七年级数学下册第三章 三角形 单元测试卷(三)班级 姓名 学号 得分一、选择题(每小题3分,共30分)1. 有下列长度的三条线段,能组成三角形的是( )A 2,3,4B 1,4,2C 1,2,3D 6,2,3 2. 在下列各组图形中,是全等的图形是( )3. 下列条件中,能判断两个直角三角形全等的是( )AB C DE图4图2 图 3 A 、一个锐角对应相等 B 、两个锐角对应相等C 、一条边对应相等D 、两条边对应相等4.已知:如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O 点, ∠1=∠2.图中全等的三角形共有 ( ) A .4对 B ..3对 C 2对 D .1对5.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B. 带②去C. 带③去D. 带①和②去6.右图中三角形的个数是( )A .6 B .7 C .8 D .97.如果两个三角形全等,那么下列结论不正确的是( ) A .这两个三角形的对应边相等 B .这两个三角形都是锐角三角形C .这两个三角形的面积相等D .这两个三角形的周长相等8.在下列四组条件中,能判定△ABC ≌△A /B /C /的是( )A.AB=A /B /,BC= B /C /,∠A=∠A /B.∠A=∠A /,∠C=∠C /,AC= B /C /C.∠A=∠B /,∠B=∠C /,AB= B /C /D.AB=A /B /,BC= B /C /,△ABC 的周长等于△A /B /C /的周长9.下列图中,与左图中的图案完全一致的是( )10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其中判断正确的有( )A.1个B.2个C.3个D.4个 二、填空题:(每题4分共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 。
第三章三角形3.1 认识三角形第二课时三角形三边之间的关系【学习目标】1.能说出等腰三角形、等边三角形的概念,会对三角形按边进行分类.2.知道为什么“三角形两边之和大于第三边”、“三角形两边之差小于第三边”,并能应用这个规律来解决问题.【课前导学温故与预习】课前热身1.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫三角形。
2.线段公理:两点之间,线段最短.3.如图,A处小狗从要想吃到B处的香肠,聪明的小狗喜欢走近一点的路线,那么它会走A→B呢、还是会走A→C→B呢?答:走A→B,理由是:两点之间,线段最短.CB A自主学习自学教材66页—67页,初步感知后回答下面的问题:1. 观察下列三角形:它们有的三边各不相等,有的两边相等,有的三边都相等.其中:有两边相等叫等腰三角形.三边都相等叫等边三角形,也叫正三角形. 2、如图,等腰三角形相等的两条边叫腰,第三条边叫底边;相等的两个角叫底角,第三个角叫顶角.3. 下列图形中是等腰三角形的是(C)76(A)(B) (C)(D)4.如图,在ABC中,AB AC+> BC,AB AC-< BC.(填“>”、“<”或“=”),你的根据是:三角形任意两边之和大于第三边;三角形任意两边之差小于第三边.【互动课堂探究与合作】探究点一:三角形按边分类1.议一议:等边三角形是等腰三角形吗?因为等腰三角形的定义是“有两边相等的三角形”,并没有说第三条边是否与前两边相等,所以第三条边与前两边可以相等,也可以不相等. 如果第三条边与前两条边相等,那么这个三角形就是等边三角形. 所以等边三角形是等腰三角形,即底边与腰相等的那种等腰三角形. 2.试一试:把三角形按边进行分类.⎧⎪⎧⎨⎨⎪⎩⎩三边都不相等的三角形(不等边三角形)三角形底边与腰不相等的等腰三角形有两边相等的三角形()底边与腰相等腰三角形等边三角形等的等腰三角形()探究点二:三角形三边之间的关系1、三角形任意两边之和与第三边有怎样的关系(1)议一议:如图1,房顶上装有黄色彩灯的电线与装有红色彩灯的电线哪要长呢?答: 黄色彩灯 较长,因为 两点之间,线段最短.BC图1 图2(2)如图2,根据“两点之间、线段最短”,可以得到AB AC + > BC , AB BC + > AC ,AC BC + > AB .(3)由此我们可以得到规律:在三角形中,任意两边之和 大于 第三边.2.联想:三角形任意两边之差与第三边有怎样的关系?(1) 做一做:如图,测量ABC ∆的三边长度、计算并判断大小。
第03讲_全等三角形辅助线的作法知识图谱三角形的内角(北师版)知识精讲概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形表示三角形有三条边、三个内角和三个顶点,“三角形”可以用符号“”表示如图,顶点是A ,B ,C 的三角形,记作,的三边,有时也用a ,b ,c 来表示.顶点A 所对的边BC 用a 表示,边AC 、边AB 分别用b ,c 来表示.按角分类直角三角形三角形中有一个角是直角 斜三角形锐角三角形 三角形中三个角都是锐角 钝角三角形 三角形中有一个角是钝角思考:如何按边分类?内角和定理三角形三个内角的和等于.证明过点A 作BC 的平行线DE ∴∠B=∠1,∠C=∠3 ∵D 、A 、E 三点共线 ∴∠1+∠2+∠3=180° ∴∠B+∠2+∠C=180°直角三角形的性质直角三角形的两个锐角互余.表示在Rt △ACB 中,∠C=90°,则∠A+∠B=90°,即两个锐角互余.五.易错点1.求角度过程中计算错误.2.注意导角计算等角的补角相等,等角的余角相等. 3.会利用三角形内角和定理判定三角形形状.三点剖析一.考点:1.按角分类;2.内角和定理;3.直角三角形的性质二.重难点:利用内角和定理求角度.三.易错点:求角度过程中计算错误.按角分类例题1、 在△ABC 中,∠A :∠B :∠C=1:1:2,则△ABC 是( ) A.等腰三角形 B.直角三角形 C.锐角三角形D.等腰直角三角形231DBCA ECBA【答案】 D【解析】 设三个内角的度数分别为k°,k°,2k°,则 k°+k°+2k°=180°, 解得k°=45°, ∴2k°=90°,∴这个三角形是等腰直角三角形.随练1、 现有若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角,则在这些三角形中锐角三角形的个数是( )A.3B.4或5C.6或7D.8【答案】 A【解析】 由题意得:若干个三角形,在所有的内角中,有5个直角,3个钝角,25个锐角时, ∴共有33÷3=11个三角形;又三角形中,最多有一个直角或最多有一个钝角,显然11个三角形中,有5个直角三角形和3个钝角三角形; 故还有11﹣5﹣3=3个锐角三角形.内角和定理例题1、 如图,在△ABC 中,46B ∠=︒,54C ∠=︒,AD 平分∠BAC ,交BC 于D ,DE ∥AB ,交AC 于E ,则∠ADE 的大小是( )A.45°B.54°C.40°D.50°【答案】 C【解析】 ∵46B ∠=︒,54C ∠=︒,∴180180465480BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 平分∠BAC ,∴11804022BAD BAC ∠=∠=⨯︒=︒,∵DE ∥AB ,∴40ADE BAD ∠=∠=︒.故选:C .例题2、 如图,△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =22°,则∠BDC 等于( )A.44°B.60°C.67°D.77°【答案】 C【解析】 △ABC 中,∠ACB =90°,∠A =22°, ∴∠B =90°-∠A =68°,由折叠的性质可得:∠CED =∠B =68°,∠BDC =∠EDC , ∴∠ADE =∠CED -∠A =46°,∴180672ADEBDC ︒-∠∠==︒.例题3、 (1)如图①,在△ABC 中,∠B =40°,∠C =80°,AD ⊥BC 于点D ,AE 平分∠BAC ,求∠EAD 的度数;EDC B A(2)将(1)中“∠B=40°,∠C=80°”改为“∠B=x°,∠C=y°,∠C>∠B”,①其他条件不变,你能用含x,y的代数式表示∠EAD吗?请写出,并说明理由;②如图②,AE平分∠BAC,F为AE上一点,FM⊥BC于点M,用含x,y的代数式表示∠EFM,并说明理由.【答案】(1)20°(2)①1122EAD y x∠=-;理由见解析②1122EFM y x∠=-;理由见解析【解析】(1)∵∠B=40°,∠C=80°,∴∠BAC=180°-∠B-∠C=60°∵AE平分∠BAC,∴1302CAE BAC∠=∠=︒∵AD⊥BC,∴∠ADC=90°,∵∠C=80°,∴∠CAD=90°-∠C=10°,∴∠EAD=∠CAE-∠CAD=30°-10°=20°;(2)①∵三角形的内角和等于180°,∴∠BAC=180°-∠B-∠C=180°-x-y∵AE平分∠BAC,∴11(180)22CAE BAC x y∠=∠=︒--,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-y,∴∠EAD=∠CAE-∠CAD111(180)(90)222x y y y x =︒---︒-=-;②过A作AD⊥BC于D,∵三角形的内角和等于180°,∴∠BAC=180°-∠B-∠C,∵AE平分∠BAC,∴11(180)22CAE BAC x y∠=∠=︒--,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°-y,∴∠EAD=∠CAE-∠CAD111(180)(90)222x y y y x =︒---︒-=-∵AD⊥BC,FM⊥BC,∴AD∥FM,∴∠EFM=∠EAD,∴1122 EFM y x ∠=-.随练1、如果将一副三角板按如图方式叠放,那么∠1=____________.【答案】105°【解析】给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.随练2、在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为_________-.【答案】130°或90°【解析】∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°.直角三角形的性质例题1、如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【答案】C【解析】如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个.例题2、如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=________°.【答案】 135【解析】 观察图形可知:△ABC ≌△BDE , ∴∠1=∠DBE ,又∵∠DBE +∠3=90°, ∴∠1+∠3=90°. ∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.例题3、 如图,ABC △中,AD 是高,AE 、BF 分别是BAC ∠和ABC ∠的平分线,它们相交于点O ,60A ∠=︒,70C ∠=︒.求DAC ∠,BOA ∠.【答案】 20︒;125︒【解析】 9020DAC C ∠=︒-∠=︒∵180C BAC ABC ∠+∠+∠=︒,70C ∠=︒,60BAC ∠=︒,∴50ABC ∠=︒∵AE ,BF 是角平分线,∴12302BAC ∠=∠=︒,13252ABC ∠=∠=︒∵23180BOA ∠+∠+∠=︒,∴125BOA ∠=︒.随练1、 如果一个直角三角形斜边上的中线与斜边成50°角,那么这个直角三角形的较小的内角是________度. 【答案】 25【解析】 暂无解析随练2、 图是一个6×6的正方形网格,每个小正方形的顶点都是格点,Rt △ABC 的顶点都是图中的格点,其中点A 、点B 的位置如图所示,则点C 可能的位置共有( )A.9个B.8个C.7个D.6个【答案】 A【解析】 暂无解析三角形的边知识精讲按角分直角三角形三角形中有一个角是直角斜三角形锐角三角形三角形中三个角都是锐角钝角三角形三角形中有一个角是钝角按边分不等边三角形三边都不相等的三角形等腰三角形底边和腰不相等的三角形有两条边相等的三角形等边三角形(正三角形)三边相等的三角形三角形任意两边的和大于第三边三角形任意两边的差小于第三边如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征叫做三角形的稳定性.除了三角形外,其他多边形不具备稳定性,因此在生产建设中,为达到巩固的目的,把一些构件都做成三角形结构.四.易错点1.在做与三角形的边有关的计算时,最后一定要注意检验是否满足三边关系定理,即最能否组成三角形.2.在应用三边关系判断三条线段能否组成三角形时,要注意“任意”二字.三点剖析考点:1. 按边分类;2. 三边关系;3. 稳定性重难点:1. 在应用三边关系判断能否组成三角形时,可以简化为:当三条线段中最长的线段小于另两条线段之和时,或当三条线段中最短的线段大于另两条线段之差时,即可组成三角形.2. 由三角形三边关系可得,如果a, b, c三条线段能够组成三角形,那么b c a b c-<<+.易错点:在做与三角形的边有关的计算时,最后一定要注意检验是否满足三边关系定理,即最终能否组成三角形.按边分类例题1、若下列各组值代表线段的长度,以它们为边能构成三角形的是()A.6、13、7B.6、6、12C.6、10、3D.6、9、13【答案】D【解析】A、6+7=13,则不能构成三角形,故此选项错误;B、6+6=12,则不能构成三角形,故此选项错误;C、6+3<10,则不能构成三角形,故此选项错误;D、6+9>13,则能构成三角形,故此选项正确.例题2、各边长度都是整数、最大边长为11的三角形共有________个.【解析】 设另外两边长为x ,y ,且不妨设1≤x≤y≤11,要构成三角形,必须x +y≥12. 当y 取值11时,x =1,2,3,…,11,可有11个三角形; 当y 取值10时,x =2,3,…,10,可有9个三角形;当y 取值分别为9,8,7,6时,x 取值个数分别是7,5,3,1,∴根据分类计数原理知所求三角形的个数为11+9+7+5+3+1=36.三边关系例题1、 下列长度的三根小木棒能构成三角形的是( ) A.2cm ,3cm ,5cm B.7cm ,4cm ,2cm C.3cm ,4cm ,8cm D.3cm ,3cm ,4cm 【答案】 D【解析】 A 、因为2+3=5,所以不能构成三角形,故A 错误; B 、因为2+4<6,所以不能构成三角形,故B 错误; C 、因为3+4<8,所以不能构成三角形,故C 错误; D 、因为3+3>4,所以能构成三角形,故D 正确.例题2、 已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( ) A.5 B.6 C.11 D.16 【答案】 C【解析】 设此三角形第三边的长为x ,则10﹣4<x <10+4,即6<x <14,四个选项中只有11符合条件. 故选:C .例题3、 如图,已知AD 是△ABC 的BC 边上的高,AE 是BC 边上的中线,求证:12AB AE BC AD AC ++>+【答案】 见解析【解析】 ∵AD BC ⊥∴AB AD >,在△AEC 中,AE EC AC +>.又∵AE 为中线,∴12EC BC =即12AE BC AC +>,∴12AB AE BC AD AC ++>+随练1、 已知一个三角形的第一条边长为(a+2b )厘米,第二条边比第一条边短(b ﹣2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长;(2)当a=2,b=3时,求此三角形的周长. 【答案】 (1)3a+4b+1 (2)19【解析】 (1)第二条边长为:a+2b ﹣(b ﹣2)=(a+b+2)厘米, 第三条边长为:a+b+2﹣3=(a+b ﹣1)厘米, 则周长为:a+2b+a+b+2+a+b ﹣1=3a+4b+1; (2)当a=2,b=3时, 周长为:3×2+4×3+1=19.随练2、 在△ABC 中,若AB =5,BC =2,且AC 的长为奇数,则AC =________.ED CBA【解析】暂无解析随练3、如图,若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对.【答案】3【解析】暂无解析稳定性例题1、下列图形中,不具有稳定性的是()A. B. C. D.【答案】B【解析】本题考查的是三角形稳定性.A可以看成两个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误;B可以看成一个三角形和一个四边形,而四边形不具有稳定性,则这个图形一定不具有稳定性,故本选项正确;C可以看成三个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误;D可以看成7个三角形,而三角形具有稳定性,则这个图形一定具有稳定性,故本选项错误.故选B.随练1、王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根【答案】B【解析】本题考查的是三角形稳定性.加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.三角形的高、中线、角平分线知识精讲一.三角形的高线、中线、角平分线概念从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线在三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线三.易错点1.画三角形的高时,只要向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边的高.特别是钝角三角形的高,有两条是在三角形外.2.三角形的角平分线是一条线段,而角的角平分线是一条射线.3.三角形的中线是线段4.三角形边上的高是线段,而该边的垂线是直线三点剖析考点:1.三角形的高、中线、角平分线;2.面积问题;重难点:1.锐角三角形的高均在三角形内部,三条高的交点也在三角形的内部;直角三角形两条高分别与两条直角边重合,三条高的交点也在三角形的直角顶点处;钝角三角形的高线中有两个垂足落在边的延长线上,这两条高落在三角形的外部.2.三角形三条中线的交点一定在三角形内部.3.每个三角形都有三条角平分线且交于一点,这个点叫三角形的内心,它也一定在三角形内部.易错点:1.画三角形的高时,只要向对边或对边的延长线作垂线,连接顶点与垂足的线段就是该边的高.2.三角形的角平分线是一条线段,而角的角平分线是一条射线.三角形的高、中线、角平分线例题1、如图,在△ABC中,∠C=90°,O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则点O到三边AB、AC和BC的距离分别为()A.2cm、2cm、2cmB.3cm、3cm、3cmC.4cm、4cm、4cmD.2cm、3cm、5cm【答案】A【解析】∵△ABC中,∠C=90°,AB=10cm,BC=8cm,CA=6cm,∵点O为△ABC的三条角平分线的交点,∴OE=OF=OD,设OE=x,∵S△ABC=S△OAB+S△OAC+S△OCB,∴12×6×8=12OF×10+12OE×6+12OD×8,∴5x+3x+4x=24,∴x=2,即点O到三边AB,AC和BC的距离都等于2.故选A.例题2、如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到'''A B C,图中标出了点B 的对应点'B.(1)补全'''A B C根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)'''A B C的面积为________【答案】(1)如图所示:'''A B C即为所求;(2)如图所示:CD就是所求的中线;(3)如图所示:AE即为BC边上的高;(4)8.【解析】(1)连接BB',过A、C分别做BB'的平行线,并且在平行线上截取AA CC BB'='=',顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)作AB的垂直平分线找到中点D,连接CD,CD就是所求的中线.(3)从A点向BC的延长线作垂线,垂足为点E,AE即为BC边上的高;(4)4421628⨯÷=÷=.故'''A B C的面积为8.随练1、如图,在△ABC中,CD是高线,点E在CD上,且∠ACD=∠DBE,则有()A.BE⊥ACB.BE平分∠ABCC.∠BCD=∠CBED.∠CBD=∠BED【答案】A【解析】延长BE到AC上一点F,∵CD是高线,∴∠BED=∠CEF,∠BDE=90°,则∠DEB+∠EBD=90°,∵∠ACD=∠DBE,∴∠ACE+∠CEF=90°,∴∠CFB=180°-(∠ACE+∠CEF)=90°,即BE⊥AC,故A选项正确;随练2、如图,在△ABC中,∠1=∠2,G为AD中点,延长BG交AC于点E,F为AB上一点,CF⊥AD于H.下面判断正确的有________.(1)AD是在△ABC的角平分线(2)BE是的△ABD的AD边上的中线(3)CH为△ACD边AD上的中线(4)AH是△ACF的角平分线和高线.【答案】(1)(4)【解析】(1)根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法正确;(2)根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;(3)根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法不正确;(4)根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.面积问题例题1、如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S l,△ACE的面积为S2,若S△ABC=12,则S1+S2=________.【答案】14【解析】∵BE=CE,∴1112622ACE ABCS S==⨯=,∵AD=2BD,∴2212833ACD ABCS S==⨯=,∴S1+S2=S△ACD+S△ACE=8+6=14.例题2、如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=________,△APE的面积等于6.【答案】 1.5或5或9【解析】如图1,当点P在AC上,∵△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,∴CE=4,AP=2t.∵△APE的面积等于10,∴1124622APES AP CE t==⨯⨯=△,∴t=1.5;如图2,当点P在线段CE上,∵E是DC的中点,∴BE=CE=4.∴PE=4-(t-3)=7-t,∴11(7)6622S EP AC t==-⨯=,∴t=5,如图3,当P在线段BE上,同理:PE=t-3-4=t-7,∴11(7)6622S EP AC t==-⨯=,∴t=9,综上所述,t的值为1.5或5或9.例题3、如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△A1B l C1的面积是14,那么△ABC的面积是()A.2B.143C.3D.72【答案】A【解析】如图,连接AB1,BC1,CA1,∵A 、B 分别是线段A 1B ,B 1C 的中点,∴S △ABB1=S △ABC ,S △A1AB1=S △ABB1=S △ABC ,∴S △A1BB1=S △A1AB1+S △ABB1=2S △ABC ,同理:S △B1CC1=2S △ABC ,S △A1AC1=2S △ABC ,∴△A 1B 1C 1的面积=S △A1BB1+S △B1CC1+S △A1AC1+S △ABC =7S △ABC =14.∴S △ABC =2.随练1、 如图所示,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且S △ABC =4cm 2,则S 阴影等于( )A.2cm 2B.1cm 2C.12cm 2D.14cm 2 【答案】 B 【解析】 2111cm 24BCE ABC S S S ===△△阴影. 随练2、 如图,在△ABC 中,E 为AC 的中点,点D 为BC 上一点,BD ︰CD =2︰3,AD ,BE 交于点O ,若S △AOE -S △BOD=1,则△ABC 的面积为________.【答案】【解析】 ∵点E 为AC 的中点,∴S △ABE=12S △ABC . ∵BD :CD=2:3, ∴S △ABD=25S △ABC , ∵S △AOE -S △BOD=1,∴S △ABE -S △ABD=12S △ABC -25S △ABC=1, 解得S △ABC=10.故答案为:10随练3、 阅读下列材料:某同学遇到这样一个问题:如图1,在ABC ∆中,AB AC =,BD 是ABC ∆的高.P 是BC 边上一点,PM ,PN 分别与直线AB ,AC 垂直,垂足分别为点M ,N .求证:BD PM PN =+.他发现,连接AP ,有ABC ABP ACP S S S ∆∆∆=+,即111222AC BD AB PM AC PN ⋅=⋅+⋅.由AB AC =,可得BD PM PN =+. 他又画出了当点P 在CB 的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD ,PM ,PN 之间的数量关系是:请回答:(1)请补全以下该同学证明猜想的过程;∵ABC APC S S ∆∆=-___________,∴1122AC BD AC ⋅=⋅_____12AB -⋅______, ∵AB AC =,∴BD PN PM =-.(2)参考该同学思考问题的方法,解决下列问题:在ABC ∆中,AB AC BC ==,BD 是ABC ∆的高.P 是ABC ∆所在平面上一点,PM ,PN ,PQ 分别与直线AB ,AC ,BC 垂直,垂足分别为点M ,N ,Q .图3,若点P 在ABC ∆的内部,则BD ,PM ,PN ,PQ 之间的数量关系是:_________________;②若点P 在如图4所示的位置,利用图4探究得出此时BD ,PM ,PN ,PQ 之间的数量关系是:________________________.【答案】 (1)见解析(2)①BD PM PN PQ =++②BD PM PQ PN =+-【解析】 该题考查的是等面积方法的应用.(1)由图可知∵ABC APC APB S S S ∆∆∆=-∴111222AC BD AC PN AB PM ⋅=⋅-⋅, ∵AB AC =∴BD PN PM =-(2)①连接AP 、BP 、CP参考该同学思考问题的方法,则有∵ABC APB APC BPC S S S S ∆∆∆∆=++,∴11112222AC BD AB PM AC PN BC PQ ⋅=⋅+⋅+⋅,∵AB AC BC ==,∴BD PM PN PQ =++.②过点P 分别作直线AB ,AC ,BC 的垂线P ,垂足分别为点M ,N ,Q ,分别连接接AP 、BP 、CP ,参考以上的思考方法,则有∵ABC APB BPC APC S S S S ∆∆∆∆=+-, ∴11112222AC BD AB PM BC PQ AC PN ⋅=⋅+⋅-⋅, ∵AB AC BC ==,∴BD PM PQ PN =+-.拓展1、 若一个三角形的三个内角的度数之比为3:4:2,那么这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】 A【解析】 ∵三个内角的度数之比为3:4:2,∴三个内角的度数分别是60︒,80︒,40︒;∴该三角形是锐角三角形.2、 如图,将三角尺的直角顶点放在直线a 上,a b ∥,150∠=︒,260∠=︒,则3∠的度数为( )A.50︒B.60︒C.70︒D.80︒【答案】 C 【解析】 由题意:354∠=∠=∠,由124180∠+∠+∠=︒,故123180∠+∠+∠=︒,故370∠=︒。
教 学 反 思4.1 认识三角形(1)三角形中角的关系:(1)三角形的三个内角之和是 ;(2)直角三角形的两个锐角 三角形的分类:按角分为三类: 三角形; 三角形和 三角形。
(一) 学习过程例1 证明三角形的内角和为180°例2 在△ABC 中,(1)0082,42,C A B ∠=∠=∠则= (2)5,A B C C ∠+∠=∠∠那么=(3)在△ABC 中,C ∠的外角是120°,B ∠的度数是A ∠度数的一半,求△ABC 的三个内角的度数变式训练:在△ABC 中(1)0078,25,B A C ∠=∠=∠则= (2)若C ∠=55°,010B A ∠-∠=,那么A ∠= ,B ∠=例3 已知△ABC 中,::1:2:3A B C ∠∠∠=,试判断此三角形是什么形状?变式训练:已知△ABC 中,090,2,A B B C ∠-∠=∠=∠试判断此三角形是什么形状?例4 如图,在△ABC 中,90ACB ∠=,CD ⊥AB 于点D ,1,2?A B ∠∠∠∠与有何关系与呢例5 如图,已知00060,30,20,A B C BOC ∠=∠=∠=∠求的度数。
变式训练:如图在锐角三角形ABC 中,BE 、CD 分别垂直AC 、AB ,若040A ∠=,求BH C ∠的度数。
21DC AOCBAHE DCBA拓展:1、如图所示,求A B C D E ∠+∠+∠+∠+∠的度数。
2、如图在△ABC 中,已知1,2,,A B ABC ACB ACB ∠=∠∠=∠∠=∠∠求的度数。
4.1认识三角形(2)如图,已知AD ⊥BC 于点D ,DE ⊥AB 于点E ,点F 是AE 的中点,则图中有 个三角形, 个直角三角形, 个锐角三角形, 个钝角三角形;以B ∠为内角的三角形有 个,它们分别是 ;以BE 为一边的三角形是 。
(二)学习过程1、三角形的有关概念(1)三角形的定义:由不在 上的三条线段首尾 相连所组成的图形。
第三章 三角形3.3探索全等三角形的条件第2课时【学习目标】1.会通过操作探索全等三角形的条件ASA 、AAS ;2.会运用ASA 、AAS 进行推理. 【课前导学温故与预习】 学习准备1.只给出一个或两个条件时,______(能、不能)保证所画出的三角形一定全等.如果给出三个条件画三角形,可能有的情况是______ _______ _______ _______.2.我们在前面学过__________________方法可判定两个三角形全等.ABCFED3.请同学们准备以下纸片(要求尽可能美观大方,将条件标在纸片上) ①.已知三角形的两内角分别是60°,80°,它们的夹边为8cm . ②.已知三角形的两内角分别是60°,45°,且60°角所对的边是8cm . ③.已知三角形的两内角分别是60°,45°,且45°角所对的边是8cm . 自主学习自学教材81页—83页,初步感知教材,回答下列问题:1. 对应相等的两个三角形全等,简写成“ ”或“ ”..2. 对应相等的两个三角形全等,简写成“ ”或“ ”..3.图1中两个三角形全等吗? 根据是 .图2中两个三角形全等吗? 根据是 .30°30°135°135°60°60°55°55°推理格式:在△ABC 和△DEF 中AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS )【互动课堂探究与合作】探究点一:两角及夹边分别相等的两个三角形全等.1. 操作:将你的①号纸片与同桌的进行对比,你有什么发现? , 这说明: 分别相等的两个三角形 ,这一规律简写为“ ” 或“ ” .2.用图形和符号来表示:ABCFED3. 某同学把一块三角形的玻璃打碎成三块,现要去 玻璃店配一块那么最省事的办法是带 (只填 字母)去,依据是 .探究点二:两角分别相等及其中一组等角的对边相等的两个三角形全等.1. 操作:将你的②号纸片、③号纸片分别与同桌比较,有什么发现? . 这说明: 分别相等且其中其中一组等角的 的两个三角形 ,这一规律简写为“ ” 或“ ” .2.用图形和符号来表示:ABCFE D3. 如图,已知点O 是AB 的中点,∠AOC 与∠BOD 是对顶角,还需补充条件______=_____,就可根据“ASA ”说明△AOC ≌△BOD ;或者补充条件______=______,就可根据“AAS ”,说明△AOC ≌△BOD .OCABD推理格式:在△ABC 和△DEF 中⎪⎩⎪⎨⎧∠=∠=∠=∠E B DE AB D A ∴△ABC ≌△DEF (ASA )推理格式:在△ABC 和△DEF 中A DB E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (AAS )小组合作展示 展示1已知:如图,点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,AB =AC ,∠B =∠C .问BD 与CE 有什么关系?请说明理由. 解:BD =CE ,理由如下: 在△ADC 和△ 中∵A A AC ABC B ∠=∠=∠=∠⎧⎪⎨⎪⎩()()()∴△ADC ≌△ ( )∴AD = (全等三角形的对应边相等) 又∵AB =AC ( )∴AB -AD =AC - (等式性质) 即:BD =CE . 方法点睛注意抓隐含已知条件(公共角、公共边等). 自我展练如图,OP 是∠MON 的角平分线,C 是OP 上一点,CA ⊥OM ,CB ⊥ON ,垂足分别为A 、B ,△A OC ≌△BOC 吗?为什么?BAONMPC展示2如图,已知点A 、F 、E 、C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF =CE .(1)从图中任找两组全等三角形;(2)任选一组说明理由.OABCED解:(1)△ABE ≌△CDF ,△AFD ≌△CEB ; (2)∵AB ∥CD , ∴∠1=∠2, ∵AF =CE , ∴AF +EF =CE +EF , 即AE =FC ,在△ABE 和△CDF 中,12ABE CDF AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (AAS ). 方法点睛要从已知条件多思考,设法转化成全等所需要的条件. 自我展练已知△ABC ≌A ′B ′C ′,AD 、A ′D ′是它们的高,则AD 与A ′D ′相等吗?请说明理由.D'C'B'A'DA BC【当堂过关—即学即练5-10分钟】1. 如图,点D 、E 分别在线段AB ,AC 上,AE =AD ,不添加新的线段和字母,要使△ABE ≌△ACD ,需添加的一个条件是 ∠B =∠C (只写一个条件即可).3.如图,AB =AE ,∠1=∠2,∠C =∠D .求证:△ABC ≌△AED .3.已知,如图,AC 、BD 相交于O ,且AB =DC ,AC =DB ,则OA =OD 吗?说明理由.(本题需连接AD ,并证两次三角形全等)OABDC4.已知正方形ABCD ,顶点B 在直线EF 上,AE ⊥EF,CF ⊥EF,AE=3,CF=4,则EF= .FEDACB【反思小结】 1.知识要点:今天学习的全等三角形的判定方法是___________________________,语言叙述是____________________. 2.思想方法:转化思想 3.学习方法:说明线段或角相等的重要方法是证明两个三角形全等,证明两个三角形全等的思路是:①观察问题中线段或角在哪两个可能全等的三角形中; ②分析要证全等的两个三角形已知什么条件,还缺什么条件; ③设法证得所缺条件,必要时需添辅助线构造全等三角形. 注【课后分级训练】 A 级 基础过关训练1. 如图,AC 与BD 平行且相等,则△AOC 与△BOD 全等吗?写出推理过程.OCABD2.已知:如图,AB =DC ,∠A =∠D .试说明:∠1=∠2.(注意看清条件是否能得到全等)21OA BCD3.如图,将长方形ABCD 沿BD 对折,点A 落在E 处,BE 与CD 相交于F .则△EDF ≌△CBF 吗,请说明理由.4.如图,ΔABC 中,D 是AC 上一点,BE ∥AC ,BE =AD ,AE 分别交BD 、BC 于点F 、G . ⑴图中有全等三角形吗?请找出来,并证明你的结论. ⑵若连结DE ,则DE 与AB 有什么关系?并说明理由.FGACBDE5. 如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF=BD ,连接BF .则 BD 与CD 有什么数量关系,并说明理由;B 级∙能力提升妙题6.已知:如图,BC AD ⊥,︒=∠45ABD ,AC BE ⊥,你认为BF 与AC 长度之间是什么关系?并证明你的结论。
第三章三角形第一节认识三角形知识点一、三角形相关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
表示为“ ABC”2.边:组成三角形的线段叫做三角形的边;表示:AB,AC,BC 或a, b, c3.顶点:相邻两边的公共端点叫做三角形的顶点;4.角:相邻两边所组成的角叫做三角形的内角,简称三角形的角。
5.三角形有三条边、三个内角、三个顶点例:如图,共有三角形的个数是()A.3 B.4 C.5 D.6练习1.如做下图所示,图中的三角形有()A.6个B.8个C.10个D.12个2. 如右上图所示,图中三角形的个数为().A.3个B.4个C.5个D.6个知识点二、三角形的三边关系1.三角形的两边之和大于第三边。
2.三角形的两边之差小于第三边。
3.作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
例1.七(1)班某同学想利用下列长度的木棒制成一个三角形工具,下列各组你认为可行的是()A.5,2,2 B.2,3,6 C.5,3,4 D.7,13,6例2.一个三角形两边长为5和7,且有两边长相等,这个三角形的周长是()A.17B.19C.17或19D.无法确定练习1.有下列长度(cm)的三条小木棒,如果首尾顺次连结,能钉成三角形的是()A.10、14、24 B.12、16、32 C.16、6、4 D.8、10、122.有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个 B.6个 C.7个 D.8个3.已知等腰三角形的周长为16,且一边长为3,则腰长为()A.3 B.10 C.6.5 D.3或6.54.甲地离学校4km,乙地离学校1km,记甲乙两地之间的距离为d km,则d的取值范围为____________5.如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为,如果第三边长为偶数,则此三角形的周长为 .知识点三、三角形的内角的关系1.三角形三个内角和等于180°。
三角形的三边关系知识技能目标1.掌握和理解三角形的三边关系;2.认识三角形的稳定性,并能利用三角形的稳定性解决一些实际问题.过程性目标1.联系三角形的三个内角、外角以及外角与内角之间的数量关系,探索三角形的三边之间的不等量关系;2.结合实践与应用,充分感受三角形的三边关系,体会三角形的稳定性.教学过程一、创设情境让学生拿出预先准备好的四根牙签(2cm,3cm,5cm,6cm各一根)请你用其中的三根,首尾相接,摆成三角形,是不是任意三根都能摆出三角形?若不是,哪些可以?哪些不可以?你从中发现了什么?二、探索归纳从4根中取出3根有一下几种情况:(1) 2cm,5cm,6cm (2) 3cm,5cm,6cm(3) 2cm,3cm,5cm (4) 2cm,3cm,6cm通过实践可知(1),(2)可以摆出三角形,(3),(4)不能摆成三角形我们可以发现这三根牙签中,如果较小的两根的和不大于最长的第三根,就不能组成三角.这就是说:三角形的任意两边的和大于第三边.三、实践应用例1 画一个三角形,使它的三条边分别为7cm,5cm,4cm.画法步骤如下:(1)先画线段AB=7cm;(2)以点A为圆心,5cm长为半径画圆弧;(3)再以B为圆心,4cm长为半径画圆弧,两弧相交于点C;(4)连结AC,BC.△ABC就是所要画的三角形.练习:以下列长度的各组线段为边,能否画一个三角形?(1)7cm,4cm,2cm; (2)9cm,5cm,4m.例2 有两根长度分别为5cm和8cm的木棒,现在再取一根木棒与它们摆成一三角形,你说第三根要多长呢?用长度为3cm的木棒行吗?为什么?长度为14cm的木棒呢?解取长度3cm的木棒时,由于3+5=8,与三角形两边之和大于第三边相矛盾,所以不能摆成三角形;取长度为14cm的木棒时,由于5+8<14,同样与三角形两边之和大于第三边相矛盾,所以也不能摆成三角形. 从上可知第三木棒的长度应该是大于3cm且小于13cm.结论 1. 三角形两边之差小于第三边;2.已知三角形的两边长度,第三边长度范围是大于这两边的差小于这两边的和.练习下列长度的各组线段能否组成一个三角形?(1)15cm、10cm、7cm; (2)4cm、5cm、10cm;(3)3cm、8cm、5cm; (4)4cm、5cm、6cm.例3 (1)如果等腰三角形的一边长是4cm,另一边长是9cm,则这个等腰三角形的周长为多少?(2)如果等腰三角形的一边长是5cm,另一边长是8cm,则这个等腰三角形的周长是多少?解 (1)若4cm为底边9cm为腰时,有4+9>9和9+9>4能构成三角形周长为22cm;若4cm为腰9cm为底时,有4+4<9不能构成三角形假设不成立;(2)若5cm为底8cm为腰时,有5+8>8和8+8>5能构成三角形,周长为21 cm;若5cm为腰8cm为底时,有5+5>8和8+5>8也能构成三角形,周长为18cm.故已知等腰三角形的二条边求第三边的长时,首先要判断这三边能否构成三角形,再求第三边的长.用三根木条钉一个三角形,你会发现再也无法改变这个三角形的形状和大小,也就是说,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个性质叫做三角形稳定性.有四根木条钉一个四边形,你会发现可以任意改变这个四边形的形状和大小,这说明四边形具有不稳定性.三角形的稳定性在生产实践中有着广泛的应用.例如桥梁拉杆、电视塔底座都是三角形结构.交流反思三角形的三边关系:三角形任何两边的和大于第三边.注意“任何”两字.如三角形的三边分别为a、b、c则a+b>c,a+c>b,b+c>a都成立才可以,三角形任何两边之差小于第三边也同样如此.五、检测反馈1.画一个三角形,使它的三条边长分别为3cm、4cm、6cm;2.已知△ABC是等腰三角形,如果它的两条边的长分别为8cm和3cm,那么它的周长是多少?七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知AB∥CD,BC平分∠ABE,∠C=35°,则∠BED的度数是()A.70°B.68°C.60°D.72°【答案】A【解析】先根据平行线的性质求出∠ABC的度数,再由BC平分∠ABE可得出∠ABE的度数,进而可得出结论.【详解】解:∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°.∵BC平分∠ABE,∴∠ABE=2∠ABC=70°.∵AB∥CD,∴∠BED=∠ABE=70°.故选:A.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.2.将一副直角三角尺按如图所示摆放,则图中∠α的度数是()A.45°B.60°C.70°D.75°【答案】D【解析】分析:如下图,根据“三角形外角的性质结合直角三角尺中各个角的度数”进行分析解答即可.详解:如下图,由题意可知:∠DCE=45°,∠B=30°,∵∠ =∠DCE+∠B,∴∠α=45°+30°=75°. 故选D.点睛:熟悉“直角三角尺中各个内角的度数,且知道三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和”是解答本题的关键.3.如图是北京城镇居民家庭年每百户移动电话拥有量折线统计图,根据图中信息,相邻两年每百户移动电话拥有量变化最大的是A .2010年至2011年B .2011年至2012年C .2014年至2015年D .2016年至2017年 【答案】B【解析】观察折线统计图可知:2011年至2012年每百户移动电话拥有量变化最大. 【详解】解:观察折线统计图可知:2011年至2012年每百户移动电话拥有量变化最大. 故选:B . 【点睛】本题考查折线统计图,关键是能够根据统计图提供的信息,解决有关的实际问题.4.如图,ABC ∆中,AB =AC ,D 、E 分别在边AB 、AC 上,且满足AD =AE ,下列结论中:①ABE ACD ∆≅∆;②AO 平分∠BAC ;③OB =OC ;④AO ⊥BC ;⑤若12AD BD =,则13OD OC =;其中正确的有( )A .2个B .3个C .4个D .5个【答案】D【解析】利用SAS 可证明△ABE ≌△ACD ,判断①正确;根据全等三角形的性质以及邻补角定义可得∠BDO=∠BEC ,继而利用AAS 证明△BOD ≌△COE ,可得OD=OE ,BO=OC ,判断③正确;利用SSS 证明△AOD ≌△AOE ,可得AO 平分∠BAC ,判断②正确,继而根据等腰三角形三线合一的性质可判断④正确,根据三角形的高相等时,两三角形的面积比就是底边之比,通过推导可判断⑤正确. 【详解】在△ABE 与△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD ,故①正确; ∴∠AEB=∠ADC , ∴∠BDO=∠BEC ,∵AB=AC ,AD=AE ,∴BD=CE , 在△BOD 与△COE 中,BDO CEO BOD COE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BOD ≌△COE ,∴OD=OE ,BO=OC ,故③正确; 在△AOD 与△AOE 中,AD AE AO AO OD OE =⎧⎪=⎨⎪=⎩, ∴△AOD ≌△AOE , ∴∠DAO=∠EAO ,即AO 平分∠BAC ,故②正确, 又∵AB=AC ,∴AO⊥BC,故④正确,∵12AD BD=,∴S△BOD=2S△AOD,又∵△BOD≌△COE,∴S△COE=2S△AOD,又∵△AOD≌△AOE,∴S△AOC=3S△AOD,∴OC=3OD,即13OD OC=,故⑤正确,故选D.【点睛】本题考查了等腰三角形的的性质,全等三角形的判定与性质,角平分的定义,三角形的面积等,综合性较强,准确识图,正确分析,熟练运用相关知识是解题的关键.5.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A.7{2x yx y+==B.7{2x yy x+==C.27{2x yx y+==D.27{2x yy x+==【答案】A【解析】设甲数为x,乙数为y,根据题意得:7 {2x yx y+==,故选A.6.一个不等式组的两个不等式的解集如图所示,则这个不等式组的解集为( )A.1 <x ≤ 0B.0 <x ≤1C.0 ≤ x<1 D.0<x<1【答案】B【解析】分析:由数轴可知,两个不等式的解集分别为x>0,x≤1,由此可求出不等式组的解集. 详解:由数轴得,不等式组的解集为0 <x ≤1.故选B.点睛:此题主要考查了在数轴上表示不等式的解集,关键是用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.写出图中表示的两个不等式的解集,这两个式子公共部分就是对应不等式组的解集.=++,则称n为“好数”.例如:7.对于一个自然数n,如果能找到正整数x、y,使得n x y xy=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有()个31111A.1 B.2 C.3 D.4【答案】C【解析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=1,1是一个质数,∴10不是好数;∵1=2+3+2×3,∴1是好数.综上,可得在8,9,10,1这四个数中,“好数”有3个:8、9、1.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.8.不等式-3x≤6 的解集在数轴上正确表示为()A.B.C.D.【答案】D【解析】先求出不等式的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式的解集在数轴上表示出来,比较得到结果.【详解】−3x⩽6,x⩾−2.不等式的解集在数轴上表示为:故选D.【点睛】此题考查在数轴上表示不等式的解集,解题关键在于掌握表示方法9.画△ABC中AC上的高,下列四个画法中正确的是()A.B.C.D.【答案】C【解析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.【详解】过点B作直线AC的垂线段,即画AC边上的高BD,所以画法正确的是C.故选C.【点睛】此题考查三角形的角平分线、中线和高,解题关键在于掌握作图法则.10.在平面直角坐标系中,已知A(﹣2,3),B(2,1),将线段AB平移后,A点的坐标变为(﹣3,2),则点B的坐标变为()A.(﹣1,2)B.(1,0)C.(﹣1,0)D.(1,2)【答案】B【解析】由A(﹣2,3)平移后坐标变为(﹣3,2)可得平移变化规律,可求B点变化后的坐标.【详解】解:∵A(﹣2,3)平移后坐标变为(﹣3,2),∴可知点A向左平移1个单位,向下平移1个单位,∴B 点坐标可变为(1,0). 故选:B . 【点睛】本题运用了坐标的平移变化规律,由分析A 点的坐标变化规律可求B 点变化后坐标. 二、填空题题11.定义:f (a ,b )=(﹣a ,b ),g (m ,n )=(m ,﹣n ),例 f (1,2)=(﹣1,2),g (﹣4,﹣5)=(﹣4,5),则 g ( f (2,﹣3))=_____. 【答案】(﹣2,3).【解析】根据新定义法则,分步完成.即: g ( f (2,﹣3))= g (-2,﹣3))=(﹣2,3). 【详解】g ( f (2,﹣3))= g (-2,﹣3))=(﹣2,3). 故答案为:(﹣2,3) 【点睛】本题考核知识点:点的坐标.解题关键点:根据新定义写坐标.12.一个凸多边形的内角和为720°,则这个多边形的边数是__________________ 【答案】1【解析】设这个多边形的边数是n ,根据多边形的内角和公式:()n 2180-⨯,列方程计算即可. 【详解】解:设这个多边形的边数是n根据多边形内角和公式可得()n 2180720,-⨯= 解得n 6=. 故答案为:1. 【点睛】此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.13.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数,(1)表格中反映的变量是_____,自变量是_______,因变量是___________.(2)估计小亮家4月份的用电量是_____°,若每度电是0.49元,估计他家4月份应交的电费是_________. 【答案】 日期和电表读数 日期 电表读数 120 58.8【解析】分析:(1)、根据表格即可得出自变量和因变量;(2)、首先根据表格得出每天的平均用电量,然后得出4月份的用电量,根据电价得出答案.详解:(1)、变量有两个:日期和电表读数,自变量为日期,因变量为电表读数; (2)、每天的用电量:(49-21)÷7=4°,4月份的用电量=30×4=120°, ∵每度电是0.49元,∴4月份应交的电费=120×0.49=58.8元. 点睛:本题主要考查的是函数的变量,属于基础题型.在看这个表格的时候一定要注意两天数值的差才是前一天的用电量.14.已知,x=3、y=2是方程组6324x by ax by +=⎧⎨-=⎩的解,则a=_____,b=_____【答案】6; 7【解析】把x 与y 的值代入方程组计算即可求出a 与b 的值.【详解】把x=3、y=2代入6324x by ax by +=⎧⎨-=⎩中得:18232324b a b +⎧⎨-⎩== 解得:67a b ⎧⎨⎩==故答案是:6,7. 【点睛】考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15.已知方程组123a b b c a c -=-⎧⎪-=⎨⎪+=⎩,则a =______________.【答案】2【解析】利用“加减消元法”解三元一次方程组,即可求出a 的值.【详解】123a b b c a c -=-⎧⎪-=⎨⎪+=⎩①②③解:①+②得:12a b b c -+-=-+ 合并同类项,得:1a c -=④ ③+④得:314a c a c ++-=+= 合并同类项,得:24a =解得:a=2故答案为:2【点睛】本题考查解三元一次方程组,熟练掌握“加减消元法”是解题关键.16.如图,△ABC的周长为15cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D、交AC边于点E,连接AD,若AE=2cm,则△ABD的周长是_____cm.【答案】11【解析】根据垂直平分线的性质即可求解.【详解】由题意可知EC=AE=2cm,AD=CDAB+AC+BC=15cm;∴AB +BC=15-2×2=11cm∴△ABD的周长为AB+BD+AD=AB+BC-CD+AD= AB+BC=11cm【点睛】此题主要考查周长的计算,解题的关键是熟知垂直平分线的的性质.17.按如图所示的程序进行运算时,发现输入的x恰好经过3次运算输出,则输入的整数x的值是________ .【答案】11或12或13或14或1.【解析】试题分析:第一次的结果为:2x-5,没有输出,则2x-545,解得:x25;第二次的结果为:2(2x-5)-4=4x-1,没有输出,则4x-145,解得:x1;第三次的结果为:2(4x-1)-5=8x-35,输出,则8x-3545,解得:x10,综上可得:,则x的最小整数值为11.考点:一元一次不等式组的应用三、解答题18.为保护环境,增强居民环保意识,某校积极参加即将到来的6月5日的“世界环境日”宣传活动,七年级(1)班所有同学在同一天调查了各自家庭丢弃塑料袋的情况,统计结果的条形统计图如下:根据统计图,请回答下列问题:(1)这组数据共调查了居民有多少户?(2)这组数据的居民丢弃塑料袋个数的中位数是_______个,众数是 _______个.(3)该校所在的居民区约有3000户居民,估计该居民区每天丢弃的塑料袋总数大约是多少?【答案】 (1)50(2)中位数 4 众数 4(3)12600【解析】(1)计算居民总数(2)中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
3.2 图形的全等教案
山丹二中顾峡
教学目标:
知识与技能:借助具体情境和图案,经历观察、发现和实践操作重叠图形等过程,了解图形全等的意义和全等三角形的定义,了解图形全等的特征和全等三角形的性质。
过程与方法:经历“我实践,我发现”,“几何常识我知道”,“实践问题我创造”的教学活动由此“感悟图形的全等——应用图形的全等——创造图形的全等”,带动知识
发生、发展的全过程。
情感与态度:学生观察生活中变化的图片信息,并愿意谈论图形的特征,在实践反思中敢于发表自己的观点,树立实事求是的科学态度。
其次学生积极参与图形全等的探
究过程,从中体味合作与成功的快乐,建立学习好数学的自信心,体会图形全等
在现实生活中的应用价值。
教学重点、难点:
重点:1会看图,会找到全等三角形的对应边、对应角。
2、掌握全等三角形的对应边相等、对应角相等的性质。
难点:找全等三角形的对应边、对应角。
教学方法:实践操作法和观察法
活动准备:把课本当中的图画在白纸上,带好剪刀。
教学过程:
一.创设现实情景,引入新课
1.引导学生观察图形,看它们有什么特点?(出示图片1组)
它们的形状和大小都相同,如果把它们叠在一起,它们就能重合(教师演示)
2.观察下列图形:你能分别从图中找出这样的图形吗?
二.讲授新课
(一)、全等图形的定义:能够重合的两个图形称为全等图形.
(二)、探索全等图形的特征
议一议:1、说说你生活中见过的全等图形的例子。
2、观察下面三组图形,它们是不是全等图形?
(3)
得出结论:全等图形的形状和大小都相同.
(三)、全等三角形的定义及有关概念和性质. 1.定义:能够完全重合的两个三角形叫做全等三角形。
A B C D E F A(D)
B(E)C(F)
图中ΔABC 与ΔDEF 重合,它们是全等的,其中顶点A 、D 重合,它们是对应顶点;AB 边与DE 边重合,它们是对应边;∠A 与∠D 重合,它们是对应角.你能找出其他的对应顶点、对应边和对应角吗?
2.性质:全等三角形的对应边相等,对应角相等.
3.全等三角形的符号表示及读法和写法.
全等用符号“≌”表示.读作“全等与”. △ABC 与△DFE 全等,记作△ABC ≌△DFE ,
强调记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
举例说明:如图,∵ △ABC ≌DFE ,(已知) ∴AB = DF ,AC = DE ,BC = FE ,(全等三角形的对应边相等)
∠A =∠D ,∠B =∠F ,∠C =∠E .(全等三角形的
对应角相等
)
三、议一议
(1)全等三角形对应边上的高相等吗?对应边的中 线呢?还有那些相等的线段?
(2)如图3-24,△ABC≌△A‘B’C‘,你如何在△A ’B‘C’画出与线段DE 相对应的线段?
结论:全等三角形对应边的高、中线相等。
全等三角形的对应线段(含对应角的平分线)都相等。
四、做一做
如图,是一个等边三角形,你能把它分成两个全等三角形吗?三个呢?四个呢?
五、课堂练习(学案)
六、小结:通过这节课的学习,你获得了哪些新知识?
1 . 能够完全重合的图形称为全等图形.
2. 全等图形的形状和大小都相同.
3 . 能够完全重合的两个三角形称为全等三角形.
4. 全等三角形的对应边和对应角相等.
七、当堂检测(学案)
八、班书设计
课后反思:。